yacouba coulibaly, halim boutayeb and tayeb a. denidni

14
1 INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada Gain Enhancement of a Dielectric Resonator Antenna Using a Cylindrical Electromagnetic Crystal Substrate Yacouba Coulibaly, Yacouba Coulibaly, Halim Boutayeb and and Tayeb A. Denidni Tayeb A. Denidni

Upload: flo

Post on 29-Jan-2016

63 views

Category:

Documents


0 download

DESCRIPTION

Gain Enhancement of a Dielectric Resonator Antenna Using a Cylindrical Electromagnetic Crystal Substrate. Yacouba Coulibaly, Halim Boutayeb and Tayeb A. Denidni. Outline. Introduction Antenna Configuration Simulation Results Measurements Conclusion. Introduction. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

1

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

Gain Enhancement of a Dielectric Resonator Antenna Using a Cylindrical

Electromagnetic Crystal Substrate

Yacouba Coulibaly, Yacouba Coulibaly, Halim Boutayeb and and Tayeb A. DenidniTayeb A. Denidni

Page 2: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

2

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

• Introduction• Antenna Configuration• Simulation Results• Measurements• Conclusion

Outline

Page 3: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

3

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

Inconvenient of a Dielectric Resonator Antenna:

low gain

Introduction

Advantages of a Dielectric Resonator Antenna (DRA)

Low losses

Reduced sized

High radiation efficiency

High density integration

Page 4: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

4

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

Introduction (cont.)

To improve the radiations characteristics of the DRA, few studies have been proposed:

The DRA has been placed on different ground planes shapes

Coaxially corrugated.

Strip corrugated.

Mushroom-like Electromagnetic Bang Gap (EBG) substrate.

Page 5: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

5

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

Introduction (cont.)

Design Objectives

Use a circularly periodic EBG to increase the gain of a cylindrical DRA.

Exciting the fundamental mode

Have the same radiation pattern shapes with or without the EBG substrate

Page 6: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

6

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

Antenna Design

Description:A Dielectric Resonator (DR) :

The DRA has a radius R=15mm, a height hd=10.5mm,and a

permittivity εdra=31.5. .

A Coaxial feed line:

The coaxial line is at a distance of 9

mm from the center.A circular EBG :

Printed on a substrate of permittivity ε2=2.2 and thickness

h=3.2mm. The distance from one strip to the following one is g=2mm. The periods for the strips is Pr2=24.6mm.

The metallic via have a radius a=2mm, and they are disposed with the same transversal period and the same radial period Pr2=23.6mm .

To p V ie w

S id e V ie w

x

y

z

x

S u b s tr a teG r o u n d p lan e

Via

g

P r1

P r1

P r1

P r2

P r2

P r2

Viad iam eter = a

D R A

E x c ita t io n( C o ax ia l lin e)

Page 7: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

7

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

Simulated return loss Simulated return loss (with Ansoft HFSS)(with Ansoft HFSS) of the antenna with of the antenna with and without the EBG substrateand without the EBG substrate

Simulated results

2,1 2,4-40

-35

-30

-25

-20

-15

-10

-5

0

With EBG Without EBG

S11

(d

B)

Freq (GHz)

Page 8: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

8

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

Simulated gain (with Ansoft HFSS) of the antenna with and Simulated gain (with Ansoft HFSS) of the antenna with and without the EBG substratewithout the EBG substrate

Results:

•The gain is increased by 3 dB due:

• to the reduction of the surface waves.• to the coupling between the DRA and the circular EBG (mainly).

Simulated results (cont)

2,10 2,15 2,20 2,25 2,30 2,35 2,405

6

7

8

9

10 With EBG Without EBG

Ga

in (

dB

)

Freq (GHz)

Page 9: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

9

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

Simulated radiation patterns at 2.25 GHz, in both the E- and Simulated radiation patterns at 2.25 GHz, in both the E- and H-Plane, with and without the EBG substrateH-Plane, with and without the EBG substrate

Results:

•The EBG structure improves the gain

•The back radiation decrease

Simulated results (cont)

-10

-5

0

5

100

30

60

90

120

150

180

210

240

270

300

330

-10

-5

0

5

10

E- plane H- plane

2.25GHz

Without EBG With EBG

Page 10: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

10

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

Experimental results

Photographs of the fabricated antenna prototypesPhotographs of the fabricated antenna prototypes

DRA aloneDRA alone DRA with cylindrical DRA with cylindrical EBG substrateEBG substrate

Page 11: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

11

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

Experimental results

2,10 2,15 2,20 2,25 2,30 2,35 2,40-30

-20

-10

0

S11

(dB

)

Frequency (GHz)

Without EBG With EBG

Measured return loss of the antenna with and without the Measured return loss of the antenna with and without the EBG substrateEBG substrate

Network AnalyzerNetwork Analyzer

Page 12: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

12

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

Experimental results (cont)

Measured gain (in an anechoic chamber at INRS) with and Measured gain (in an anechoic chamber at INRS) with and without the EBG substratewithout the EBG substrate

2,10 2,15 2,20 2,25 2,30 2,35 2,404,0

4,5

5,0

5,5

6,0

6,5

7,0

7,5

8,0

8,5

9,0

Ga

in(d

B)

Frequency(GHz)

With EBG Witout EBG

Page 13: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

13

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

H-planeH-planeE-planeE-plane

Measured radiation patterns with and without the EBG Measured radiation patterns with and without the EBG substratesubstrate

-10

0

100

30

60

90

120

150

180

210

240

270

300

330

-10

0

10

W ith EBG Without EBG

-10

0

100

30

60

90

120

150

180

210

240

270

300

330

-10

0

10

W ith EBG Without EBG

Experimental results (cont)

Page 14: Yacouba Coulibaly,  Halim Boutayeb and  Tayeb A. Denidni

14

INRS- Énergie Matériaux Télécommunications Montréal, Québec, Canada

The gain enhancement of a DRA has been investigated and good performances have been achieved

By adding the EBG substrate, the radiation characteristics have been significantly improved

The coupling between the cylindrical DRA and the reduction of the surfaces waves enhance the gain of the antenna

Conclusion

Perspectives:

• Investigation of elliptical EBG structures;• Design of elliptical patch antennas and elliptical DRAs integrated on elliptical EBG substrates, for Satellites communications applications (circular polarization).