x x x cloud variables top pressure cloud type effective radius

33
Cloud Variables Top pressure Bottom pressure Cloud cover/cloud detection O p t i c a l t h i c k n e s s Liquid water Effective radius Particle phase Partic le shape Cloud type X X X

Upload: oscar-perkins

Post on 06-Jan-2018

226 views

Category:

Documents


0 download

DESCRIPTION

Bottom pressure/heigth A chi serve? Aviazione, bilancio radiativo (LW bottom) Come si stima? - Spessore (topmolecolare-topO2) - LWC - Tipo (climatologia) - cloud radar

TRANSCRIPT

Page 1: X X X Cloud Variables Top pressure Cloud type Effective radius

Cloud Variables Top pressure

Bottom pressure

Cloud cover/cloud detection

Optical thickness

Liquid water

Effective radius

Particle phaseParticle shape

Cloud type

X

X

X

Page 2: X X X Cloud Variables Top pressure Cloud type Effective radius

Bottom pressure/heigth

• A chi serve? Aviazione, bilancio radiativo (LW bottom)

• Come si stima? - Spessore (topmolecolare-topO2)

- LWC - Tipo (climatologia) - cloud radar

Page 3: X X X Cloud Variables Top pressure Cloud type Effective radius
Page 4: X X X Cloud Variables Top pressure Cloud type Effective radius
Page 5: X X X Cloud Variables Top pressure Cloud type Effective radius

Cloud type

• A chi serve

Page 6: X X X Cloud Variables Top pressure Cloud type Effective radius
Page 7: X X X Cloud Variables Top pressure Cloud type Effective radius

+

Page 8: X X X Cloud Variables Top pressure Cloud type Effective radius

+

Optical thickness

Bid

irect

iona

l ref

lect

ance

g = 0.85= 0.86= 0.87

Page 9: X X X Cloud Variables Top pressure Cloud type Effective radius

Ice particle habit

• A chi serve

Page 10: X X X Cloud Variables Top pressure Cloud type Effective radius

S. Platnick, ISSAOS ‘02

Ice Cloud MicrophysicsCRYSTAL-FACE, A. Heymsfield

25 July 2002(VIPS)

25 July 2002(VIPS)

CPI: 7 July 2002

Page 11: X X X Cloud Variables Top pressure Cloud type Effective radius

Ice cloud microphysics, cont.

Page 12: X X X Cloud Variables Top pressure Cloud type Effective radius

MODIS ice crystal library habits/shapes

S. Platnick, ISSAOS ‘02

Page 13: X X X Cloud Variables Top pressure Cloud type Effective radius

Yang et al., “Single-scattering properties of complex ice crystals in terrestrial Atmosphere”, Contr. Atmos. Phys., 71, 223-248, 1998.

Page 14: X X X Cloud Variables Top pressure Cloud type Effective radius

Effective radius and optical thickness2 2

0 0 0 0 0

( ) ( ) 2 ( )z z z

ext extk dz r Q r n r drdz r n r drdz

Page 15: X X X Cloud Variables Top pressure Cloud type Effective radius

CLM: Cloud microphysical properties

Page 16: X X X Cloud Variables Top pressure Cloud type Effective radius

mod05

Page 17: X X X Cloud Variables Top pressure Cloud type Effective radius

• The reflection function of a nonabsorbing band (e.g., 0.86 µm) is primarily a function of optical thickness

• The reflection function of a near-infrared absorbing band (e.g., 2.14 µm) is primarily a function of effective radius– clouds with small drops (or

ice crystals) reflect more than those with large particles

• For optically thick clouds, there is a near orthogonality in the retrieval of c and re using a visible and near-infrared band

Retrieval of c and re

Liquid Water Clouds - ocean surface

Page 18: X X X Cloud Variables Top pressure Cloud type Effective radius

• The reflection function of a nonabsorbing band (e.g., 0.86 µm) is primarily a function of optical thickness

• The reflection function of a near-infrared absorbing band (e.g., 2.14 µm) is primarily a function of effective radius–clouds with small drops (or ice crystals) reflect more than those with large particles

• For optically thick clouds, there is a near orthogonality in the retrieval of c and re using a visible and near-infrared band

Retrieval of c and re

Ice Clouds - ocean surface

Page 19: X X X Cloud Variables Top pressure Cloud type Effective radius

Cloud Optical & Microphysical Properties Retrieval ExampleLiquid Water Clouds - ocean surface Liquid Water Clouds - ice surface

Page 20: X X X Cloud Variables Top pressure Cloud type Effective radius

Multiple scatteringwater cloud examples

S. Platnick, ISSAOS ‘02

Optical thickness

1- = 0

Bid

irect

iona

l ref

lect

ance

g = 0.85= 0.86= 0.87

reflectance vs. asymmetry parameter (g)

g = < cos() p()> ~ re

Page 21: X X X Cloud Variables Top pressure Cloud type Effective radius

S. Platnick, ISSAOS ‘02

1- re

Bid

irect

iona

l ref

lect

ance

Optical thickness Optical thickness

g = 0.85

1- = 0.006

1- = 0

1- = 0.020

1- = 0.006

g = < cos() p()> ~ re

1- = 0

g = 0.85= 0.86= 0.87

reflectance vs. asymmetry parameter (g)

Multiple scattering - reflectancewater cloud examples

reflectance vs. 1-0 (R ~1-0N)

Page 22: X X X Cloud Variables Top pressure Cloud type Effective radius

Ship track schematic

N ~ 40 cm-3

W ~ 0.30 g m-3

re ~ 11.2 µm

N ~ 100 cm-3

W ~ 0.75 g m-3

re ~ 10.5 µm

S. Platnick, ISSAOS ‘02

courtesy, P. Durkee

Page 23: X X X Cloud Variables Top pressure Cloud type Effective radius

Level-1B Image of California Stratus with Ship Tracks

marine marine stratocumulusstratocumulus

April 25, 2001

Red =0.65 µmGreen = 0.56 µmBlue =0.47 µm

Page 24: X X X Cloud Variables Top pressure Cloud type Effective radius

Level-1B Image of California Stratus with Ship Tracks

April 25, 2001

Red =0.65 µmGreen = 0.56 µmBlue =0.47 µm

3.7 µm band3.7 µm band

Page 25: X X X Cloud Variables Top pressure Cloud type Effective radius

CLM: Cloud microphysical properties• Cloud effective droplet radius• Cloud optical thickness

Page 26: X X X Cloud Variables Top pressure Cloud type Effective radius

Cloud phase

Page 27: X X X Cloud Variables Top pressure Cloud type Effective radius

10-10

10-8

10-6

10-4

10-2

100

0.1 1 10

mi water mi ice

Imag

inar

y R

efra

ctio

n In

dex

Wave Length [m]

VIS

0.9

3.810.8

12.0

ABS

ORP

TIO

N

1.6

Page 28: X X X Cloud Variables Top pressure Cloud type Effective radius

IR thermodynamic phase retrieval (B. Baum, S. Ackerman, S. Nasiri, NASA LaRC, U. Wisconsin/CIMSS)

S. Platnick, ISSAOS ‘02

Abs

orpt

ion

coef

ficie

nt (c

m-1)

water

ice

ice

16.7 14.3 11.1 10.0 9.1 8.3 µm12.5

Page 29: X X X Cloud Variables Top pressure Cloud type Effective radius

S. Platnick, ISSAOS ‘02

High Ice clouds

BTD[8.5-11] > 0 over a largerange of optical thicknesses Tcld = 228 K

Midlevel clouds

BTD[8.5-11] values are similar(i.e., negative) for both waterand ice cloudsTcld = 253 K

Low-level, warm clouds

BTD[8.5-11] values alwaysnegativeTcld = 273 K

Ice: Cirrus model derived from FIRE-I in-situ data *Water: re=10 mAngles = 45o, = 20o, and 40o

Profile: midlatitude summer

Simulations of Ice and Water Phase Clouds8.5 - 11 m BT Differences

=

=

*Nasiri et al, 2001Nasiri et al., 2002

Page 30: X X X Cloud Variables Top pressure Cloud type Effective radius

Bispectral IR algorithm

Uncertain

Mixed

Phase

Ice

Liquid

Water

No

Retrieval

Effect of multilayered clouds

S. Platnick, ISSAOS ‘02

Page 31: X X X Cloud Variables Top pressure Cloud type Effective radius

CLP Cloud phase

Page 32: X X X Cloud Variables Top pressure Cloud type Effective radius

Ice/Water Clouds Separate in 8.6-11 vs 11-12 um BT plots

Page 33: X X X Cloud Variables Top pressure Cloud type Effective radius

Cloud Composition

Ice Cloud

Water Cloud

Contrails

Contrails

Infrared Temperature Difference - 8.6 m (Band 29) - 11.0 m (Band 31)

Infrared Temperature Difference - 11.0 m (Band 31) - 12.0 m (Band 32)

MODIS Image Over Kansas - 21 April 1996