x x--rraayy ddoouubbllee ccrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy...

20
X X - - r r a a y y D D o o u u b b l l e e C C r r y y s s t t a a l l M M o o n n o o c c h h r r o o m m a a t t o o r r s s f f o o r r A A d d v v a a n n c c e e d d P P h h o o t t o o n n S S o o u u r r c c e e , , A A r r g g o o n n n n e e N N a a t t i i o o n n a a l l L L a a b b o o r r a a t t o o r r y y H H L L D D a a n n d d A A P P M M s s e e r r i i e e s s Technical Specifications July 1998

Upload: others

Post on 19-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

XXXX---- rrrr aaaayyyy DDDDoooouuuubbbb llll eeee CCCC rrrr yyyyssss tttt aaaa llllMMMMoooonnnnoooo cccc hhhh rrrroooommmmaaaa tttt oooo rrrr ssss

ffff oooo rrrr AAAAddddvvvvaaaannnn cccc eeeedddd PPPPhhhhoooo tttt oooonnnn SSSSoooouuuu rrrr cccc eeee ,,,,AAAArrrrggggoooonnnnnnnneeee NNNNaaaa tttt iiii oooonnnnaaaa llll LLLLaaaabbbboooo rrrr aaaa tttt oooo rrrr yyyy

HHHHLLLLDDDD aaaannnndddd AAAAPPPPMMMM sssseeee rrrr iiii eeeessss

TTeecchhnniiccaall SSppeecciiffiiccaattiioonnssJJuullyy 11999988

Page 2: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

ContentsI. General

I.1. Introduction · · · · · · · · · · · · · · · · · · · · · · · · P1I.2. Design Concept· · · · · · · · · · · · · · · · · · · · · P2I.3. Design Variations · · · · · · · · · · · · · · · · · · · P2-3

II. MechanicsII.1. Definitions· · · · · · · · · · · · · · · · · · · · · · · · · P4II.2. General Specifications · · · · · · · · · · · · · · P5II.3. Main Rotation Axis· · · · · · · · · · · · · · · · · · P6II.4. First Crystal Part · · · · · · · · · · · · · · · · · · · P7II.5. Second Crystal Part · · · · · · · · · · · · · · · · · P8-10II.6. Sagittal focusing · · · · · · · · · · · · · · · · · · · P11II.7. Supporting Table · · · · · · · · · · · · · · · · · · · P12

III. Vacuum Chamber· · · · · · · · · · · · · · · · · · · · · · P13IV. Electrical Connections· · · · · · · · · · · · · · · · · · P14V. Cooling system· · · · · · · · · · · · · · · · · · · · · · · · P15

VI. General View Drawings · · · · · · · · · · · · · · · · · P16-17

X-ray Double CrystalMonochromators

for Advanced Photon Source,Argonne National Laboratory

Page 3: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

1

I. General

Multiple Bragg reflection from high quality Silicon, Germanium and Diamondsingle crystals is a standard method to obtain highly monochromatic X-rays. A doublecrystal monochromator with two parallel crystals produces a monochromatic exit beamrunning parallel to incident white X-ray beam. The energy of the exit beam depends onthe angle of incidence, or Bragg angle θ. Commonly it is required that the beam offset,or distance between the optical axes of the incident beam and the exit beam, does notchange during energy scan.

This requirement can be achieved by independent control type or bymechanically coupled monochromators. The first type has independent goniometers foreach crystal. Rotations and translations of the crystals mounted on these goniometersare remotely controlled and synchronized by computer. The second type has a commonrotating table, which holds both crystals and their adjustment mechanics. The motion ofthe crystals on horizontal and vertical translation stages is either guided by a cam or byindependently controlled translation stages. Generally, the independent control type ismore precise. On the other hand, it requires more space, which makes it difficult toprovide a high vacuum environment. The mechanically coupled type is compact,however it is less precise.

Highly intense X-rays emitted from insertion devices of third generation highenergy storage rings impose challenges on the design of monochromators. The heat loadon the first crystal is estimated to be of the order of 100W/mm2 and more. The radiationlevel in the monochromator vessel, or vacuum chamber, is also extremely high. Thisrequires a system that efficiently removes heat from the crystal while maintaining highvacuum in the chamber. All materials used inside the chamber have to be radiationproof.

The design principles of the HLD and APM series monochromators we offerhere have been worked out for the Advanced Photon Source (APS) of ArgonneNational Laboratory, while KOHZU Seiki Co., Ltd. was in charge of design andconstruction of the monochromators. HLD and APM monochromators are doublecrystal mechanically coupled types with both crystals mounted on a common rotatingtable and moved independently by vertical and horizontal translation stages. Eachmonochromator is provided with effective crystal cooling system. The firstmonochromator of HLD series was delivered to APS in January 1994.

1. Introduction

HLD-1 monochromator.

Page 4: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

2

I. General

There have been produced two nearly identical monochromators HLD-1 andHLD-2, and two mirror symmetric monochromators APM-2L and APM-2R. Twonewest monochromators HLD-3 have been just delivered to APS (July, 1998). The dataabout deliveries are summarized in the table below:

Both HLD and APM type monochromators of the same size are placed in similarvacuum chambers. The rotation table and the main axis rotation mechanism is also thesame for all types. However, the mechanism which maintains the beam offset constant isdifferent. There are also differences in the adjustment mechanisms of the crystals andthe cooling system for each type of monochromator according to the specifications.

ModelInstalled at

Scientist in charge

Number ofmonochromators deliveredDate of delivery

HLD-1SRI-CAT,sector 1

Dr.W-K. Lee

1

January 1994

HLD-2SRI-CAT,sector 3Dr.E.Alp

1

April 1995

HLD-3Mu-CAT sector 6

CHEM/MAT-CARS sector 15Dr.D.Robinson

Dr.J.Viccan2

July 1998

APM-2SRI-CAT,sector 2Dr. B.Lai

Dr.W-B.Yun2

(mirror symmetry)

June 1995

The heart of the monochromator is a precise main rotation axis mechanism heldby a column placed on the top of the supporting table. On one side of the column thereis a motor, high resolution rotary encoder and high precision gear system which actuatesthe main rotation axis shaft. A side flange of the cylindrical vacuum chamber of themonochromator is fixed to the other side of the column. The shaft is introduced tovacuum through a ferrofluid seal, which provides high vacuum tightness and smoothnessof rotation. There is a common rotating table on the vacuum end of the shaft, whichcarries adjustment mechanics of both crystals. This mechanics includes translation stageswhich maintain the fixed beam offset, as well as precise adjustment of Bragg angle,translation, tilting and sagittal focusing according to specifications below. There aretubes provided for the cooling medium.

The bottom of the chamber body and the column are placed on the same railsperpendicular to the beam direction. The column can be moved freely, while thechamber body motion is actuated by a translation mechanism. Access to the mechanicsinside vacuum chamber can be provided by pulling out the column with the main axisshaft, common rotation table and the vacuum chamber side flange, or by opening theother side flange.

Supporting table of the monochromator allows transverse horizontal (asdescribed above) and vertical translation of the whole monochromator as specifiedbelow. Rough alignment in the beamline can be done by adjustment bolts on the bottomof the table.

2. Design Concept

3. Design Variations

Page 5: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

3

APM type has the 1st crystal in the rotation center, while the second crystal canmove horizontally and vertically (translations Z2, Y2 respectively) as shown on fig.1b.Solid lines show the position of both crystals at θ = 5° while short dashed lines show theposition at θ = 60° . The motion range of the 2nd crystal (at θ = 5° ) is shown by longdash lines. The beam footprint on the 2nd crystal moves as in the case of HLDmonochromator.

HLD type monochromators have the 1st crystal shifted downwards from therotation center (about half of the offset value), while the surface of the 2nd crystals liesin the plane which crosses the rotation axis (fig.1a). In order to keep the offset constantthere are vertical translation Y1 and horizontal translation Z2 (the directionscorrespond to θ = 0° according to definitions given below) of the 1st and 2nd crystalrespectively. Solid lines on fig.1a show the position of both crystals at θ =30°,whileshort dashed lines show the positions at θ =5°. The motion range of both crystals isshown by long dash lines (at θ =30°). The beam footprint on the 2nd crystal moves withthe change of Bragg angle θ.

Beam out

Beam offset

Beam in

Rotation center

Y1

Z2

1st crystal

2nd crystal

Beam offset

Beam out

Beam in

Z2

Y2

Rotation center

Fig.1a. HLD type monochromator

Fig.1b. APM type monochromator

Page 6: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

4

II. Mechanics

We use here following Cartesian coordinate system. The beam propagationdirection coincides with the Z axis, Y axis shows vertical direction and X axis isperpendicular to both Z and Y. Pitch θ means rotation around X axis, yaw ø and roll χare rotations around Y and Z axes respectively.

Theoretical resolution is the smallest amount of motion which is expected to beprovoked by the actuator. Usually it corresponds to one step of stepping motor.

Resolution is the smallest amount of motion which can be executed by themechanics with 10% accuracy.

Accuracy shows maximum difference between the amount of motioncommanded to the actuator and really executed by the mechanics for any motion withinthe specified range. Absolute accuracy means accuracy within the whole range ofmotion.

1. Definitions

HLD-1 monochromator : the main axis supporting column.

Page 7: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

5

2. General SpecificationsModel

Bragg angle θ (main axis)Energy (Si111)Incident beam height1)

Exit beam height1)

Beam offset

Beam in - beam out flangedistance

Supporting structure areaWeightUltimate pressureBaking compatibility1st crystal adjustmentmechanism sequence4)

(all motorized)2nd crystal adjustmentmechanism sequence4)

(all motorized)

2nd crystal bendingmechanism (motorized)Supporting table adjustmentmechanism sequence5) (except*-mark all motorized)

HLD-15˚ - 30˚4.0 - 22.5 keV1390mm1425mm35mm upwards

940mm(1250mm withbeam monitor)8001300mm2

p2100kg3 · 10-7 mbar150: 3)

Vertical Y1

Pitch θ1

Longitudinal Z2

Pitch θ2

Transverse X2

Roll χ2

no

Vertical YT

Transverse XT

HLD-25˚ - 30˚4.0 - 22.5 keV1390mm1425mm35mm upwards

940mm(1250mm withbeam monitor)8001300mm2

p2100kg3 · 10-7 mbarnoVertical Y1

Pitch θ1

Longitudinal Z2

Pitch θ2

Transverse X2

Roll χ2

no

Vertical YT

Transverse XT

HLD-35˚ - 40˚3.1 - 22.5 keV1387.5mm1412.5mm25mm upwards

940mm(1250mm withbeam monitor)8001300mm2

p2100kg3 · 10-7 mbarnoVertical Y1

Longitudinal Z2

Pitch θ2

Transverse X2

Roll χ2

Yaw ø2provided

Vertical YT

Transverse XT

APM-25˚ - 60˚2.3 - 22.5 keV1400mm1410 - 1435mm10 - 35mmupwards940mm(1250mm withbeam monitor)8001300mm2

p2100kg3 · 10-7 mbarnono

Longitudinal Z2

Vertical Y2

Pitch θ2

Roll χ2

no

Vertical YT

Transverse XT*

1) For "0" setting of vertical translation stage of the supporting structure.2) Measured at the exit flange position.3) Temperature of the seal of the main axis shaft should not exceed 80°C.4) Adjustment mechanisms are listed in the sequence as they are coming from the common rotating table. Fig.2 and 3 show

the crystal adjustment mechanics for HLD-1 and APM-2 monochromator respectively.5) Adjustment mechanisms are listed in the sequence as they are coming from the bottom.

Repeatability is defined as the largest difference between the primary positionand the position to which mechanics returns after a specified loop of travel.

We give here the values of resolution, accuracy and errors, based on thatmeasured during the mechanical tests in the factory.

Page 8: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

6

3. Main Rotation Axis

ModelBragg angle rangeDriveTheoretical resolutionMaximum velocityResolutionAbsolute accuracyAccuracy within 2° scanRepeatabilityBacklash / Lost motionTable pitchAxial wobble / Surface runoutMomentum load errorEncoder

HLD-15° - 30°AC servomotor0.1"/ step1.4° / s1"10"5"1"10"---------------------------HeidenhainERO-725-3

HLD-25° - 30°AC servomotor0.1"/ step1.4° / s1"10"5"1"10"---------------------------HeidenhainERO-725-3

HLD-35° - 40°AC servomotor0.1"/ step1.4° / s1"10"5"1"10"---------------------------HeidenhainERO-725-3

APM-25° - 60°AC servomotor0.1"/ step1° / s1"20"5"1"10"7" / 1°5 µm0.1"/ kg-cmHeidenhainROD-800

II. Mechanics

APM-2L"Left-side" monochromator : a general view.

APM-2L monochromator:crystal adjustment mechanics.

4. First Crystal Part

ModelCrystal sizes [mm] Width x Length x ThicknessMaximum loadCrystal orientation

HLD-1100100251)

75250252)

10kg1) flat2) inclined

HLD-2100100251)

75250252)

10kg1) flat2) inclined

HLD-310010025

10kgflat

APM-2706080

10kgflat

Parameters of the crystals and the holders

Specifications

Page 9: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

7

Vertical translation Y1 - adjustment of the crystal surface with respect to the beam

ModelMotion rangeDrive

Theoretical resolutionAccuracyRepeatabilityAngular errors - Crystal pitch

- Crystal yaw

HLD-1w5mm5phase steppingmotor0.2 µm / step10 µm--------1"10"

HLD-2-7 p +3 mm5phase steppingmotor0.2 µm / step10 µm--------1"10"

HLD-3-23 p +2mm5phase steppingmotor0.2 µm / step5 µm1 µm1"1"

Y1

θ1

θ2

θ

X-ray

X2

Z2

χ2

Pitch θ1 - adjustment of the Bragg angle

ModelMotion range - manual

- piezoDrive

Accuracy - manual- piezo

Axial wobble

HLD-1w1°60"manual andpiezoactuator60"0.1"10"

HLD-2w1°60"manual andpiezoactuator

0.1"-------

Crystal adjustment mechanics of HLD-1 monochromator.Fig.2. HLD-1 crystal adjustment mechanics.

Page 10: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

8

II. Mechanics5. Second Crystal Part

ModelCrystal sizes [mm] Width x Length x ThicknessMaximum loadCrystal orientation

HLD-1100250101)

75250102)

3kg1)flat2)inclined

HLD-2100250101)

75250102)

3kg1)flat2)inclined

HLD-31001002(ribbed)3kgflatsagittal focusing

APM-27020040

10kgflat

Parameters of the crystals and the holders

HLD-3 crystal adjustment mechanics.

ModelMotion rangeDrive

Theoretical resolutionResolutionAbsolute accuracyBacklash / Lost motionStraightnessMaximum velocityAngular errors:Crystal pitchCrystall yawMomentum load error

HLD-10 - 120mm1)

5 phase steppingmotor2 µm / step----------------------------------------

10"20"--------

HLD-20 - 120mm1)

5 phase steppingmotor2 µm / step----------------------------------------

10"10"--------

HLD-30 - 120mm1)

5 phase steppingmotor2 µm / step2 µm5 µm1 µm--------5mm / s

10"10"--------

APM-2w50 mm2)

5 phase steppingmotor0.2 µm / step1 µm10 µm2 µm2 µm1mm / s

5"10"0.1" / kg-cm

Longitudinal translation Z2 - adjustment of the crystal surface with respect to the beam

1) "0" corresponds to the crystal center position 40mm shifted longitudinally from the position above the rotation axis atθ= 0°.

2) The same as 1), however, the shift is 60mm.

Page 11: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

9

ModelMotion rangeDrive

Theoretical resolutionResolutionAbsolute accuracyBacklash / Lost motionStraightnessMaximum velocityAngular errors:Crystal pitchCrystal rollMomentum load error

APM-2w15mm5 phase steppingmotor0.2 µm / step0.5 µm5 µm2 µm / 1 µm1 µm0.5mm / s

10"5"0.2" / kg-cm

Vertical translation Y2 - adjustment of the offset

X-ray

χ2

θ2

θ

Z2

Y2

ModelMotion range - mechanics

- piezoDrive

Theoretical resolution(mechanical)Accuracy (mechanical)Backlash / Lost motion(mechanical)RepeatabilityAxial wobbleSurface runoutMomentum load error

HLD-1w1°60"5 phase steppingmotor andpiezoactuator0.0266"/ step

5"20"

5"--------

--------

HLD-2w1°60"5 phase steppingmotor andpiezoactuator0.0266"/ step

5"--------

5"--------

--------

HLD-3w1°w60"5 phase steppingmotor andpiezoactuator0.0266"/ step

5"0.5"

5"--------

--------

APM-2w1°w15"5 phase steppingmotor andpiezoactuator0.01"/ step

2.5"0.1"

0.1"3 µm

0.2"/ kg-cm

Pitch θ2 - adjustment of the Bragg angle

Fig.3 APM-2 crystal adjustment mechanics.

Page 12: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

10

II. Mechanics

ModelMotion rangeDriveTheoretical resolutionResolutionAccuracy Axial wobbleSurface runout

HLD-3w2°5 phase stepping motor0.002° / stepHLD-315"5 µm

Yaw ø22 - adjustment of the exit beam direction

Transverse translation X2-adjustment of the crystal surface with respect to the beam

ModelMotion rangeDrive

Theoretical resolutionAccuracyRepeatabilityAngular errors

HLD-1w12.5mm5phase steppingmotor0.1 µm / step10 µm--------yaw 10"

HLD-212.5mm5phase steppingmotor0.1 µm / step10 µm----------------

HLD-312.5mm5phase steppingmotor0.1 µm / step1 µm1 µm5"yaw , pitch

Roll χ2-adjustment of the exit beam direction

ModelMotion rangeWork distance1)

Drive

Maximum velocityTheoretical resolutionResolutionBacklash / Lost motionAxial wobbleSurface runoutMomentum load error

HLD-1w5°95mm5 phase steppingmotor ----------------1"--------------------------------

HLD-2w5°95mm5 phase steppingmotor ---------------1"--------------------------------

APM-2w1°80mm5 phase steppingmotor 1.5'/ s0.5"/ step--------3"50 µm--------0.1"/ kg-cm

HLD-3w8°95mm5 phase steppingmotor ---------------1"--------------------------------

APM-2 crystal adjustment mechanics.

1) Distance from the table surface to rotation center.

Page 13: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

11

A sagittal focusing mechanism is installed on HLD-3 monochromators only. Thebender model SMB-1 has been originally developed for SPring-8 Japanese synchrotronradiation facility. Characteristic feature of the bender is that the crystal surface positionremain almost unchanged in the center, where the beam hits the crystal. Design outlineof the bender is shown on fig.4. The crystal is clamped by 4 freely rotating cylinders fixedin two arms. Pushing of the arms (as shown by arrows) from the bottom leads to theirtilting and bending of the crystal.

DriveLinear motion range

Crystal sizes: width - length - thicknessMinimum bending radius2)

Maximum surface runout at the center3)

5 phase stepping motor2mm

100mm100mm2mm1)

0.47m0.3mm

6. Sagittal focusing

1) The best result has been achieved for the width x length ratio 3:2 and 2mm thick ribbedcrystal (Y.Furukawa, Y.Yoneda - SPring-8, private communication, January 1998).

2) This is idealized value for maximum linear shift 2mm. Bending down to radius 1m has beenachieved during the tests at SPring-8 (Y.Furukawa, Y.Yoneda - ibid.).

3) This is idealized value for maximum linear shift 2mm. At bending radius 1m there havebeen observed surface shift 0.25mm for 2mm ribbed crystal (Y.Furukawa, Y.Yoneda -ibid.).

Fig.4. SMB-1 bender.

Page 14: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

12

II. Mechanics

The supporting table holds the whole monochromator with the vacuum chamber.It has possibilities for horizontal and vertical translation, as well as w2° tilting byadjustment bolts on the bottom. There are optional removable wheels at the bottom ofthe table for easy transportation of the monochromator.

ModelMotion rangeDrive

Theoretical resolutionAccuracyAngular errorsStraightness

HLD-1w25mm5phase steppingmotor1 µm / step0.1mm------------------

HLD-2w25mm5phase steppingmotor1 µm / step0.1mm------------------

HLD-3w25mm5phase steppingmotor1 µm / step0.1mm---------0.5mm

APM-2w50mm5phase steppingmotor0.1 µm / step---------20" pitch, yaw0.5mm

Vertical translation YT- adjustment of the monochromator height with respect to the beam

ModelMotion rangeDrive

Theoretical resolutionAccuracyAngular errorsStraightness

HLD-1w25mm5phase steppingmotor1 µm / step0.1mm------------------

HLD-2w25mm5phase steppingmotor1 µm / step0.1mm------------------

HLD-3w25mm5phase steppingmotor1 µm / step0.1mm------------------

APM-2w50mmmanual

10 µm readout---------20"pitch, yaw0.5mm

Transverse translation XT-adjustment of transverse horizontal position of wholemonochromator with respect to the beam

7. Supporting Table

Fully equipped APM-2L monochromator.

Page 15: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

13

III. Vacuum ChamberThe vacuum chamber of all HLD and APM series monochromators is a stainless

steel cylinder with 720mm inner diameter. There are two side flanges of 850mm indiameter. One is fixed to the column with the main rotation axis mechanism. The otherone is free and can be opened in order to have access to the monochromator mechanics.The interior part of the chamber is electropolished. All flanges are sealed by Viton O-rings. Sizes and positions of flanges on the standard vacuum chamber body are shown onfig.5. However, the flanges can be changed according to the needs of the customer. Thevacuum chamber is pumped by an optical Perkin-Elmer 400l/s ion pump as a standard.

There is an optical fluorescent screen beam monitor inside cylindrical tubeconnected to the beam exit flange. The screen can be observed through the sideviewport. Motorized translation mechanism of the screen is on the air side and motion istransmitted to vacuum through a bellows.

All materials and lubricants used inside the vacuum chamber are high vacuumcompatible.

Beam OutBeam In

ICF 203

2X ICF 70

ICF 152

ICF 203

Fluorescent Screen

ICF 152

12x Electrical Feedthroughs

ICF 70

ICF 114

ICF 152

ICF 152

ICF 203

ICF 203

Fig.5. Standard type vacuum chamber.

MetalsStainless steel,Aluminum alloy,Phosphor bronze

PlasticsKapton,Vespel,Aramide1),Irrax2)

LubricantsMoresco Hirad3)

Fomblin

Materials inside vacuum chamber

1) Oiles Industry;2) Sumitomo Electric;3) Matsumura Oil Research Corp.

Page 16: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

14

IV. Electrical ConnectionsAll motors except the main rotation axis mechanism are 5-phase stepping

motors. The motors used inside the vacuum chamber are UHV compatible. The mainaxis is provided with an AC servomotor and angular encoder. All motorized motions areprovided with driver electronics and limit switches which are high vacuum compatiblewhere necessary. Cabling inside the vacuum chamber is vacuum compatible andradiation proof.

General specifications

Line voltage

Line frequencyPowerMaximum distancebetween drivers and themonochromatorCable insulationinside the vacuumchamber

single phase100w10%50 / 60 Hz2 kW20 m

KaptonIrrax1)

AC servomotor driver (the main axis only)

ModelDriver type

Minimum input pulse widthMinimum pulse periodMaximum input pulserise/fall timeMaximum input pulse rateInput pulse level

Input current(photocoupler)Output type

Maximum signal outputvoltage / currentMaximum encoder outputvoltage / current

HLD-3Sine wave PWM -FET inverter2 µs5 µs2 µs

200kHZH:4p5 VL:0p0.5 V10p25 mAOpen collector,photocoupler30 V / 20 mA

15 V / 2 mA

Other modelsSine wave PWM -FET inverter5 µs20 µs2 µs

50kHZH:4p5 VL:0p0.5 V10p30 mAOpen collector,photocoupler30 V / 20 mA

15 V / 2 mA

5 phase stepping motor drivers

Driver type

Minimum input pulse widthMinimum input pulse-to-pulse intervalMaximum input pulserise/fall timeMaximum input pulse rateInput pulse level

Input resistance(photocoupler)

constant current,bipolar pentagon5 µs5 µs

1 µs

70kHZH:4p12 VL:0.5p12 V390Ω

HLD-3 monochromator:wiring inside the vacuum chamber.

1) Sumitomo Electric

Page 17: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

15

V. Cooling systemThere are tubes going from the air side of the main axis shaft to inner part of the

vacuum chamber for cooling of both crystals and optionally other parts. Cooling tubescan be adapted according to the customer needs.

ModelCoolant

Number of tubes providedTubes provided to

Tube inner diameterWorking pressureTube design and material

HLD-1Liquid Nitrogen 1)

2 pairscrystal holders

10.4 mm3 kg / cm2

Stainless steel,teflon withstainless steelbraid

HLD-2Liquid Gallium,water 2)

2 pairscrystal holders

10.4 mm3 kg / cm2

Stainless steel,teflon withstainless steelbraid

HLD-3Liquid Nitrogen

2pairsrotation table

10.7 mm3 kg / cm2

Stainless steel,teflon withstainless steelbraid

APM-2water 2)

3pairscrystal holders,radiation shield8 mm3 kg / cm2

Inner : Teflon,Outer : stainlesssteel bellow,space betweenpumped

APM-2 monochromator : cooling tubes inside vacuum chamber.

1) Working circulation rate about 6~10 rr/min. Liquid Gallium an water cooling is possible too.2) Designed for

Page 18: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

16

1350

(1065)AC Servo Motor

RotaryEncoder

CoolingTube

(θ)

(2 Sets)

940

900

Page 19: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

17

1250SecondCrystal

Beam OutBeam In

8"OD Flange

6" Flange

Fluorescent ScreenFirstCrystal

Ion pump

1390

θy,Z

VI. General View Drawings

Fig.6. HLD-1 type monochromator.Exterior of all other types is practically the same.

Page 20: X X--rraayy DDoouubbllee CCrryyssttaall ...xraysweb.lbl.gov/pxbeamline/kohzu-mono.pdf · energy storage rings impose challenges on the design of monochromators. The heat load on the

KOHZU SEIKI CO.,LTD.2-27-37 MISHUKU,SETAGAYA-KU TOKYO 154-0005 JAPAN

TEL:+81-3-3413-2131 FAX:+81-3-3413-5768E-MAIL:[email protected]