workbook of four activities - pvamu home · 2019-12-18 · workbook of four activities shot gun...

18
Math, Science, and Physics Day at SplashTown, Houston, Texas Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department of Physics, Prairie View A&M University

Upload: others

Post on 20-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

Math, Science, and Physics Day at SplashTown, Houston, Texas

Workbook of Four Activities

Shot Gun Falls Texas Free Fall

Texas Big Spin

Tornado

SplashTown, Houston, Texas & Department of Physics, Prairie View A&M University

Page 2: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

ACTIVITY ONE

SHOTGUN FALLS

Page 3: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

SHOTGUN FALLS

Introduction Challenge a friend and race down two 30-foot slides.

Data

Starting Height:

Plateau Height:

Maximum Speed:

Time to end of slide: ___________ sec.

Time to hit the water (after leaving the plateau):

___________ sec.

Range: ___________ m

NOTE: This activity meets the State of Texas TEKS requirements from §112.47, Physics, including items (c) (2) (B) to (D), (5) (B) and (C), and 6(A). The activity also meets state TEKS requirements from §111.32 Mathematics, including items (b) (1) (A), (B), and (D). http://www.tea.state.tx.us/teks/

This activity also meets National Science Education Teaching Standards B, C, and D; and Program Standard D (“Good science programs require access to the world beyond the classroom”). More details about these and other national science education teaching standards can be found at http://www.nsta.org/standards

Page 4: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

Questions 1. What are some of the factors that determine how far out into the pool you go when you come off the slide? List as many as you can think of. 2. What are some sensations you experienced while in mid-air, before hitting the water? 3. Where on the ride did you feel you were going the fastest? 4. How would (1) and (3) be changed if you (a) started with a firm push versus starting from rest (b) were overweight versus underweight or (c) were wearing different kinds of swimsuits (made of different fabric)? Compare the outcome of both contrasting factor (for “c” consider, if they let you, how wearing jeans as opposed to swim trunks would affect the outcome of the experiment)

Calculations 1. To calculate the average plateau velocity vo:

Elapsed time on plateau / distance of plateau = vo

Page 5: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

2. To calculate how far the rider traveled after he/she left the plateau, use the time you measured from the point the rider left the slide to the time he/she hit the water, use the velocity from #1 and solve for:

!costvRange o= 3. To calculate the height of the slide plateau above the water surface, use the formula below, with the measured time t and g (the acceleration due to gravity, 9.80 m / s2):

2

2

1gtHeight = , g = 9.80 m / s2

4. Physically measure the height of the slide above the water (if possible) or obtain that from one of the staff working today’s event. How does the calculated value for height compare with the measured value? If they are different, discuss as many things as you can think of that made these values different from each other.

5. Just by looking at the formulae above, does mass (weight) play a role in the outcome of the experiment? Why or why not? How does this compare with your actual experience? 6. Your instructor(s) may have additional questions pertaining to this ride; you may write your responses to these on the back of this sheet if needed.

Page 6: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

ACTIVITY TWO

TORNADO

Page 7: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

The TORNADO

Introduction

The Tornado looks like a huge funnel, 60-feet tall, lying on its side. This exciting ride begins on a platform 75 feet in the air, where riders are sent down a 132-foot long tunnel and thrown into the giant funnel. Riders go in groups of four, on special clover-leaf shaped tubes. The tubes are carried along by 5,000 gallons of swirling, splashing water.

Data Funnel Diameter: 61 feet at large end, 12 feet at small end

(= 18.6 m and 3.65 m) Maximum Speed: 30 m.p.h. = 48 km / h = 13 m / sec.

Time to end of tunnel: ___________ sec.

Total time to end of ride ___________ sec.

Number of Oscillations: ___________

Average period of oscillation (see the first calculation problem below to get the answer to this one):

___________ sec.

Manufacturer ProSlide Technology, Inc

Page 8: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

NOTE: This activity meets State of Texas TEKS requirements from §112.47, Physics, including items (c) (2) (B) to (D), (5) (B) and (C), and 6(A). The activity also meets state TEKS requirements from §111.32 Mathematics, including items (b) (1) (A), (B), and (D). http://www.tea.state.tx.us/teks/

This activity also meets National Science Education Teaching Standards B, C, and D; and Program Standard D (“Good science programs require access to the world beyond the classroom”). More details about these and other national science education teaching standards can be found at http://www.nsta.org/standards

Questions 1. Why is the highest point of the ride at the very beginning? 2. What are some sensations you experienced while descending the tunnel? 3. What did you experience when you were poured into the funnel? 4. As you were going back and forth in the tunnel, how high were you able to swing? How did you feel at the ends of the swing? Near the middle of the swing? 5. Where on the ride did you feel you were going the fastest?

Page 9: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

Calculations 1. To calculate the average period of oscillation:

[T (ride total) – T (tunnel only)] / # counted oscillations 2. Throughout the tornado portion of the ride, the riders move like a pendulum whose length from the pivot point is continuously decreasing from L = 9.3 m near beginning to L = 1.8 m near the end. How does that affect the period of oscillation (based on observation), all other things being equal? 3. If you had two pendula, one with L1 = 9.3 m feet, a second with L2 = 1.8 m, all else being equal, how do their periods, T, of oscillation compare? (The value π = 3.14159, and g = 9.80 m / sec., the acceleration due to gravity)

T1 = _______ sec. T2 = ______ sec.

How do these values compare with your average oscillation calculation?

4. Consider the following scenarios. How would the speeds and oscillations (including the amplitude or maximum height) change if you have (a) four light people? (b) two light and two heavy people, with the heavy people sitting diagonal from each other on the tube? (c) two light and two heavy people, with the heavy people sitting next to each other on one side of the tube? (d) and four heavy people?

Page 10: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

5. Here’s a new spin on things. Suppose the tube with the above configurations starts to spin in each case, so that not only are the people going back and forth, but they are also spinning in their tubes as they go along. How would this affect the results? (Hint, think about the fact that the center of mass of an object moves consistently…) 6. Your instructor(s) may have additional questions pertaining to this ride; you may write your responses to these on the back of this sheet if needed.

Page 11: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

ACTIVITY THREE

TEXAS FREEFALL

Page 12: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

THE TEXAS FREEFALL

Introduction The Texas FreeFall starts you sixty feet (that is, five stories) in the air and has you going so fast you actually come off the slide for a few seconds. Freefall down the Texas Freefall-five stories of race-you-to-the-bottom thrills!

Data Starting Height: 60 feet or 12 stories = 18.3 meters

Maximum Speed:

Time to very beginning of horizontal part of ride (that is, the time of free fall):

___________ sec.

Total time to end of ride:

___________ sec.

NOTE: This activity meets State of Texas TEKS requirements from §112.47, Physics, including items (c) (2) (B) to (D), (5) (B) and (C), and 6(A). The activity also meets state

Page 13: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

TEKS requirements from §111.32 Mathematics, including items (b) (1) (A), (B), and (D). http://www.tea.state.tx.us/teks/

This activity also meets National Science Education Teaching Standards B, C, and D; and Program Standard D (“Good science programs require access to the world beyond the classroom”). More details about these and other national science education teaching standards can be found at http://www.nsta.org/standards

Questions 1. What are some sensations you experienced at the very top of the slide, before you started down? 2. What did you experience when you were in freefall? 3. What did you experience as you were leveling your descent, eventually coming to a stop? 4. Where on the ride did you feel you were going the fastest?

Calculations 1. Calculate your potential energy at the beginning of the ride (Hint: if you know your weight in pounds, convert to kilograms by multiplying your weight by 0.454):

P.E. = mgh

Page 14: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

2. Calculate your kinetic energy at the bottom of the slide (hint: get the velocity by having someone time how long it takes to go 5 meters immediately after you level off):

2

2

1.. mvEK =

3. Does the final speed and / or kinetic energy at the bottom of the vertical part of the slide depend on the rider’s mass? Why or why not?

4. For two riders, the one with the lower weight and the one with the higher weight, which one ends the farthest along on the horizontal part of the ride? About how far does each come to rest from the end? 5. For the same two riders, list as many things as you can think of that would influence where they come to a stop at the end of the ride? 6. Your instructor(s) may have additional questions pertaining to this ride; you may write your responses to these on the back of this sheet if needed.

Page 15: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

ACTIVITY FOUR

BIG SPIN

Page 16: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

BIG SPIN WATERWORKS

Introduction Climb up the dualing body slide and make your choice to ride enclosed or outside this thrilling adventure all the while spinning your way down to the inviting pool below.

Data

Starting Height:

Spin Diameter:

Maximum Speed:

Time to end of tunnel: ___________ sec.

Total time to end of ride ___________ sec.

Number of Revolutions: ___________

Period of revolution (see the first calculation problem below to get the answer to this one):

___________ sec.

NOTE: This activity meets State of Texas TEKS requirements from §112.47, Physics, including items (c) (2) (B) to (D), (5) (B) and (C), and 6(A). The activity also meets state TEKS requirements from §111.32 Mathematics, including items (b) (1) (A), (B), and (D). http://www.tea.state.tx.us/teks/

Page 17: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

This activity also meets National Science Education Teaching Standards B, C, and D; and Program Standard D (“Good science programs require access to the world beyond the classroom”). More details about these and other national science education teaching standards can be found at http://www.nsta.org/standards

Questions 1. What are some sensations you experienced while descending the tunnel? 2. What did you experience when you arrived in the circular chamber? 3. How is this experience different when you use the covered chamber? 4. As you were going around and around, how did you feel? 5. Where on the ride did you feel you were going the fastest?

Page 18: Workbook of Four Activities - PVAMU Home · 2019-12-18 · Workbook of Four Activities Shot Gun Falls Texas Free Fall Texas Big Spin Tornado SplashTown, Houston, Texas & Department

Calculations 1. To calculate the period of revolution:

Length of Time in the Round Part / # counted rotations = T 2. Compare the experience of a large rider with that of a small one. How does weight affect the period of rotation (based on observation), all other things being equal? Which rider stayed on the ride longer? 3. Use the following formula to compare the centripetal force of a heavy rider with that of a light rider (use m1 = 50kg for the mass of the heavy rider and m2 = 25kg for that of the light rider; use two equations, one for each rider, as shown below; and notice the v2 and R will divide out…). After doing the calculation, summarize your comparison.

R

mvFc

2

= ; to compare the two riders, use Rvm

RvmFFcc

/

//

2

2

2

1

21=

4. Comparing two different initial conditions: If someone were to push off at the beginning of the ride to get a faster starting speed as opposed to starting from rest, how would that additional speed affect the behavior of the rider (speaking from a physics perspective) in the circular portion of the ride? Think in terms of the rotation period, the centripetal force, and the length of time spent in the circular portion before dropping out. 5. Your instructor(s) may have additional questions pertaining to this ride; you may write your responses to these on the back of this sheet if needed.