wong design analysis deep excavations session03

55
November 2009 MohrCoulomb Model Wong Kai Sin 1 Session 3 Mohr-Coulomb Soil Model & Design (Part 2) Time Session Topic 09:00 – 10:30 1 Overview 10:30 – 11:00 Coffee Break 11:00 – 12:30 2 Design (Part 1) 12:30 - 01:30 Lunch 1 01:30 – 03:00 3 Mohr-Coulomb Soil Model & Design (Part 2) 03:00 – 03:30 Coffee Break 03:30 – 05:00 4 How to reduce wall deflection MohrCoulomb Model Things you should know about the MohrCoulomb Soil Model σ σ Elastic Plastic ElasticMohrCoulomb Model 2 ε ε plastic

Upload: shachen2014

Post on 17-Nov-2015

66 views

Category:

Documents


19 download

DESCRIPTION

deep excavation

TRANSCRIPT

  • November2009 MohrCoulombModel

    WongKaiSin 1

    Session 3Mohr-Coulomb Soil Model &

    Design (Part 2)Time Session Topic

    09:00 10:30 1 Overview10:30 11:00 Coffee Break

    11:00 12:30 2 Design (Part 1)12:30 - 01:30 Lunch

    1

    01:30 03:00 3 Mohr-Coulomb Soil Model & Design (Part 2)

    03:00 03:30 Coffee Break

    03:30 05:00 4 How to reduce wall deflectionMohrCoulombModel

    Thingsyoushouldknowaboutthe

    MohrCoulombSoilModel

    Elastic

    Plastic

    Elastic

    MohrCoulombModel 2

    ast cplastic

  • November2009 MohrCoulombModel

    WongKaiSin 2

    CanMohrCoulombModelsimulateRealSoilBehaviour?

    El i

    PlasticUUTeston

    Clay

    > 0

    Elastic

    Elasticplastic

    Plastic

    cu >0u =0

    CDTestonClayorSand

    MohrCoulombModel 3

    RealSoil MohrCoulombSoil

    Elastic

    Sand

    c' 0'>0

    CanaElasticModelsimulateRealSoil Behaviour?

    Shear stress produces Normal stress produces

    ElasticModelShearstressproducesshearstrain:

    no v

    Normalstressproducesvolumetricstrain:

    v

    MohrCoulombModel 4

  • November2009 MohrCoulombModel

    WongKaiSin 3

    Can a elastic soil simulate undrained behaviour of clay?

    Plastic

    l i

    RealSoilBehaviour

    ElasticModel(=0.5)

    ElasticElasticplastic

    MohrCoulombModel 5

    no v nov(undrained)Stressindependent

    no v nov(undrained)Stressindependent

    Can a elastic soil simulate undrained behaviour of clay?

    Plastic

    l i

    ElasticElasticplastic

    Yes!Ifweusecu andEu.

    MohrCoulombModel 6

    Canweusec' 'andE'?

  • November2009 MohrCoulombModel

    WongKaiSin 4

    CUTest

    100

    MohrCoulombModel 7porp(kPa)

    ESP TSP

    100

    =100kPa

    CUTest

    ConsolidatedUndrainedTriaxialCompressionTest

    2cu

    Kf Kfq q

    RealSoil13

    curveMohrCoulomb

    cu fromc' '

    MohrCoulombModel 8

    ESP TSP TSPESP

    porp porp

    c' 'overpredictedcu !!!

    2cu

    1

    cu measured

  • November2009 MohrCoulombModel

    WongKaiSin 5

    RealSoil ElasticSoil

    Istheporepressureresponsecorrect?

    LetslookatCUtestonanormallyconsolidatedclay.

    UfUf

    ESP TSP TSPESP

    Kf Kfq q

    MohrCoulombModel 9

    porp porp

    Thepredictedporepressureismuchsmallerthanthemeasured!

    Itoverestimatestheundrainedshearstrengthandunderestimatestheexcessporepressure ofanormallyconsolidatedclay.

    EffectivestressMohrCoulombMethodusingcandMethodA

    UfUf

    Kf Kfq q

    RealSoil ElasticSoil

    2cu

    2cu

    MohrCoulombModel 10

    ESP TSP TSPESP

    porp porp

  • November2009 MohrCoulombModel

    WongKaiSin 6

    0

    5

    0 20 40 60 80 100 120 140 160

    Undrained Shear Strength (kPa)

    (qt-po)/Nkt

    Overestimationofcu ataReclaimedSite

    5

    10

    15

    20

    25

    30Dep

    th (m

    )0.22*p'o

    corr. FVT

    Consol tests

    Cu based onphi=22 & p'o

    MethodA

    MohrCoulombModel 11

    35

    40

    45

    50

    NicollHighway ResultsofUndrainedAnalysisusingMethodA

    95

    100

    105

    MeasuredComputedusing MethodA

    65

    70

    75

    80

    85

    90

    Level10325 mm

    Redu

    cedLevel(m)

    Redu

    cedLevel(m)

    MohrCoulombModel 12

    50

    55

    60

    0 50 100 150 200 250 300 350 400

    325mm

    Formation=118mmFinal=145mm WallDeflection(mm)

  • November2009 MohrCoulombModel

    WongKaiSin 7

    DoesMethodA alwaysoverestimatecu forNCclay?

    (13)f '

    13

    cu

    A B C

    u=0

    '

    Thissitehasaconstantcu.

    MohrCoulombModel 13

    ForNCClay,itunderestimates cu atlowstressandoverestimates itathighstress.

    Itforcesthesoiltofailataspecifiedundrainedshearstrength.

    MethodBEffectivestressMohrCoulombMethodusingcu andu=0

    Kfq

    RealSoil

    2c K

    q

    ElasticSoil

    MohrCoulombModel 14

    ESP TSP

    porp

    2cu2cu

    TSPESP

    Kf

    porp

  • November2009 MohrCoulombModel

    WongKaiSin 8

    MeasuredComputedusing MethodB

    NicollHighway ResultsofUndrainedAnalysisusingMethodB

    MohrCoulombModel 15

    CanMethodA beusedforOverconsolidatedClay?

    (13)f CU

    '13

    B

    C

    =0

    UU

    c'

    cu

    A

    A

    B C

    u=0

    '

    Thissitehasaconstantcu.

    MohrCoulombModel 16

    ForagivenlayerofOCClay,itunderestimates cu atlowstressandoverestimates itathighstress.

  • November2009 MohrCoulombModel

    WongKaiSin 9

    UsingMethodAforUndrainedAnalysisinOCClay

    2

    Kfq

    RealSoil ElasticSoil

    Kfq 2cu

    TSPESP

    porp

    q2cu

    TSPESP

    porp

    q

    UfUf

    MohrCoulombModel 17

    1.MakesurethemeasuredstresspathissimilartothatofElasticSoil.

    2.Dividethestratumintosublayerswithdifferentcandforeachlayer.

    3.Computecu fromcandforeachlayer.Makesurethevaluesarereasonable.

    UsingMohrCoulombmodelforUndrainedAnalysis

    MethodA c' and' produceswrong cu forNCclay,

    butitmayproducecorrectcu forOCclay

    Method B or C Forces Plaxis to use specified c

    Method A Method B Method CStress Type Effective Effective Total

    Strength cand cu and u cu and uM d l E E E

    MethodB orC ForcesPlaxis tousespecifiedcu

    MohrCoulombModel 18

    Modulus E E EuPoissons Ratio = 0.35 u = 0.495

    Ko or Kot Ko Ko Kot

  • November2009 MohrCoulombModel

    WongKaiSin 10

    CanMCmodelsimulateundrainedbehaviour ofclay?

    PlasticElasticplastic

    1. Itproducesthecorrectstrengthwithcu specified.

    ElasticInelastic

    2. Itcannotsimulatenonlinearandinelasticbehaviour.

    3. Itmaynotgeneratereliableporepressureresponse.

    MohrCoulombModel 19

    CanMCmodelgenerateaccuratedeflectionprofilesateverystageofexcavation?

    ConstantE

    0

    5

    10

    0 20 40 60 80 100

    Wall Deflection (mm)

    )

    123

    15

    20

    25

    30

    Dep

    th (m4 1 42 3

    MohrCoulombModel 20

  • November2009 MohrCoulombModel

    WongKaiSin 11

    Atearlystageofexcavation,MohrCoulomb, LinearE larger Hyperbolic, NonlinearE smaller

    Et

    MohrCoulombModel 21

    Atfinalstageofexcavation,MohrCoulomb,LinearE smaller Hyperbolic,NonlinearE larger

    Linear

    Nonlinear

    Et

    MohrCoulombModel 22

  • November2009 MohrCoulombModel

    WongKaiSin 12

    MohrCoulomb

    Eu/cu ~100to500

    ConstantE

    AdvancedSoilModelConclusionM Cmodel may not

    MCmodelmaynotproducegoodmatchateverystageofexcavation.

    MohrCoulombModel 23

    HowreliablearetheresultsgeneratedbytheMCmodel?

    Fill

    Soft Marine Clay

    V,MAX=33mm0

    0 50 100 150

    SoftMarineClay

    H,MAX =28mm35

    Isthemodeofdeformationreasonable?

    MohrCoulombModel 24

  • November2009 MohrCoulombModel

    WongKaiSin 13

    ResultsusingHyperoblicModel

    Fill

    Soft Marine Clay

    V,MAX=72mm

    = 59 mm

    00 50 100 150

    SoftMarineClay

    H,MAX =59mm35

    Isthemodeofdeformationreasonable?

    MohrCoulombModel 25

    Fill

    SoftMarineClay

    Linearvs

    NonLinear

    0

    35

    0 50 100 1500

    35

    0 50 100 150

    MohrCoulombModel 26

  • November2009 MohrCoulombModel

    WongKaiSin 14

    Fill

    Checkplasticpointsandrelativeshearstress!

    SoftMarineClay

    Lessonlearned:Correctanalysismaynotproducecorrectresults.

    MohrCoulombModel 27

    LinearvsNonLinearModel

    E2

    E3 E4Mohr CoulombModel RealSoilBehaviour

    E1

    E2

    ConstantE

    MohrCoulombModel 28

    Youmustunderstandtheshortcomingsofthesoilmodelused!

  • November2009 MohrCoulombModel

    WongKaiSin 15

    UsingMethodBatReclaimedSite

    FillMethodBisaneffectivestress method.

    SoftMarineClay

    SandySilt

    stressmethod.

    Ko =1 sin'

    Ifclayisstillconsolidating,thecomputedrelativeshearstresswillbe>1,i.e.theclayis in failure state prior toy isinfailurestatepriortoexcavation.

    MohrCoulombModel 29

    UsingeffectiveKo atasitestillundergoingconsolidation

    Plasticpoints

    MohrCoulombModel 30

  • November2009 MohrCoulombModel

    WongKaiSin 16

    85

    90

    95

    100

    105

    Leve

    l (m

    )Fill

    S ftAB

    Effectiveoverburdenpressure

    MethodB(cu u)andKo (1sin)

    50

    55

    60

    65

    70

    75

    80

    0 100 200 300 400 500

    Current Effective Stress (kPa)

    Red

    uced

    L SoftMarineClay

    SandySilt

    AB

    Currenteffectivestress

    Current Effective Stress (kPa)

    AtA,('V 'H)='V (1 Ko)=74 kPa

    AtB,('V 'H)='V (1 Ko)=37 kPa

    Currentcu =22kPa

    (1 3)f =2cu =44 kPa

    MohrCoulombModel 31

    Needtosetthecorrectinitialstresses!

    Fill

    SoftMarineClay

    SandySilt

    Checkplasticpointsaftergeneratingtheinitialstresses!

    MohrCoulombModel 32

  • November2009 MohrCoulombModel

    WongKaiSin 17

    MohrCoulombModel 33

    MohrCoulombModel 34

  • November2009 MohrCoulombModel

    WongKaiSin 18

    StressDependentBehaviour ofSoilunderDrainedCondition

    MohrCoulombModel 35

    StressPathsinanElasticMedium

    KoC

    D

    B

    C

    E

    F

    A

    1

    3

    E Questionable Zone

    3

    3

    1

    1

    MohrCoulombModel 36

    3

    E QuestionableZone

    F DangerZone

  • November2009 MohrCoulombModel

    WongKaiSin 19

    TypicalStressPathsinExcavation

    A

    BA

    B

    MohrCoulombModel 37

    StressPathinZoneFunder DrainedCondition

    rubber

    soil

    1(%)

    MohrCoulombModel 38

    v(%)

  • November2009 MohrCoulombModel

    WongKaiSin 20

    StressPathinZoneEunderDrainedCondition

    MohrCoulombModel 39

    1=3003=300

    Whichoneiscorrect?

    Adrainedanalysiscanproduceincorrectresultsundercertainstresspath.

    A

    BA B

    Measured Computed

    Lessonlearned:Correctanalysismaynotproducecorrectresults!

    MohrCoulombModel 40

  • November2009 MohrCoulombModel

    WongKaiSin 21

    SomeproblemsmaybesensitivetoPoissonsRatio

    0

    5

    -20 0 20 40 60 80 100

    Wall Deflection (mm)

    c=5kPa

    =35o

    E=8000kPa

    10

    15

    20

    25

    Dep

    th (m

    )

    Pois. Ratio = 0.4

    Pois. Ratio = 0.2

    =0.2 =0.4

    Mmax ,kNm/m 298 477

    Strut 1, kN/m 77 114

    Strut 2 kN/m 226 335

    H=9m

    =0.2=0.4

    25

    30

    Strut 2, kN/m 226 335

    Strut 3, kN/m 163 178

    Lessonlearned:Drainedanalysiscanproducemanysurprises.

    MohrCoulombModel 41

    CanMCmodelsimulatedrainedbehaviour ofsoil?

    1. Itgivescorrectstrength f =c+tan

    2. Modulusisnotstressdependent.

    3. Itcannotsimulatenonlinearandinelasticbehaviour.

    4. Itmayproducewrongresponseincertainstresspath.

    5. ResultsmaybesensitivetoPoissonsratio.

    MohrCoulombModel 42

  • November2009 MohrCoulombModel

    WongKaiSin 22

    CanMCmodelsimulatedrainedbehaviour ofsoil?

    6. Itmaynotproducecorrectporepressureresponse.

    Plastic

    7. Whenusingc'' inconsolidationanalysis,itmaygeneratethewrongundrainedstrengthatendofconstruction.

    8 There is no dilation until

    Elastic

    8. Thereisnodilationuntilafterthesoilreachesfailure.

    MohrCoulombModel 43

    v

    MohrCoulombModel 44

  • November 2009 Excavation Design

    Wong Kai Sin 1

    Designing Temporary Work

    Design &Analysis

    ConstructionControl

    InstrumentationMonitoring

    Initial Design Final Design

    Designing Temporary Work is a Continuous Process

    Excavation Design 1

    g(Working Drawings) (As-Built)

    Start Finish

    Excavation

    Types of Analysis in TERS Design

    1. Analysis for preliminary design

    2 Analysis for working design to be2. Analysis for working design to be adopted in construction

    3. Back-analysis

    4. Re-analysis

    Excavation Design 2

    Working Design

    Final Design(As-Built)

    Start FinishExcavation

    Prelim. Design Back-Analysis & Re-analysis

  • November 2009 Excavation Design

    Wong Kai Sin 2

    Analysis for preliminary design To assess feasibility of proposed

    TERS configuration and construction sequence.

    To assess effect of excavation on surrounding structures

    To conduct analysis using moderately conservative design parameters

    Excavation Design 3

    Analysis for working or Final design to be adopted in construction

    To conduct sensitivity studies assessing the effect of variable uncertainties

    To finalise the strut forces and wall bending moments for structural design

    To assess the risk of damage to adjacent structures

    Excavation Design 4

  • November 2009 Excavation Design

    Wong Kai Sin 3

    Back-Analysis during Construction

    To be carried out when the field performance is much better or worse than anticipatedthan anticipated.

    To calibrate the design parameters against field measurements

    0

    5

    0 20 40 60 80 100

    Wall Deflection (mm)

    Excavation Design 5

    5

    10

    15

    20

    25

    30

    Dep

    th (m

    )

    Computed

    Measured

    Re-Analysis during Construction

    To be carried out after back-analysis

    To assess potential final outcome using calibrate design parametersg p

    To revise the design where appropriate

    0

    5

    0 20 40 60 80 100 120

    Wall Deflection (mm)

    0

    5

    0 20 40 60 80 100

    Wall Deflection (mm)

    Excavation Design 6

    10

    15

    20

    25

    30

    Dep

    th (m

    )10

    15

    20

    25

    30

    Dep

    th (m

    ) Computed

    Measured

    Design

    Back-Analyzed

  • November 2009 Excavation Design

    Wong Kai Sin 4

    Overview of Design Process

    1. Site investigation2. Pre-construction survey2. Pre construction survey3. Evaluation of soil conditions4. Selection of TERS configuration5. Assessment of system stability6. Preparation for FEA7 Assessment of computed output

    Excavation Design 7

    7. Assessment of computed output

    Design Step 1: Site Investigation

    Plan View

    1. Site investigation2. Pre-construction

    survey3. Evaluation of soil

    conditions4. Selection of TERS

    configuration5 Assessment ofPlan View

    Sectional View

    5. Assessment of system stability

    6. Preparation for FEA7. Assessment of

    computed output

    Excavation Design 8

    Designer must be actively involved in the site investigation.

    Get the best S.I. company to do the job!

    Do enough borings and CPTs.

  • November 2009 Excavation Design

    Wong Kai Sin 5

    2. Pre-Construction SurveyTo check pre-existing conditions of surrounding structures

    Things you can see ..

    1. Site investigation2. Pre-construction

    survey3. Evaluation of soil

    conditions4. Selection of TERS

    configuration

    Cracks

    Patches under new paint

    Settlement of aprons & driveway

    Constructions in the vicinity

    configuration5. Assessment of

    system stability6. Preparation for FEA7. Assessment of

    computed output

    Excavation Design 9

    A comprehensive pre-con survey provides the designer with a proper perspective of the surrounding and issues that must be considered in the design.

    Excavation Design 10

  • November 2009 Excavation Design

    Wong Kai Sin 6

    Pre-Construction Survey Pre-existing Conditions

    Things you cant see ..

    Ongoing movements

    Seasonal fluctuations

    Invest in InstrumentationSettlement marksP i

    Ground settlement profile

    Excavation Design 11

    Paper prismsWater standpipesInclinometers

    3. Evaluation of Soil ConditionsThings to check ..

    Fill thickness and variations

    Soft clay thickness and variations

    1. Site investigation2. Pre-construction

    survey3. Evaluation of soil

    conditions4. Selection of TERS

    configuration5. Assessment of Soft clay thickness and variations

    State of consolidation of soft clay

    Depth to hard stratum & variations

    Ground water table

    system stability6. Preparation for FEA7. Assessment of

    computed output

    Fill

    Excavation Design 12

    Soft Marine

    Clay

    Stiff Silty Clay

    Dense Silt Sand

  • November 2009 Excavation Design

    Wong Kai Sin 7

    Design Soil Profile & Parameters

    Fill

    Upper Marine Clay

    Lower Marine Clay

    Intermediate Stiff Clay

    Excavation Design 13

    Old Alluvium

    Extract only the reliable facts from Factual Report.

    Is the soil condition uniform? Can we use half mesh?

    Example on Idealised Soil Profile

    Worst soil condition

    ABH-30

    ABH-32

    AC 3

    M3010

    condition

    Instrumented section

    Excavation Design 14

    ABH-31ABH-84

    AC-3

    Soil Profile at ABH-32 adopted in Original Design

  • November 2009 Excavation Design

    Wong Kai Sin 8

    Example on Soil Profile -- Half-mesh based on ABH-32

    Fill

    E upper

    RL (m)102.998.296.4

    UMC

    F2 upper

    LMC

    JGP1

    JGP2

    85.6

    83.4

    68.3

    Excavation Design 15

    F2 lower

    OA N = 35

    OA N = 72

    63.2

    61.657.553.8

    E lower

    ABH-84FillE E

    FillRL (m)

    M3010

    Example on Soil ProfileFull-mesh at Instrumented Section

    UMC

    F2 upper

    LMC

    F2 lowerF2

    LMC

    LMC

    F2 upper

    UMC

    JGP1

    85.4

    72.169 4

    Excavation Design 16

    F2 lowerOA N = 20OA N = 30

    OA N = 70

    OA N = 100OA N = 70OA N = 30OA N = 20

    JGP2 JGP3 66.8

    64.7

    60.0

    55.0

    59.261.2

    63.7

    69.4

  • November 2009 Excavation Design

    Wong Kai Sin 9

    Example -- Results can be very sensitive to variations in soil profile

    Cross-Over at Newton MRT Station

    C

    B

    A

    Excavation Design 17

    A B C

    Results can be very sensitive to minor variations in soil profile

    Cross-Over at Newton MRT Station

    A

    B

    Excavation Design 18

    A B C

  • November 2009 Excavation Design

    Wong Kai Sin 10

    Results can be very sensitive to minor variations in soil profile

    Cross-Over at Newton MRT Station

    Excavation Design 19

    Design Step 4: Selection of TERS

    We need to know Site constraints

    1. Site investigation2. Pre-construction

    survey3. Evaluation of soil

    conditions4. Selection of TERS

    configuration5 Assessment of Site constraints

    DimensionsAdjacent buildingsMRT & CST tunnelsh,max allowable?

    5. Assessment of system stability

    6. Preparation for FEA7. Assessment of

    computed output

    Excavation Design 20

    Slab elevations Ramp locations

  • November 2009 Excavation Design

    Wong Kai Sin 11

    Preliminary Design Configuration

    Wall type & size

    Penetration depth This is where experience

    Excavation Design 21

    Strut size and spacing

    JGP/DCM slab thickness

    Preloading

    experience comes in!

    Need to Establish the Excavation Sequence

    Excavation Design 22

  • November 2009 Excavation Design

    Wong Kai Sin 12

    Design Step 5: Basic Stability Checks

    Before conducting FEA, check

    1. Site investigation2. Pre-construction

    survey3. Evaluation of soil

    conditions4. Selection of TERS

    configuration5 Assessment of

    Basal Heave Stability

    Uplift or Blowout Stability

    Toe Kick-in Stability

    5. Assessment of system stability

    6. Preparation for FEA7. Assessment of

    computed output

    Excavation Design 23

    Which method should we use?

    Terzaghi Bjerrum & EideEide et al.

    Basal Heave Stabillity

    TschebotarioffGohChangWong and GohO'RourkeSu et al.Ukritchon et al.

    Excavation Design 24

    Plaxis

    Does FOS1 mean failure?

  • November 2009 Excavation Design

    Wong Kai Sin 13

    Uplift Stability

    FillE

    UMCF2

    B

    F2

    LMC

    E / F2

    Sand U = H B

    d

    Hw

    R=cudW = d B

    R

    Excavation Design 25

    Sand U w Hw B

    Fs = ----------------W + 2R

    UCheck permeability & connectivity of sand layer!

    Toe Kick-in Stability

    M

    PaPp

    LaLp

    M

    Excavation Design 26

    How do we check toe stability?

  • November 2009 Excavation Design

    Wong Kai Sin 14

    Design Step 6: Preparation for FEA

    1. Site investigation2. Pre-construction

    survey3. Evaluation of soil

    conditions4. Selection of TERS

    configuration5 Assessment of

    1. Selection of software2 Selection of soil models 5. Assessment of

    system stability6. Preparation for FEA7. Assessment of

    computed output

    2. Selection of soil models3. Selection of type of analysis4. Evaluation of soil parameters5. Generation of FE mesh6. Preparation of data input Plaxis?

    Mohr-Coulomb?

    Excavation Design 27

    Mohr-Coulomb?

    Undrained?

    Total stress?

    Design Step 7: Assessment of Computed Output

    1. Site investigation2. Pre-construction

    survey3. Evaluation of soil

    conditions4. Selection of TERS

    configuration5 Assessment of5. Assessment of

    system stability6. Preparation for FEA7. Assessment of

    computed output

    Tons of data can be generated with a few clicks.

    But what are the relevant ones?

    Generating thick reports with not-so-

    Excavation Design 28

    important graphs reflects badly on the engineer. It is a reflection of he/she not knowing whats important!

  • November 2009 Excavation Design

    Wong Kai Sin 15

    What are the relevant results?

    Relevant Results

    Wall deflections Wall deflections

    Ground settlement

    Pore pressure

    Strut forces

    Wall moment and shear

    Excavation Design 29

    Plastic points

    Displacement vector plots

    Interpretation of Computed Output

    Check Mode of Deformation

    Expected Unexpected

    Is the mode of deformation reasonable?Excavation Design 30

  • November 2009 Excavation Design

    Wong Kai Sin 16

    Interpretation of Computed Output

    Check extend of soil yielding

    Plastic point plotExcavation Design 31

    Relative ShearPlastic Points

    Excavation Design 32

  • November 2009 Excavation Design

    Wong Kai Sin 17

    Plastic points in JGP/DCM layer

    Residual stress

    Lesson learned:

    Plastic point and relative shear plots provide insight to the extend of soil yield and overall stability of the system.

    Excavation Design 33

    Plot wall deflections for construction control

    Max. Wall DeflectionDeflection Profiles

    computed

    measured

    Excavation Design 34

  • November 2009 Excavation Design

    Wong Kai Sin 18

    Change in Pore Pressure with Excavation Depth

    Excavation Design 35

    Ground Settlement at End of Excavation

    -100

    -50

    0

    50

    0 10 20 30 40 50 60 70 80 90

    nd S

    ettle

    men

    t (m

    m)

    Excavation Design 36

    -200

    -150

    Distance (m)

    Gro

    un

  • November 2009 Excavation Design

    Wong Kai Sin 19

    0.0

    50.0

    Plot ground settlement vs excavation depth at selected locations

    -200.0

    -150.0

    -100.0

    -50.0

    5/24/02 9/1/02 12/10/02 3/20/03 6/28/03 10/6/03 1/14/04 4/23/04

    Settl

    emen

    t (m

    m)

    Excavation Design 37

    -300.0

    -250.0

    Plot maximum strut forces with depth

    FillEE

    FillRL (m)

    E

    MC

    F2

    MC

    F2F2

    MC

    LMC

    F2

    MC

    E

    JGP

    85.4

    72.169 4

    Measured

    Computed

    Excavation Design 38

    F2 OA (20)OA (30)

    OA (70)

    OA (100)OA (70)OA (30)OA (20)

    JGP66.8

    64.7

    60.0

    55.

    59.261.263.7

    69.4

  • November 2009 Excavation Design

    Wong Kai Sin 20

    Plot development of strut forces during excavation

    S1Strut Force (kN)

    S1

    S1

    epth

    bel

    ow g

    roun

    d (m

    )

    Excavation Design 39

    De

    Bending Moment at Different Stages of Excavation

    1

    2

    4

    3

    5

    5

    4

    3

    21

    Excavation Design 40

  • November 2009 Excavation Design

    Wong Kai Sin 21

    Displacement Vectors Showing Movements at End of Excavation

    Excavation Design 41

    FOS=1.30

    Displacement Vector Plot after Strength (-c) Reduction Analysis

    Excavation Design 42

    False alarm?

  • November 2009 Excavation Design

    Wong Kai Sin 22

    Are the computed wall deflections acceptable?

    Excavation Design 43

    Comparison of Strut Forces with Published Apparent Pressure Diagrams

    Pecks Apparent Earth Pressure Diagrams (1969)

    CIRIAs Characteristic Pressure Diagrams (1996)CIRIAs Characteristic Pressure Diagrams (1996)

    Local Experiences on Apparent Pressure Diagrams

    Excavation Design 44

  • November 2009 Excavation Design

    Wong Kai Sin 23

    E1

    E2

    E3 E4

    Mohr-Coulomb model Cant match all stages of excavation!

    0

    5

    0 20 40 60 80 100

    Wall Deflection (mm)

    12

    Constant E

    Excavation Design 45

    10

    15

    20

    25

    30D

    epth

    (m)3

    4 1 42 3

    Sensitivity Study to Finalise Design

    Sand

    Marine Clay

    Old Alluvium

    JGP

    Surcharge 10 and 20 kPa

    Soil Modulus (Eu/cu) 300 and 200

    Over-excavation 0.5 and 1 m

    JGP Thickness 1.5 and 1.0 m

    JGP modulus 150 and 100 MPa

    Excavation Design 46

    JGP modulus 150 and 100 MPa

    Wall stiffness 1.0EI and 0.7EI

    Modelling of bored piles Included and excluded

    Preload 100, 50 and 0%

  • November 2009 Excavation Design

    Wong Kai Sin 24

    250

    300

    350

    n (m

    m)

    Sensitivity Study on Wall Deflection

    0

    50

    100

    150

    200

    ce ca

    se

    20 kP

    a

    =200

    Cu

    exca

    v.

    P (1.0

    m)

    00MP

    a

    ad 50

    %D-

    Wall

    odell

    ed

    prelo

    ad

    Def

    lect

    ion

    Excavation Design 47

    Refer

    ence

    Surch

    arge 2 E=

    2

    1.0m

    over

    eJG

    P (

    E(JG

    P) =

    10

    Prelo

    ad

    0.7EI

    D

    Bored

    pile

    not m

    odNo

    pr

    Design H,max = 200 mm

    3000

    3500

    4000

    4500

    5000

    nt (k

    Nm

    /m)

    Sensitivity Study on Wall Bending Moment

    0

    500

    1000

    1500

    2000

    2500

    3000

    e cas

    e

    20 kP

    a20

    0Cu

    exca

    v.

    (1.0m

    )

    00MP

    ad 5

    0%D-

    Wall

    delle

    drel

    oad

    Ben

    ding

    Mom

    en

    Excavation Design 48

    Refer

    ence

    Surch

    arge 2

    0E=

    20

    1.0m

    over

    ex

    JGP (

    1

    E(JG

    P) =

    100

    Prelo

    ad

    0.7EI

    D

    Bored

    pile

    not m

    odNo

    pre

    Design Mmax = 3400 kNm/m

  • November 2009 Excavation Design

    Wong Kai Sin 25

    2000

    2500

    3000

    3500

    ce (k

    N/m

    )

    Sensitivity Study on Wall Shear Forces

    0

    500

    1000

    1500

    2000

    nce c

    ase

    e 20 k

    Pa

    E=20

    0Cu

    er ex

    cav.

    GP (1

    .0m)

    100M

    Pa

    oad 5

    0%

    EID-

    Wall

    mode

    lled

    prelo

    ad

    Shea

    r For

    c

    Excavation Design 49

    Refer

    enc

    Surch

    arge E=

    1.0m

    over

    JGP

    E(JG

    P) =

    1Pr

    eloa

    0.7EI

    Bored

    pile

    not m No

    p

    Design Vmax = 2200 kN/m

    Sensitivity Study - Maximum Strut Load (S1)

    250300350400450500

    d (k

    N/m

    )

    050

    100150200250

    eferen

    ce ca

    se

    charg

    e 20 k

    Pa

    E=20

    0Cu

    m ov

    er ex

    cav.

    JGP (

    1.0m)

    GP) =

    100M

    Pa

    Prelo

    ad 50

    %

    0.7EI

    D-Wa

    ll

    not m

    odell

    ed

    No pr

    eload

    Stru

    t loa

    Excavation Design 50

    Design S1 = 420 kN/m

    Ref

    Surch 1.0

    mE(J

    G

    Bored

    pile

    no

  • November 2009 Excavation Design

    Wong Kai Sin 26

    Sensitivity Study - Maximum Strut Load (S2)

    600700800900

    (kN

    /m)

    0100200300400500

    feren

    ce ca

    se

    harge

    20 kP

    a

    E=20

    0Cu

    mov

    er ex

    cav.

    JGP (

    1.0m)

    GP) =

    100M

    Pa

    Prelo

    ad 50

    %

    0.7EI

    D-W

    all

    not m

    odell

    ed

    No pr

    eload

    Stru

    t loa

    d (

    Excavation Design 51

    Design S2 = 780 kN/m

    Refe

    Surch

    a

    1.0m

    oE(

    JGP P 0

    Bored

    p ile

    n

    Sensitivity Study - Maximum Strut Load (S3)

    800

    1000

    1200

    (kN

    /m)

    0

    200

    400

    600

    feren

    ce ca

    se

    harge

    20 kP

    a

    E=20

    0Cu

    over

    exca

    v.

    JGP (

    1.0m)

    GP) =

    100M

    Pa

    Prelo

    ad 50

    %

    0.7EI

    D-Wa

    ll

    otmo

    delle

    d

    No pr

    eload

    Stru

    t loa

    d

    Excavation Design 52Design S3 = 960 kN/m

    Refe

    Surch

    a1.0

    m o

    E(JGP

    ) P 0

    Bored

    pile

    not

  • November 2009 Excavation Design

    Wong Kai Sin 27

    Sensitivity Study - Maximum Strut Load (S4)

    600700800900

    1000

    (kN

    /m)

    0100200300400500

    eferen

    ce ca

    se

    charg

    e 20 k

    Pa

    E=20

    0Cu

    m ov

    er ex

    cav.

    JGP (

    1.0m)

    GP) =

    100M

    Pa

    Prelo

    ad 50

    %

    0.7EI

    D-Wa

    ll

    e not

    mode

    lled

    No pr

    eload

    Stru

    t loa

    d

    Excavation Design 53

    Design S4 = 880 kN/m

    Refe

    Surch 1.0

    mE(J

    G

    Bored

    pile

    n

    Sensitivity Study - Maximum Strut Load (S5)

    400

    500

    600

    (kN

    /m)

    0

    100

    200

    300

    erenc

    e cas

    e

    arge 2

    0 kPa

    E=20

    0Cu

    over

    exca

    v.

    JGP (

    1.0m)

    P) = 1

    00MP

    a

    Prelo

    ad 50

    %

    0.7EI

    D-Wa

    ll

    ot mo

    delle

    d

    No pr

    eload

    Stru

    t loa

    d

    Excavation Design 54

    Design S5 = 500 kN/m

    Refer

    Surch

    ar

    1.0m

    o J

    E(JGP

    ) Pr 0

    Bored

    pile

    no

  • November 2009 Excavation Design

    Wong Kai Sin 28

    Best Estimates

    Design Values

    based on Sensitivity

    St d

    Best Estimates and Design Values

    Study

    Diaphragm Wall

    Deflection mm 168 200Moment kNm/m 2980 3400Shear kN/m 2065 2200

    Strut S1 Force kN/m 417 420Strut S2 Force kN/m 771 780

    Excavation Design 55

    St ut S o ce / 80Strut S3 Force kN/m 929 960Strut S4 Force kN/m 836 880Strut S5 Force kN/m 474 550

    Bending Moment and Shear Forces at Various Stages

    Elev

    atio

    n (m

    )

    Elev

    atio

    n (m

    )

    56

    3000 -2000 -1000 0 1000 2000 3000 4000

    Bending moment (kN.m/m)Bending Moment (kNm/m)

    000 -1000 0 1000 2000 3000

    Shear force (kN/m)Shear Force (kN/m)Excavation Design

  • November 2009 Excavation Design

    Wong Kai Sin 29

    From the results of sensitivity studies weFrom the results of sensitivity studies, we can proceed to finalize the design:

    Wall design Strut design Waler/stiffer design Set alert levels

    Excavation Design 57

    Instrumentation plan Contingency plan Design drawings

    FillE E

    FillRL (m)

    Analysis of Control Section for Construction Control

    Use best estimated parameters to compute:

    Wall deflection profilesUMC

    F2 upper

    LMC

    F2 lowerF2

    LMC

    LMC

    F2 lower

    OA N = 20OA N = 30

    F2 upper

    UMC

    85.4

    72.1

    66.864 7

    69.4

    Wall deflection profiles

    Deflection vs Excav. depth

    Strut forces

    Wall bending moments

    Wall shear forces

    Ground settlement

    Excavation Design 58

    OA N = 70

    OA N = 100OA N = 70OA N = 30OA N = 20

    64.7

    60.0

    55.0

    59.261.263.7

    Ground settlement

    Pore pressures

    Results are to be compared with field measurements.

  • November 2009 Excavation Design

    Wong Kai Sin 30

    How reliable is your design?

    sand

    Excavation Design 59

    Benchmarking Exercise in Germany

    Benchmarking Exercise in Germany

    Five worst resultswere OMITTED!

    Measurement

    Excavation Design 60

  • November 2009 Excavation Design

    Wong Kai Sin 31

    Maximum Wall Deflectionvs

    Excavation Level

    Prediction Exercise in Singapore

    90

    92

    94

    96

    98

    100

    102

    Elev

    atio

    n Le

    vel (

    RL

    in m

    )

    Excavation Design 61

    84

    86

    88

    0 10 20 30 40 50 60 70 80Maximum Wall Deflection (mm)

    E

    Particpant # 7 Particpant # 10 Particpant # 1 Particpant # 5Particpant # 3 Particpant # 9 Particpant # 8 Particpant # 11Particpant # 12 Particpant # 6 Particpant # 13 Particpant # 4Particpant # 14 Particpant # 12 Measured

    Design vs As-Built Construction Sequence

    As-Built Design

    62Excavation Design

  • November 2009 Excavation Design

    Wong Kai Sin 32

    Over-Excavation

    (Clough & ORouke, 1990)

    63Excavation Design

    Excessive Surcharge

    q = 20 kPa

    64Excavation Design

  • November 2009 Excavation Design

    Wong Kai Sin 33

    Dont be over-confident about your analysis!

    Be prepared to face a few surprises.

    Implement Observational Method diligently.

    Excavation Design 65

    If in doubt, get a second opinion.

    Excavation Design 66

    Session 3aSession 3b