wong design analysis deep excavations session02

61
November 2009 ULS Design & Strut Forces Wong Kai Sin 1 Time Session Topic Session 2 Design (Part 1) 09:00 – 10:30 1 Overview 10:30 – 11:00 Coffee Break 11:00 – 12:30 2 Design (Part 1) 12:30 - 01:30 Lunch 01:30 03:00 3 Mohr-Coulomb Soil Model & 1 Design (Part 2) 03:00 – 03:30 Coffee Break 03:30 – 05:00 4 How to reduce wall deflection ULS Design & Strut Forces Major Design Considerations in Deep Excavations Excessive movements Wall deflections Total collapse Overall stability 2 Wall deflections Ground settlement Effect on adjacent structures Uplift or blowout failure Piping & quick condition Basal heave Toe stability Strutting system failure ULS Design & Strut Forces

Upload: debpriya1984

Post on 21-Apr-2015

126 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 1

Time Session Topic

Session 2Design (Part 1)

p09:00 – 10:30 1 Overview10:30 – 11:00 Coffee Break

11:00 – 12:30 2 Design (Part 1)12:30 - 01:30 Lunch

01:30 – 03:00 3 Mohr-Coulomb Soil Model &

1

Design (Part 2)03:00 – 03:30 Coffee Break

03:30 – 05:00 4 How to reduce wall deflection

ULS Design & Strut Forces

Major Design Considerations in Deep Excavations

Excessive movements

Wall deflections

Total collapse

Overall stability

2

Wall deflections

Ground settlement

Effect on adjacent structures

y

Uplift or blow‐out failure

Piping & quick condition

Basal heave

Toe stability 

Strutting system failureULS Design & Strut Forces

Page 2: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 2

Overall Stability

3ULS Design & Strut Forces

Uplift Instability or Blowout Failure

FillE

UMCUMC

F2

LMC

E / F2

4

1. What is the permeability of the sand?

2. Is there a free supply of water?

Sand

ULS Design & Strut Forces

Page 3: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 3

Blowout Failure

γT B d + 2 αcu d          Fs  =  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

h B

For very long excavation:B

γw h B

For rectangular shape:

γT dBL + 2d αcu(B+L)       Fs = ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

γT

R R

5

Fs  =  γw h B L

ULS Design & Strut Forces

Piping in Sand

Piping is a phenomenon of water rushing up through pipe‐shaped

6

Piping is a phenomenon of water rushing up through pipe shaped channels due to upward seepage under high gradient. It can lead to total collapse of the system. Sufficient penetration of sheetpile must be used to lengthen the seepage path and to reduce the hydraulic gradient.

ULS Design & Strut Forces

Page 4: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 4

Penetration Depth against Piping

(Teng, 1962)

Fs = 1.5

7ULS Design & Strut Forces

Basal Heave Stability

qo

qult

8

When qo > qult, failure in imminent.

ULS Design & Strut Forces

Page 5: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 5

Which method should we use?

•Terzaghi •Bjerrum & Eide•Eide et al.•Tschebotarioff•Tschebotarioff•Goh•Chang•Wong and Goh•O'Rourke•Su et al.•Ukritchon et al.•Plaxis

9

Does FOS≤1 mean failure?

ULS Design & Strut Forces

Methods of Analysis

10ULS Design & Strut Forces

Page 6: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 6

Terzaghi’s Method(Terzaghi, 1943)

11ULS Design & Strut Forces

Terzaghi’s Method

5 7 c B

T

Hard Stratum

12

5.7 cub B1FS = ----------------------

g H B1 - cuhH

If T ≥ 0.7B, B1 = 0.7B

If T < 0.7B, B1 = T

ULS Design & Strut Forces

Page 7: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 7

Modification to Terzaghi’s Method

13ULS Design & Strut Forces

Bjerrum and Eide’s method (1956) 

14

cu NcFS = --------------

γ H + q

ULS Design & Strut Forces

Page 8: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 8

15ULS Design & Strut Forces

Eide et al.’s Method (1972)

16ULS Design & Strut Forces

Page 9: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 9

17ULS Design & Strut Forces

Comparison of Methods – Case 1 – Sheetpile Wall

18ULS Design & Strut Forces

Page 10: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 10

Comparison of Methods – Case 2 – Sheetpile Wall

19ULS Design & Strut Forces

Comparison of Methods – Case 3 – Sheetpile Wall

20ULS Design & Strut Forces

Page 11: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 11

Effect of Depth to Hard Stratum (T)

When T ≥ 0.7B, failure surface can be developed freely. 

21

, p y

When T < 0.7B, the development of failure surface is restrained. It is no longer the plane of lowest resistance. Therefore, there will be an increase in factor of safety. The correction factor β accounts for the effect of depth to hard stratum, T.

ULS Design & Strut Forces

Comparison of Methods – Case 4 – Sheetpile Wall

22

0.97

ULS Design & Strut Forces

Page 12: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 12

Sheetpiles are very flexible. They tend to move along with the soil.

23ULS Design & Strut Forces

Comparison of Methods – Case 5 – Diaphragm Wall

24ULS Design & Strut Forces

Page 13: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 13

Comparison of Methods – Case 6 – Diaphragm Wall

25ULS Design & Strut Forces

Effect of Wall Penetration(Zhang and Zhang, 1994)

26ULS Design & Strut Forces

Page 14: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 14

Modified Terzaghi’s Method for Diaphragm 

Wall

(Wong and Goh, 2001)(Wong and Goh, 2001)

Method 1:

27

Method 2:

ULS Design & Strut Forces

Modified Terzaghi’s Method for Diaphragm Wall(Wong and Goh, 2001)

28ULS Design & Strut Forces

Page 15: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 15

Modified Terzaghi’s Method for Diaphragm Wall(Wong and Goh, 2001)

29ULS Design & Strut Forces

30

Terzaghi (1943): Fs = 0.82

Modified Terzaghi: Fs = 1.13 (Method 1)

Fs = 1.06 (Method 2)

ULS Design & Strut Forces

Page 16: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 16

Narrow Excavation for all Wall Types

Modified Eide et al.’s Method

31ULS Design & Strut Forces

Wide Excavation with Sheetpile Wall

cuh

cub

T

Hard Stratum

32ULS Design & Strut Forces

Page 17: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 17

Wide Excavation with Diaphragm Wall

cuh

cud

cub

αcud

T

Hard Stratum

33ULS Design & Strut Forces

How important is the shape factor?

34ULS Design & Strut Forces

Page 18: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 18

Basal Heave Failure in Taipei  (1998)

35ULS Design & Strut Forces

Basal Heave Failure in Taipei  (1998)

B

Factor of SafetyMethod A A B B

B

36

Method A-A B-BTerzaghi 0.67 0.66

Bjerrum & Eide 0.58/0.69 0.61/0.69Wong & Goh 0.94 0.99

ULS Design & Strut Forces

Page 19: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 19

What factor of safety should we use?

37ULS Design & Strut Forces

How reliable is the computed F.S.?

38ULS Design & Strut Forces

Page 20: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 20

What type of test should we conduct to determine cu?

cu1.   Most conservative:"worst scenario"

Which strength envelope should we use ?

39

Depth

2. Best Estimate:"most probable scenario"

3. Most optimistic:"most favourable scenario"

ULS Design & Strut Forces

Basal Heave of Wall with Full Penetration to Hard Stratum

Case 7 ‐ Sheetpile Wall

40ULS Design & Strut Forces

Page 21: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 21

Basal Heave of Wall with Full Penetration to Hard Stratum

Case 8 ‐ Diaphragm Wall

41ULS Design & Strut Forces

Basal Heave of Wall with Full Penetration to Hard Stratum

Case 9 ‐ Sheetpile Wall

42ULS Design & Strut Forces

Page 22: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 22

Excavation with Full Penetration of Wall into Hard Stratum

Basal heave stability is not an issue for this case.  But toe kick‐out failure may occur.

43ULS Design & Strut Forces

44ULS Design & Strut Forces

Page 23: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 23

Toe Kick‐in Stability

PaPp

σ

Scenario 1

σ

Scenario 2

45

5.29cu – σv1

σv1

5.29cu – σv1

σv1

ULS Design & Strut Forces

Toe Kick‐in Stability

MA = ?A

46ULS Design & Strut Forces

Page 24: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 24

How to overcome the negative net pressure?

Option 1

A

Option 2

Add JGP slab

A

A

47

Penetrate into hard stratumnegative net pressure

MA = ?

A

ULS Design & Strut Forces

How to overcome negative net pressure?

Option 3

Use shorter wall

48

A

negative net pressure

ULS Design & Strut Forces

Page 25: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 25

49ULS Design & Strut Forces

A Deep Excavation in Oslo

(Aas, 1985)

30 kPa

1.13

50ULS Design & Strut Forces

Page 26: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 26

51ULS Design & Strut Forces

Basal Heave Toe Stability

If there is adequate F.S. against basal heave,

PaPp

52

If there is adequate F.S. against basal heave, toe stability is not an issue.

ULS Design & Strut Forces

Page 27: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 27

Toe Kick‐out Stability

Method 1:

Pp LpFs = ‐‐‐‐‐‐‐‐‐‐

M

Pa & Pf are based on unfactored strength:

Fs =  ‐‐‐‐‐‐‐‐‐‐Pa La

Method 2:

Pp Lp + MallFs =  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Pa La

PaPp

LaLp

P f& P f are based on factored strength:

ULS Design & Strut Forces 53

Method 3:

Pp Lp + MultFs =  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Pa La

Method 4:

Ppf Lp >  Paf La

Ppf & Paf are based on factored strength:

Method 5:

Ppf Lp + Mall  >  Paf La

Toe Kick‐out Stability

M

1. How do you determine the active and 

PaPp

LaLp

ULS Design & Strut Forces 54

passive earth pressures?

2. Assuming Pa and Pp are known, which of the five methods would you use?

Page 28: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 28

Earth Pressure according to Rankine’s 

TheoryFS = 1.29 (Terzaghi)

AA

A A

ULS Design & Strut Forces 55

Effect of PenetrationDepth on 

Bending MomentBending Moment

56

D = 0, 8 & 17 m

ULS Design & Strut Forces

Page 29: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 29

Should theoretical earth pressures be used in the analysis?

ULS Design & Strut Forces 57

Soil Arching & Rowe’s Moment Reduction

58ULS Design & Strut Forces

Page 30: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 30

59

Net

ULS Design & Strut Forces

0

2

-300 -200 -100 0 100 200 300

Passive Pressure (kPa)

H = 8m o

Earth Pressure (kPa)

4

6

8

10

Dep

th (m

)

D = 8mγ = 18 kN/m3

cu = 25 kPa

ULS Design & Strut Forces 60

12

14

16

Theory

Sheetpile

Diaphragm Wall

Page 31: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 31

0

2

-100 -50 0 50 100 150 200

Passive Pressure (kPa)

H = 8m o

Net Earth Pressure (kPa)

4

6

8

10

Dep

th (m

)

D = 8m γ = 18 kN/m3

cu = 25 kPa

Mo(kNm/m)

Theory 838

Sheetpile 304

ULS Design & Strut Forces 61

12

14

16

Theory

Sheetpile

Diaphragm Wall

Sheetpile 304

Diaphragm 1120

0

2

4

6

-400 -300 -200 -100 0 100 200 300 400

Passive Pressure (kPa)

H = 8m o

Earth Pressure (kPa)

6

8

10

12

14

16

18

Dep

th (m

)

D = 15mγ = 18 kN/m3

cu = 25 kPa

ULS Design & Strut Forces 62

18

20

22

24

26

Theory

Sheetpile

Diaphragm Wall

Page 32: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 32

0

2

4

6

-100 -50 0 50 100 150 200

Passive Pressure (kPa)

H = 8m o

γ = 18 kN/m3

Net Earth Pressure (kPa)

8

10

12

14

16

18

20

Dep

th (m

)

D = 15mγ /

cu = 25 kPa

Mo(kNm/m)

Theory 2121

ULS Design & Strut Forces 63

20

22

24

26

Theory

Sheetpile

Diaphragm Wall

Sheetpile 298

Diaphragm Wall

601 (Mmax=1010)

B & D can affect PA & PP

0

2

4

-100 -50 0 50 100 150 200

Passive Pressure (kPa)

D

B

Soil‐structure interaction affects PA & PP

Net Earth Pressure (kPa)

6

8

10

12

14

16

18

20

Dep

th (m

)

D

ULS Design & Strut Forces 64

Analysis based on earth pressure theories can lead to unrealistic results!

22

24

26

Theory

Sheetpile

Diaphragm Wall

Page 33: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 33

Toe Kick‐out Stability

Method 1:

Pp LpFs = ‐‐‐‐‐‐‐‐‐‐

Methods 1 to 3 are based on unfactored strength:

1. Methods 1, 2 and yield about the same FS because Mall and Mult are negligible when compared to the other terms.

2 Methods 4 & 5 yield about the same FS for theFs =  ‐‐‐‐‐‐‐‐‐‐Pa La

Method 2:

Pp Lp + MallFs =  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Pa La

2. Methods 4 & 5 yield about the same FS for the same reason given in (1).

3. If earth pressure theory is to be used to compute Pa and Pp, all 5 methods can be used.

4. If Pa is to be determined from FEA, only Methods 1 or 3 should be used.

ULS Design & Strut Forces 65

Method 3:

Pp Lp + MultFs =  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Pa La

Method 4:

Ppf Lp >  Paf La

Methods 4 & 5 are based on factored strength: 

Method 5:

Ppf Lp + Mall  >  Paf La

Toe Kick‐in Stability

PaPp

LaLp

Pp Lp + MultFs =  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

P L

1. If factor of safety against basal heave is adequate, toe stability is not an issue. No analysis is necessary.

2. Compute Pa and Pp from earth pressures theory. If the computed FS is adequate without requiring excess penetration depth no further

pPa La

ULS Design & Strut Forces 66

is adequate without requiring excess penetration depth, no further analysis is needed. 

3. If the required penetration depth from (1) is excessive, try using Pafrom FEA. 

Page 34: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 34

67ULS Design & Strut Forces

Lateral Earth Pressure in Braced Excavations

R di t ib ti f th d t hi

68

♦ Redistribution of earth pressure due to arching

♦ Preloading

♦ Incremental excavation and strut installation

ULS Design & Strut Forces

Page 35: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 35

CIRIA’s Characteristic Pressure Diagram for Sand(CIRIA, 1996)

69

P = 0.2γH

ULS Design & Strut Forces

Strut Forces in Stiff to Very Stiff Clay (CIRIA, 1996)

70ULS Design & Strut Forces

Page 36: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 36

CIRIA’s Characteristic Pressure Diagram for Soft 

Clay (CIRIA, 1996)

71ULS Design & Strut Forces

CIRIA’s Characteristic Pressure Diagram for Soft Clay (CIRIA, 1996)

72

Soft Clay(Unstable base)

ULS Design & Strut Forces

Page 37: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 37

CIRIA’s Characteristic Pressure Diagram for Soft Clay (CIRIA, 1996)

Firm Clay(stable)

73

Soft Clay

(stable)ULS Design & Strut Forces

CIRIA’s Characteristic Pressure Diagram for Soft Clay (CIRIA, 1996)

Soft Clay

(unstable base)

74ULS Design & Strut Forces

Page 38: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 38

Strut Forces by Tributary area method

aPPA Area A

Area B

Area C

b

b

ccd

d

PB

PC

75

e.g.   PB = ( b + c ) p    in kN/m run

pd

ULS Design & Strut Forces

Comparison of APD – Sheetpile Wall

76ULS Design & Strut Forces

Page 39: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 39

Comparison of APD – Diaphragm Wall

77

Are FE results reliable?

ULS Design & Strut Forces

Strut Forces on Diaphragm Wall in Sand

(Kastner & Lareal, 1974)

78ULS Design & Strut Forces

Page 40: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 40

Effect of Wall Stiffness on Strut Forces(Chang & Wong, 1996)

79

x10‐7

ULS Design & Strut Forces

Effect of Wall Stiffness on Strut Forces

(Chang & Wong, 1996)

80ULS Design & Strut Forces

(m=1)

Page 41: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 41

Effect ofEffect of Temperature

on Strut Forces

81ULS Design & Strut Forces

Degree of Restraint(CIRIA, 1996)

82

B = Stiff Clay    C = Granular Soils     D = Mixed SoilsULS Design & Strut Forces

Page 42: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 42

Degree of Restraint(CIRIA, 1996)

83ULS Design & Strut Forces

Temperature Effect on Strut Forces

(Batten et al., 1996)

84ULS Design & Strut Forces

Page 43: Wong Design Analysis Deep Excavations Session02

November 2009 ULS Design & Strut Forces

Wong Kai Sin 43

Temperature Effect on Strut Forces

(Batten et al., 1996)

Tubular steel props

85ULS Design & Strut Forces

Other Factors Affecting Strut 

Forces

86ULS Design & Strut Forces

Page 44: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 1

Major Design Considerations in Deep Excavations

Excessive movements

Wall deflections

Total collapse

Overall stability

U lift bl t f il

1

Wall deflections

Ground settlement

Effect on adjacent structures

Uplift or blow‐out failure

Piping & quick condition

Basal heave

Toe stability 

Strutting system failure Need Finite Element Analysis!Finite Element Analysis

What do you get from Finite Element Analysis?

Strut forces

Wall bending moment & shear forces

Finite Element Analysis 2

Wall deflections

Ground settlement

Tunnel displacements

Factor of safety

Page 45: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 2

Deformation Analysis using Finite Element Programs

1-D Programs 2-D Programs 3-D Programs

Rido

Wallap

FREW

Plaxis

Sage Crisp

Sigma/W

Flac

Plaxis 3D

Flac 3D

ZSOIL

GEOFEA

ABAQUS

MidasGTS 3DMidasGTS-3D

Which program should we use?

Finite Element Analysis 3

Plaxis offers the following choices for analysis of short term performance of TERS in clay:

A. Mohr‐Coulomb: effective stress, c’‐ φ’, undrained

B Mohr‐Coulomb: effective stress c ‐ φ undrained

Method of Analysis

B. Mohr‐Coulomb: effective stress, cu‐ φu, undrainedC. Mohr‐Coulomb: total stress, cu‐ φu, non‐porous, undrained D. Mohr‐Coulomb: effective stress, c’‐ φ’, consolidationE. Mohr‐Coulomb: effective stress, cu‐ φu, consolidationF. Soft Clay: effective stress, c’‐ φ’, undrainedG. Soft Clay: effective stress, c’‐ φ’, consolidationH. Mod. Cam Clay: effective stress, c’‐ φ’, undrainedy , φ ,I. Mod. Cam Clay: effective stress, c’‐ φ’, consolidationJ. Advanced Hardening: effective stress, c’‐ φ’, undrainedK. Advanced Hardening: effective stress, c’‐ φ’, consolidation

Which one should we use?Finite Element Analysis 4

Page 46: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 3

Blessings & curses of commercial software

Blessings:User friendlyUser friendlyGenerates output with beautiful plotsGives user a sense of accomplishment

Curses:Sometimes it aborts without suggesting the 

t f tinext course of actionSometimes it produces puzzling results

Finite Element Analysis 5

Geotechnical problem

User Must define the problem the way the program will understand

Faithful but not too intelligent

Finite Element Analysis 6

Page 47: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 4

1. Attend training course!

2. Study the manual and do the tutorial problems. 

Advice to Users

y p

3. Do not assume it will work the way you think.

4. When in doubt, devise a simple problem and test out how the program works.

5. Check input – mesh, design parameters……6. Study output:

• Is the mode of deformation correct?• Are the magnitudes reasonable?

Finite Element Analysis 7

2‐D Finite Element Method

σvσh

8

σvσh

Finite Element Analysis

Page 48: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 5

FE Modeling of an Excavation

9Use of half‐mesh because of symmetry

Finite Element Analysis

Half mesh or Full mesh?

10

Half Mesh Full Mesh

Finite Element Analysis

Page 49: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 6

Notes on Mesh Generation for FEA

1. Set left and right boundaries far away from area of interest.

2. Use a fine mesh.3. Include only the key elements. Exclude the details.4. Simplify the soil profile.5 S d i b d i i lid i l i

Finite Element Analysis 11

5. Set proper drainage boundaries in consolidation analysis.6. Include piles only where appropriate. 

Effect of Mesh Fineness on Wall Deflection

12Finite Element Analysis

Page 50: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 7

What type of analysis should we conduct?

Total StressffEffective StressUndrainedDrainedConsolidation

Finite Element Analysis 13

It depends on the permeability of soil and duration of construction.

Effect of permeability on wall deflection

Finite Element Analysis 14

Page 51: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 8

Effect of permeability on ground settlement

Finite Element Analysis 15

Is it important to conduct consolidation analysis for deep excavation in clay?

Finite Element Analysis 16

Page 52: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 9

Coefficient of Permeability “k”

k (m/s)

Clean gravels

Clean sands Very fine sands

Silts & clayey sand

Clays

Drained Transition Undrained

Finite Element Analysis 17

1‐D (Beam‐n‐Spring) Analysis by Finite Element Method

WALLAP

RIDO

18

FREW

REWARD

Finite Element Analysis

Page 53: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 10

Parameters for the Beam‐and‐Spring Model

Kh = ??? c

19

Kh = ??? cu

Finite Element Analysis

Ka &  Kp

20Finite Element Analysis

Page 54: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 11

Calibration of Soil Modulus using 1‐D and 2‐D Programs

RIDO:  1‐D Beam‐and‐Spring

EXCAV97 ‐ 2‐D continuumHyperbolic Model

21

Ks / cu = ??? Ei / cu = ???

Finite Element Analysis

Comparison of Results

Rochor Complex

22Finite Element Analysis

Page 55: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 12

Comparison of Results

Lavender Station

23Finite Element Analysis

Comparison of Results

Syed Alwi Condo

24Finite Element Analysis

Page 56: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 13

25Finite Element Analysis

Limitations of Beam‐and‐Spring Method

1. It ignored the effect of width on wall deflection.

2.  It ignored the effect of clay thickness on wall deflection.

26Finite Element Analysis

Page 57: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 14

Limitations of Beam‐and‐Spring Method

1. It ignored the effect of width on strut force.

2.  It ignored the effect of clay thickness on strut force.

27Finite Element Analysis

Is “Eu/cu=200”  applicable to all soil models and programs ?

MOEBuilding

RochorComplex

Syed AlwiProject

Lavender Station

WALLAP, Mohr Coulomb, Eu/ cu 250 250 300 300

SAGE CRISP Mohr Co lomb E /c 100 150 300 500SAGE CRISP, Mohr Coulomb, Eu/cu 100 150 300 500

SAGE CRISP, Hyperbolic, Ei/cu 300 300 300 300

EXCAV97, Hyperbolic, Ei/cu 200 200 200 200

28Finite Element Analysis

Page 58: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 15

Major Shortcomings of 2‐D Analysis

Is 2‐D analysis yappropriate?

29

Is appropriate to model the piles as plates?

Finite Element Analysis

Is 2‐D Analysis appropriate at I1, I2 and I3?

(After Ou et al., 1996)I2

I3

I1

I5I4

30Finite Element Analysis

Page 59: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 16

3‐D Effect in Braced Excavation

(After Ou et al., 1996)

I2I3

I1

I5I4

I3

31

(I4 & I5)

Finite Element Analysis

A B

Which section is closer to plane strain condition?

L = 100 m

B = 100 m

L = 40 m

B = 20 m

A B

PSR = 0.91 PSR = 0.90

32

δH,max (3‐D)Plane Strain Ratio, PSR =  ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

δH,max  (2‐D)

Finite Element Analysis

Page 60: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 17

PSR = 0.60

PSR = 0.91PSR = 0.83

B =L=100 m

B =L=60 mB =L=40 m

PSR = 0.60 PSR = 0.50 PSR = 0.42

33

PSR   0.60

L=40 m

B=40 m

L=60 m

B=40 mB=40 m

L=100 m

Finite Element Analysis

0 8

0. 9

1

B=20m

Reduction Factor for δH,max due to 3‐D Effect

(Developed based on data from Ou et al., 1996)

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

PSR

B=100m

B=80m

B=40m

B=60m

B

L

34

0

0. 1

0. 2

0 20 40 60 80 100 120L (m)

Finite Element Analysis

Page 61: Wong Design Analysis Deep Excavations Session02

November 2009 Finite Element Analysis

Wong Kai Sin 18

1

1. 2

B=20mB=40mB=60mB=80m

Reduction Factor for δH,max due to 3‐D Effect

(Developed based on data from Ou et al., 1996)

0. 4

0. 6

0. 8

1

PSR

B=100m

B

L

35

0

0. 2

0 0. 5 1 1. 5 2 2. 5 3 3. 5L/B

Finite Element Analysis

36Finite Element Analysis