what is the activation energy of the reaction between

13
What is the activation energy of the reaction between potassium bromide and potassium bromate?

Upload: others

Post on 09-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

What  is  the  activation  energy  of  the  reaction  between  potassium  bromide  and  potassium  bromate?  

1  

Determination  of  the  activation  energy  between  bromide  and  bromate  

1. Aim.

The  aim  of  this  experiment  is  to  determine  the  activation  energy  of  the  reaction  between  potassium  bromideKBr and  potassium  bromateKBrO3 .    

2. Introduction

Chemical  kinetics  is  the  topic  that  I  enjoyed  the  most  during  my  IB  chemistry  SL  course.  This  is  because  it  provided  me  with  a  deeper  insight  into  how  particles  (such  as  atom  or  molecules)  interact  with  each  other  as  they  form  new  species.  My  interest  for  this  topic  led  me  to  go  beyond  what  is  taught  in  class.  I  started  exploring  the  rate  law,  the  integrated  form  of  rate  expression  as  well  as  the  reaction  mechanisms.  I  was  intrigued  by  how  the  rate  constant  is  related  to  the  temperature  through  the  Arrhenius  equation  and  how  that  simple  mathematical  relation  provides  the  possibility  of  determining  the  activation  energy  of  a  reaction.  I  found  the  idea  of  calculating  the  activation  energy  of  a  reaction  experientially  very  appealing.    

Therefore  I  have  decided  to  focus  this  investigation  on  determining  the  activation  energy  of  the  reaction  between  KBr  and  KBrO3 .  

3. Background.

3.1  Chemical  kinetics  

For  a  reaction  to  occur,  particles  must  collide  with  the  correct  orientation  and  with  a  kinetic  energy  larger  than  that  of  the  activation  energy  barrier.  The  Activation  energy  Ea  is  therefore  the  minimum  amount  of  kinetic  energy  required  for  the  reactants  to  have  in  order  of  the  reaction  to  take  place.  This  energy  often  goes  into  breaking  the  bonds  or  overcoming  the  repulsive  forces  between  the  reactants.  Once  this  energy  is  supplied  to  particles  they  would  achieve  a  transition  state  in  which  product  would  be  formed.    

Now,  if  the  temperature  of  the  reactants  increases,  their  average  speeds  would  increase  and  hence  the  frequency  of  collision  would  also  increase.  By  the  collision  theory,  an  increase  in  the  frequency  of  collision  would  result  in  an  increase  in  the  rate  of  reaction.  Furthermore,  with  an  increase  in  temperature  particles  would  a  have  higher  internal  energy  (total  kinetic  and  potential  energy).  Consequently,  the  proportion  of  particles  having  energy  larger  than  that  of  the  activation  energy  would  also  increase.    

Figure  1  depicts  two  Maxwell-­‐Boltzmann  distribution  curves  of  a  sample  of  reactants.  It  is  clearly  shown  that  for  higher  temperature  (red  curve)  the  proportion  (or  the  probability)  of  the  particles  with  energies  exceeding  the  activation  energy  is  larger.  This  is  shown  by  the  areas  under  the  two  curves.    

2  

Maxwell  and  Boltzmann  showed  that  the  rate  of  reaction  is  proportional  to  the  number  of  particles  with  energies  larger  than  Ea ,  which  increases  with  an  increase  in  temperature.  This  relation  is  set  by  Steven  Arrhenius  and  is  known  as  the  Arrhenius  equation1,  i.e.  

k = Ae− EaRT

Where k is  the  rate  constant.  A  is  the  Arrhenius  constant,  also  known  as  the  frequency  factor,  which  takes  into  account  the  frequency  and  the  orientation  of  the  collisions  between  particles.  R  is  the  universal  gas  constant.  Ea  is  the  activation  energy  and  is  different  for  different  reactions.  Finally  T  is  the  temperature  of  the  system  (or  reactants)  and  is  measured  in  kelvin.    

In  this  experiment  I  will  be  investigating  the  following  reaction:  

5KBr(aq)+ KBrO3(aq)+ 3H 2SO4 (aq)⎯→⎯ 3K2SO4 (aq)+ 3H2O(l)+ 3Br2 (aq)  

By  doing  simple  manipulations  of  equation  (1)  we  can  transform  the  Arrhenius  equation  into  a  different  form  that  can  allow  us  to  calculate  the  activation  energy  of  the  reaction  above.  However,  first  we  need  to  consider  the  meaning  of  the  rate  constant  in  terms  of  the  reaction  rate.    

The  rate  law  states  that  the  rate  of  reaction  is  directly  proportional  to  the  product  of  the  reactants  concentrations.  I.e.  

Rate(R)∝[A1]a1 ⋅[A2 ]

a2 ⋅[A3]a3 ....∝ [Ai ]

ai

i=1∏

⇒ R = k [Ai ]ai

i=1∏

Where  [A1],[A2 ],[A3]...  are  the  reactants  concentrations  and  the  exponents  a1,a2,a3...  are  the  orders  of  the  reaction  with  respect  to  the  reactants.  𝑘  is  the  rate  constant  and  is  temperature  dependent  (equation  1).    

1  Catrin  Brown.  IB  chemistry  Higher  Level.  Pearson  Baccalaureate.  

Figure  1:    Maxwell-­‐Boltzmann  distribution  curves  for  two  identical  samples  at  two  different  temperatures.  The  red  curve  represents  particles  at  a  higher  temperature.  The  areas  under  the  curves  are  the  proportion  of  particles  with  Ea  >  E  

(1)  

(2)  

  3  

Therefore,  the  rate  expression  of  the  reaction  between  the  bromide  and  the  bromate  in  an  acidified  solution  is:    

R = k[Br− ]a1 ⋅[BrO3− ]a2 ⋅[H + ]a3  

 It  can  be  seen  from  the  above  expression  that  if  the  temperature  of  the  system  is  

increased  then  the  rate  constant  would  increase  and  hence  the  rate  of  reaction  but  the  concentrations  of  the  reactants  would  not  be  affected.  Therefore,  if  the  concentrations  of  the  reactants  are  kept  constant  for  the  reaction  at  different  temperature  then  the  following  holds:    

R ∝ k⇔ R ∝ e− EaRT

⇒ R = Be− EaRT

 

 Where  B  is  a  numerical  constant.  Now  the  rate  of  reaction  R,  by  definition,  is  the  

rate  of  change  of  concentration  of  a  reactant  (or  a  product)  over  a  change  in  time.  Hence  we  can  rewrite  the  above  expression  as:  

 ΔcΔt

= Be− EaRT  

 Taking  the  natural  logarithm  of  both  sides  of  the  equation  gives:      

ln ΔcΔt

⎛⎝⎜

⎞⎠⎟ = ln Ae

− EART⎛

⎝⎜⎞⎠⎟⇔ ln(Δc)− ln(Δt) = ln A( )− EA

R⋅ 1T  

⇒ ln(Δt) = ln(Δc)− ln A( ) + EA

R⋅ 1T  

 But  Δc is  constant  since  increasing  (or  decreasing)  the  temperature  of  the  reaction  

would  not  affect  the  concentrations  of  the  reactants.  It  is  only  the  time  Δt for  which  the  reaction  occurs  that  will  be  effected.  Therefore,  this  finally  gives:  

 

∴ ln(Δt) = 1T

EA

R⎛⎝⎜

⎞⎠⎟ +C  

 Where  C  is  a  constant.        

Thus  by  plotting  a  graph  of   ln(Δt)as  the  y-­‐axis  against   1T  as  the  x-­‐axis  we  would  

acquire  a  straight  line  for  which  we  can  determine  the  activation  energy  Ea  from  its  slope.    

   

     

 

(3)  

  4  

3.2  The  reaction  between  KBr  and  KBrO3.      Let  us  take  a  closer  look  at  the  reaction  between  the  bromide  and  the  bromate  ions  

that  take  place  in  an  acidified  solution.  The  ionic  equation  of  the  reaction  is:      

5Br− + BrO3− + 5H + ⎯→⎯ 3Br2 + 3H2O  

 This  is  a  redox  reaction  in  which  theBr−  is  oxidized  andBrO3

−  is  reduced.  Both  the  potassium  and  the  sulfate  ions  are  spectators  in  the  this  redox  reaction  as  their  oxidation  states  do  not  change.  Hence  they  do  not  take  part  in  the  reaction.    

 One  way  of  recording  the  time  taken  for  this  reaction  to  occur  at  different  

temperatures  involves  adding  a  few  drops  of  methyl  red  indicator.  The  bromine  that  is  formed  in  this  reaction  would  react  vigorously  with  the  methyl  and  hence  bleaches  the  indicator.  Thus  it  would  be  convenient  use  this  as  an  “end  point”.    

 A  problem  would  immediately  arise  from  this  method  of  recording  the  time  of  the  

reaction,  which  is  that  the  reaction  itself  occurs  at  very  fast  rate  under  room’s  temperature.    Therefore  it  would  not  be  achievable  to  record  the  reaction.      

 However,  it  is  possible  to  slow  down  the  reaction  without  the  need  of  having  a  very  

low  temperature.  This  would  involve  adding  an  amount  phenol  to  the  reaction  mixture.  The  function  of  the  phenol  will  be  to  slow  the  reaction  by  providing  an  intermediate  state  before  the  bromine  produced  in  the  reaction  bleaches  the  indicator.  The  phenol  will  react  with  bromine  in  the  following  way:    

   C6H5OH + 3Br2 ⎯→⎯ C6H2Br3OH + 3HBr    Once  all  the  phenol  has  been  consumed,  the  remaining  bromine  would  than  react  

with  the  methyl  red  indicator,  dissipating  the  color.  This  would  make  the  time  taken  for  the  reaction  to  reach  the  end  point  slow  enough  to  be  recorded  at  room’s  temperature  or  perhaps  or  higher.    Then  we  may  use  the  relation  (equation  3)  that  we  derived  previously  to  determine  the  activation  energy  of  the  reaction  between  bromine  and  bromate.    

   4.  Variables      The  independent  variable  in  this  experiment  is  temperature  of  the  reactants  while  

the  dependent  variable  is  the  time  taken  for  the  reaction  to  reach  the  end  point.  The  controlled  variables  in  this  experiment  are  the  concentrations  of  the  solution  used.  That  is,   Br−⎡⎣ ⎤⎦, BrO3

−⎡⎣ ⎤⎦, C6H5OH[ ]and H +⎡⎣ ⎤⎦ are  all  kept  constants  throughout  the  procedure.          

   

  5  

5.  Procedure      Before  starting  the  experiment,  aqueous  solutions  of  the  following  were  prepared:  

200ml  of  0.01  moldm-­‐3  phenol,  200ml  of  0.5  moldm-­‐3  Sulfuric  acid,  200ml  of  0.1  moldm-­‐3  potassium  bromide  and  200ml  of  0.02  moldm-­‐3  of  potassium  bromate.  The  method  then  followed  the  same  as  that  proposed  by  Graham  Hill  and  John  Holman  and  is  known  as  the  clock  method.  It  involved  the  following  steps:    

 1) A  pipette  was  used  to  put  10ml  of  each  of  phenol,  bromide  and  bromate  

solutions  into  a  test  tube.  Then  4-­‐5  drops  of  methyl  red  indicator  was  added  to  the  tube  and  a  cork  was  used  to  stopper  the  test  tube.  

2) 5ml  of  sulfuric  acid  was  pipetted  to  another  test  tube  and  a  cork  was  used  to  stopper  the  tube.    

3) Both  tubes  were  then  immersed  in  a  water  path  of  varying  temperatures  that  ranges  between  20°C  to  60°C.  The  temperatures  chosen  in  this  experiment  are:  20°C,  30°C,  40°C,  50°C  and  60°C.  Both  tubes  were  left  in  the  water  bath  for  at  least  5  minutes  so  as  to  reach  thermal  equilibrium  with  the  water  in  the  water  bath.    

4) Both  tubes  were  than  quickly  mixed  and  the  time  was  recorded  unit  the  red  color  of  the  methyl  disappeared.    

5) The  same  process  is  repeated  at  5  different  temperatures  and  for  each  measurement  three  trials  were  made  so  that  random  errors  can  be  minimized.    

 The  reason  why  these  temperatures  were  chosen  was  so  that  the  reaction  will  

proceed  at  a  reasonable,  not  too  fast  or  too  slow.  Having  a  temperature  above  60°C  would  also  mean  that  the  temperature  of  the  remaining  Br2  would  exceed  its  boing  point.  Consequently  the  cork  could  burst  off  the  test  tube  containing  the  solution  due  to  the  high  pressure.  On  the  other  hand,  a  temperature  below  20°C  would  take  a  considerable  amount  of  time  for  the  color  of  indicator  to  bleach.  Therefore  not  sufficient  data  would  be  collected  the  time  allowed  for  the  performance  of  the  experiment.    

 It  is  important  to  notice  that  for  the  color  of  the  indicator  to  disappear  it  is  

essential  to  have  an  excess  amount  of  bromide/bromate  solution.  This  is  because  once  all  the  phenol  is  consumed  there  should  be  some  bromine  left  to  react  with  the  methyl  red  indicator.  This  is  the  reason  why  more  amount  of  bromide/bromate  than  phenol  in  test  tubes.    

   6.  Safety  considerations.    

 For  safety  considerations  it  is  highly  instructive  to  wear  gloves  when  preparing  the  

phenol  solution  to  avoid  any  contact  of  the  phenol  with  the  skin.  This  is  because  phenol  is  a  highly  corrosive  chemical  and  causes  irritation  to  the  eyes  and  the  skin.  Further,  bromide/bromate  as  well  as  sulfuric  acid  are  also  corrosive  chemicals  so  they  should  be  handled  with  care.  In  addition,  it  is  advised  to  use  test  tube  holders  for  high  temperature  such  as  50°C  or  60°C.    

   

  6  

 7.  Results.    

 7.1  Qualitative  data.      The  reaction  occurred  slowly  at  low  temperatures,  as  seen  in  table  1.  However  as  

the  temperature  of  the  reaction  rises  the  time  taken  for  the  solution  to  decolorized  to  decreases.  This  coheres  well  that  kinetic  theory  since  for  low  temperature  particles  move  randomly  with  low  average  kinetic  energies.  Consequently  the  proportion  of  particles  with  energies  greater  than  the  activation  energy  would  also  be  low  and  hence  the  rate  of  reaction  would  proceed  slower.    

 It  was  also  observed  that  once  the  reaction  mixture  reaches  its  end  point,  i.e.  when  

the  reaction  decolorizes  a  white  cloud  or  precipitate  forms  in  the  solution  mixture.  This  is  due  to  the  formation  ofC6H2Br3OH  (known  as  2,4,6  tribromophenol)  from  the  reaction  of  phenol  and  bromine.  Since  the  tribromophenol  his  a  high  meting  point  due  to  the  hydrogen  bond  it  forms  it  would  not  melt  for  the  range  of  temperatures  used  in  the  experiment  and  therefore  would  form  a  precipitate.    

   7.2  Quantitative  data      The  table  below  shows  the  raw  data  that  was  collected  during  the  experiment.  Five  

different  measurements  were  taken  at  five  different  temperatures  and  for  each  measurement  three  trials  were  made.  The  uncertainty  in  temperature  was  taken  from  the  water  path  used.  As  for  the  time  it  was  estimated  to  be  with  2s  due  to  the  difficulty  of  recording  the  time  as  well  as  mixing  the  two  test  tubes  simultaneously.    

   

Temperature   Time                        ±  0.1°C   ±  2s  

  Trial  1   Trial  2   Trial  3  

20,0   292   288   283  

30,0   164   150   155  

40,0   85   82   87  

50,0   40   41   38  

60,0   25   29   23  

       

   

 

Table  1:  raw  data  of  the  experiment    

  7  

 7.3  Data  processing      To  determine  the  activation  energy  of  the  reaction  we  have  investigated  in  this  

experiment  we  need  plot  a  graph  of   ln(Δt) (y-­‐axis)  vs.   1T(x-­‐axis).  The  Slope  m of  the  line  

will  then  be   Ea

R  and  hence  Ea = mR .    

 Taking  the  average  time  of  the  each  measurement,  using  the  first  row  in  table  1  

gives:    

Δtavg =292 + 288 + 283

3= 287.7s  

 The  uncertainty  in  the  average  time  is  found  by  taking  half  the  difference  between  

the  maximum  and  the  minimum  times.  I.e.    

Uncer(Δtavg ) =292 − 283

2= 4.5s

   That  gives  the  average  time  of  reaction  (with  it’s  uncertainty)  for  the  first  row:    Δtavg = (288 ± 5)s    Taking  the  natural  logarithm  Δtavg  would  give:    ln(288) = 5.663    Note  that  there  are  no  units  associated  with  the  quantity ln(288) .  This  is  because  

logarithm  functions  always  give  dimensionless  numbers,  that  is,  number  without  units.      The  uncertainty  in   ln(Δtavg ) is:    ln(Δtavg ) = ln(Δtmax )− ln(Δtmin )

= ln(288 + 5)− ln(288 − 5) ≈ 0.0347

⇒ ln(Δtavg ) = 5.7 ± 0.04

 

             

  8  

 As  for  the  temperatures  we  first  need  to  convert  them  from  the  Celsius  to  the  

Kelvin  scale.  Again  using  the  first  raw:    T = 20 + 273= 293K    

Taking   1T  gives:   1

T= 3.413⋅10−3K −1  

The  uncertainty  in   1T  is:  

Uncert 1T

⎛⎝⎜

⎞⎠⎟ =

1Tmin

− 1Tmax

= 1293− 0.1

− 1293+ 0.1

≈ 2.3⋅10−6K −1  

Hence:    

⇒ 1T= (3.413± 0.003) ⋅10−3K −1  

         Table  2  below  shows  the  processed  data.  

 

     

           

 

Temperature  K  

Δtavg    s  

Uncer(Δtavg )  s  

1T/K-­‐1   /K-­‐1  

ln(Δtavg )   Uncert ln(Δtavg )( )  

±0.1   ––   ––   10−3   10−3

 

––   ––  

293.0   288   5   3.413   0.003   5.66   0.04  

303.0   156   7   3.330   0.003   5.05   0.09  

313.0   85   3   3.195   0.002   4.44   0.06  

323.0   40   2   3.100   0.002   3.68   0.08  

333.0   26   3   3.003   0.002   3.2   0.2  

Uncert 1T

⎛⎝⎜

⎞⎠⎟

Table  2:  Processed  data  

  9  

 

Graph  1  below  shows  the  linear  relation  between  ln(t)  and  !!.  A  maximum  and  minimum  

lines  were  drawn  as  well  as  a  line  of  best  fit.  Error  bars  for  ln(t)  are  drawn  but  

uncertainties  in  the  !!  are  too  small  to  be  seen.    

     

     

yBF  =  5891.1x  -­‐  14.483  R²  =  0.99285   ymax  =  6341.5x  -­‐  15.924  

ymin  =  5243.9x  -­‐  12.382  

3.00  

3.50  

4.00  

4.50  

5.00  

5.50  

6.00  

2.95   3.00   3.05   3.10   3.15   3.20   3.25   3.30   3.35   3.40   3.45  

ln(t)  

1/K      *  10-­‐3  K-­‐1  

ln(t)  as  a  function  of  1/K    

Graph  1:  a  graph  of  ln(t)  against  1/T  

  10  

     

7.4  Determination  of  the  activation  energy      We  are  now  in  position  of  calculating  the  activation  energy  of  the  reaction  we  are  

interested  in.  From  the  best  line  of  fit  yBF  in  graph  1we  have:    

m = Ea

R= 5891.1K ⇔ Ea = 5891.1R  

R  is  the  universal  gas  constant  and  has  a  value  of   8.314JK −1mol−1 .  It  then  follows  that:  

 Ea = 8.314JK −1mol−1( ) 5891.1K( ) = 48977.8Jmol−1

⇒ Ea = 48977.8Jmol−1

 

 The  uncertainty  in  the  activation  energy  is  half  the  difference  between  the  

maximum  and  the  minimum  activation  energies.  That  is:    

Uncert Ea( ) = EaMAX− EaMIN

2= R mmax −mmin

2⎛⎝⎜

⎞⎠⎟  

Taking  the  values  of  the  maximum  and  minimum  slopes  from  ymax  and  ymin    

⇒Uncert Ea( ) = 8.314 6341.5 − 5243.92

⎛⎝⎜

⎞⎠⎟ ≈ 4563Jmol

−1 ≈ 5000Jmol−1

Hence :  ∴Ea = 49000 ± 5000( )Jmol−1 or 49 ± 5( )kJmol−1

   

   The  literature  value  of  the  activation  energy  is  53 kJmol-1. Therefore, the percentage

error in this experiment is:

%error =53− 4953

⋅100% ≈ 7.6%

∴%error = 8%

 

         

   

 

  11  

 8.  Conclusion  and  evaluation      8.1  Conclusion.      The  aim  of  this  experiment  was  to  determine  the  activation  energy  of  the  reaction  

between  bromide  and  bromate.  The  methodology  was  carried  out  to  measure  the  time  taken  for  the  color  of  the  indicator  to  bleach  at  different  temperatures.  The  collected  data  were  then  processed  and  a  graph  was  drawn  according  to  a  linear  relation  derived  from  the  Arrhenius  equation.  

 Graph  1  shows  a  strong  linear  correlation  between  ln(t)  and  !!  with  R2  =  0.993.  The  

activation  energy  was  then  determined  from  the  slope  of  the  line  of  best  fit  and  was  shown  to  be   49kJmol−1with  and  uncertainty  of  5 kJmol−1 .  This  result  was  in  good  agreement  with  the  literature  value  (53 kJ mol-1),  which  gave  a  percentage  uncertainty  of  8%.    

The  affect  of  temperature  on  the  rate  of  reaction  is  more  clearly  seen  in  table  1.  As  temperature  increases  the  time  taking  for  the  reaction  to  be  completed  decreases  and  this  coheres  well  with  the  collision  theory.      

8.2  Evaluation      

Although  the  experimental  result  was  fairly  close  to  the  literature  value,  the  difference  is  not  negligible.  Looking  at  graph  1  we  see  that  the  best  line  of  fit  lies  on  all  error  bars  and  thus  suggests  that  there  is  small  random  errors  in  the  experimental  procedure.  Therefore  this  means  that  a  systematic  error  must  have  been  present  in  the  procedure.    

 One  major  problem  that  I  encountered  while  performing  the  experiment  was  that  I  

could  not  record  the  time  and  mixing  both  solution  in  the  tubes  concurrently.  Thus  the  recorded  time  of  the  reaction  for  all  measurements  and  trials  will  be  lower  than  their  actual  values.  Accordingly  ln(t)  will  be  smaller  and  hence  the  activation  energy  of  the  reaction.  One  possible  improvement  would  be  that  two  people  performing  the  experiment,  one  mixing  the  tubes  whiles  the  other  recording  the  time.  

 Another  error  that  may  have  affected  the  result  of  the  experiment  was  the  fact  that  

the  temperatures  of  the  solutions  in  the  test  tubes  were  assumed  to  be  the  same  as  that  of  the  water  path.  Although  the  temperature  of  the  water  path  was  measured  with  a  high  accuracy,  that  does  not  necessarily  mean  that  actual  temperature  of  the  tubes  are  the  same.  Therefore  it  may  be  a  good  idea  to  actually  measure  the  temperature  of  the  tubes  before  mixing  the  solutions  using  a  thermometer.    

 It  would  have  been  favorable  if  more  trials  were  conducted  so  as  to  reduce  the  

random  errors  in  the  experiment.  However,  since  there  was  not  enough  time  only  three  trials  for  each  measurement  was  taken.    

     

   

12  

8.3    Extension.  

In  this  experiment  the  clock  method  was  used  to  determine  the  time  taken  for  the  reaction  to  reach  the  end  point.  However,  there  is  a  alternative  method  of  determining  the  activation  energy  of  the  reaction  between  bromide  and  bromate.  This  method  involves  using  the  ionic  property  of  the  reactants  to  measure  the  electrical  conductivity  of  the  reaction.  If  we  consider  the  ionic  reaction  of  bromide  and  bromate  in  an  acidified  solution  again:    

Since  all  the  reactants  are  electrically  charged  they  would  conduct  electricity.  The  products  formed  contain  no  charged  ions  and  therefore  do  not  conduct  any  electric  current.  Therefore  by  measuring  the  time  taking  for  the  electrical  conductivity  of  the  reaction  to  approach  zero  at  different  temperatures  would  give  a  possibility  of  determining  the  activation  energy  of  the  reaction  (using  the  formula  (3)).  This  would  provide  a  excellent  way  of  comparing  and  evaluating  which  method  is  most  appropriate  for  determining  the  activation  energy  of  the  reaction  between  bromide  and  bromate.    

8. Reference

1. Catrin  Brown;  IB  Chemistry  HL,  Pearson  Baccalaureate;  second  edition.

2. Garham  Hill  &John  Holman.    Chemistry  in  Context:  Laboratory  Manual  and  StudyGuide,  5th  Edition,  p  54-­‐55,  Surrey,  Nelson

3. https://www.academia.edu/9940865/bromide_bromate_hydrogen_ionsLast  access:  26/11/2015  

4. http://scienceaid.co.uk/chemistry/physical/reactionrate.htmlLast  access:  26/11/2015  

5. http://www.eoearth.org/view/article/153418/Last  access:  26/11/2015  

6. https://www.scribd.com/doc/270648124/IA-­‐Activation-­‐EnergyLast  access:  26/11/2015  

5Br− + BrO3− + 5H + ⎯→⎯ 3Br2 + 3H2O