wap downlink performance evaluation in umts network

15
1 WAP Downlink Performance Evaluation in UMTS Network / 09-11- 2004 / Pertti Hakkarainen HELSINKI UNIVERSITY OF TECHNOLOGY WAP Downlink Performance Evaluation in UMTS Network Author: Pertti Hakkarainen Supervisor: Prof. Jorma Virtamo Instructors: MSc Jani Kokkonen, Dr Samuli Aalto Work was carried out: Nokia Networks, Espoo Thesis number: 1033 – 2004 Presentation date: November 9, 2004

Upload: anitra

Post on 24-Jan-2016

44 views

Category:

Documents


0 download

DESCRIPTION

WAP Downlink Performance Evaluation in UMTS Network. Author: Pertti Hakkarainen Supervisor: Prof. Jorma Virtamo Instructors: MSc Jani Kokkonen, Dr Samuli Aalto Work was carried out: Nokia Networks, Espoo Thesis number: 1033 – 2004 Presentation date: November 9, 2004. Table of contents. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: WAP Downlink Performance Evaluation in UMTS Network

1 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

WAP Downlink Performance Evaluation in UMTS Network

Author: Pertti Hakkarainen

Supervisor: Prof. Jorma Virtamo

Instructors: MSc Jani Kokkonen, Dr Samuli Aalto

Work was carried out: Nokia Networks, Espoo

Thesis number: 1033 – 2004

Presentation date: November 9, 2004

Page 2: WAP Downlink Performance Evaluation in UMTS Network

2 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

Table of contents

• Introduction

• Research Problem

• WAP

• Wireless TCP/IP

• Measurement Setup

• Measurement Results

• Conclusion

Page 3: WAP Downlink Performance Evaluation in UMTS Network

3 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

Introduction

• The study is the downlink performance measurement in the Universal Mobile Telecommunication Services (UMTS) network

• Technical specification of the network is based on 3rd Generation Partnership Project (3GPP) Release 99

3G Network Scenario (3GPP R99)

ISDNPSTN

X.25

PSPDNCSPDN

Other Data NWOther Data NW

InternetInternet

GGSNSGSN

VAS

CAMEL

VAP

USAT

MEXE

GMSCMSC

RNCBS

BTS

CN CS Domain

CN PS Domain

BSC

E-RAN

UTRAN

HLR/Au/EIR

Iu

Gb

Iu

AUm

Uu

Registers

Network Management (NMS)

Page 4: WAP Downlink Performance Evaluation in UMTS Network

4 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

Research Problem

• The object of this study is to compare the download performance of the Wireless Application Protocol (WAP) and TCP/IP protocol WAP applications in the 3G network.

• The protocols are designed for different network domains• WAP protocol stack for circuit switched networks where the

bandwidth is relatively low• TCP/IP protocols for packet switched networks where the

bandwidth is considerably higher

• The aim of this work is to study how well different protocols can utilize the performance of the 3G network.

Page 5: WAP Downlink Performance Evaluation in UMTS Network

5 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

WAP 1/2

Why WAP?

• The WAP specification is designed to bring Internet access to the wireless environment.

• Wireless data networks present a more constrained communication environment compared to wired networks.

• Handheld wireless devices present a more constrained computing environment compared to desktop computers (CPU, memory, power supply, display, keypad etc.).

• WAP-compatible component communicate with all other components in the solution network by using the standard methods and protocols defined in the WAP specification

Page 6: WAP Downlink Performance Evaluation in UMTS Network

6 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

WAP 2/2WAP version 1.2

• WAP 1.2 is based on WAP protocols

• WAP gateway makes the conversion from text to binary and vice versa

• The plain text headers of HTTP are translated into binary code that significantly reduces the amount of data that must be transmitted over the air interface.

• Complete end-to-end security cannot be guaranteed due to a security gap in the GW

WAP version 2.0

• WAP 2.0 is based on TCP/IP

• WAP Gateway is acting as a WAP 2.0 proxy

• No security gap, security is comparable to the Internet model – transaction all the way from WAP Device to the Web server will be secured

Page 7: WAP Downlink Performance Evaluation in UMTS Network

7 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

Wireless TCP/IP

• The Transmission Control Protocol/Internet Protocol (TCP/IP) forms the basis of the Internet. Originally it is designed and optimized to provide reliable byte transfer with retransmission in a terrestrial environment where conditions are relatively stable compared to the wireless environment. The assumption is that a packet loss is due to congestion in the network.

• The wireless networks have brought new aspects to the packet loss.• More narrow and variable bandwidth• Higher bit error rate• More latency• More transmission delay• Less connection stability• Less predictable availability

• Since TCP/IP operates over different kinds of link conditions, from stable and fast wireline links to delay sensitive wireless links, there may be situations that performance degrades due to the fact that the optimization is done in a different way on different parts of the network and packet delays that are treated as congestion

• wireless TCP/IP provides the same functions as the “normal” TCP/IP with some optimization in the protocols

• The round-trip time (RTT) is one of the most essential issues that has affected to wireless TCP optimization.

Page 8: WAP Downlink Performance Evaluation in UMTS Network

8 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

Measurement setup 1/2• The target of the measurement has been to measure WAP throughput

with different WAP versions, WAP 1.2 and WAP 2.0, to the download direction and evaluate that network is capable to carry traffic with nominal throughputs.

• Tools• Ostrich is a trace interface adapter device that provides mechanisms

for buffering the tracing and debugging data sent by the phone.• EARP is a PC application for decoding and logging trace data during

the testing and debugging of user equipment.• Measurement is carried out in the Nokia WCDMA test network.• During the measurement there were not other traffic in the network

Test network setupUE

OstrichEARP

ContentServer

Gateway

RNC 3G SGSN 3G GGSN Firewall Switch

Iu-PSIub Gn Gi

RTT

BS

Page 9: WAP Downlink Performance Evaluation in UMTS Network

9 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

Measurement setup 2/2

• Measurement was conducted with 13 different file sizes, ranging from 2 kilobytes to 160 kilobytes

• Downlink rates are 64 kbps, 128 kbps and 384 kbps, for uplink 3G Partnership Project Release 99 defines 64 kbps

• Used phones• Nokia 6650 for WAP protocol measurement• Nokia 7600 for TCP/IP measurement

Nokia 7600Nokia 6650

Page 10: WAP Downlink Performance Evaluation in UMTS Network

10 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

Measurement results 1/4• WAP 1.2 used segmentation and reassembly (SAR) value of 5

• SAR defines a method for a WAP gateway to break a large message into small chunks (the segmentation) and for the phone to piece it back together (the reassembly)

• SAR requires the UE to acknowledge to the WAP gateway after every fifth packet

• Operator controlled value and optional

• The measurement starts when the user has selected the file for download and presses the button on the phone in order to receive it. The connection for the download is already created.

• The measurement stops at the reception of the last octet of the file.

Handshake packets

Page 11: WAP Downlink Performance Evaluation in UMTS Network

11 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

Measurement results 2/4

• Calculation for average and maximum download throughput• Average throughput is the download period from the very first octet of

the file until the last octet of a particular file is received including the slow start

• The maximum throughput calculation is done over the stabilized transfer part of the download (figure)

Steady transfer partof the connection

Handshake packets

• WAP protocol has the segment size of 1412 bytes => 7060 bytes requires ACK

• In TCP/IP the Maximum Segment Size (MSS) is 1460 bytes and UE allows 20 segments per window

Page 12: WAP Downlink Performance Evaluation in UMTS Network

12 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

Measurement results 3/4

Max. WAP 1.2 throughput

Nominal bit rate kilo bits/s

64 128 384

kilo bits/s 41.613 54.654 97.172

kilo bytes/s 5.080 6.672 11.862

Utilization 65.0% 42.7% 25.3%

• WAP 1.2 shows quite poor download utilization in 3G network• The reason is SAR value that requires UE to acknowledge to the

gateway• If SAR is not used and there is failure in transmission, the whole file

must be retransmitted, the bigger the file is the more retransmission deteriorates the throughput

• WAP 1.2 designed for circuit switched environment and hence it can not utilize the packet switched environment features

Page 13: WAP Downlink Performance Evaluation in UMTS Network

13 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

Measurement results 4/4

• Wireless TCP/IP utilizes the link connection pretty well, the ’pipe’ fill is optimal

• Wireless TCP/IP is designed for the packet switched environment

Max. WAP 2.0 throughput

Nominal bit rate kilobits/s

64 128 384

kilobits/s 63.650 125.095 375.694

kilobytes/s 7.770 15.271 45.861

Utilization 99% 98% 98%

• For small packets the WAP 1.2 throughput is better than WAP 2.0 throughput

• When using the SAR value five in WAP 1.2, the better throughput in favor of WAP 2.0 happens between 7 and 10 kilobytes

Page 14: WAP Downlink Performance Evaluation in UMTS Network

14 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

Average throughputs

WAP 1.2 average throughputs for different bearer rates

WAP 2.0 average throughputs for different bearer rates

• Average throughput remains below the maximum throughput

Page 15: WAP Downlink Performance Evaluation in UMTS Network

15 WAP Downlink Performance Evaluation in UMTS Network / 09-11-2004 / Pertti Hakkarainen

HELSINKI UNIVERSITY OF TECHNOLOGY

Conclusion

• What we found out in our measurement?

• The WAP protocol is beneficial when a small amount of data is downloaded, less than 10 kilobytes

• For larger file size wireless TCP gains better performance• The proportion of the slow start from whole downloaded data

on the time scale decreases as the file size grows• The transition in favor of wireless TCP depends on the

algorithms and parameters used in both protocols

• In our measurement, the wireless TCP gained better download performance around 10 kilobytes file

• The 3G network is mature to achieve and maintain nominal transfer rates with WAP applications when using WAP 2.0 in stable environment