wakefields and impedances part ii · 2019. 2. 28. · martin dohlus rainer wanzenberg cas nov. 2,...

46
Wakefields and Impedances Part II Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015

Upload: others

Post on 23-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

Wakefields and ImpedancesPart II

Martin DohlusRainer Wanzenberg

CASNov. 2, 2015

Page 2: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

computer programs

time domain solver for short range wakes

eigenmode solver for long range interaction

in principle, resolution and numerical dispersion, indirect wake integration, extrapolation to wake function, incomplete overview of codes

modal part of wake and long range wake

splitting into resonant part and resttwo particle interaction per modeazimuthal symmetry: monopole and dipole modeslongitudinal wakes and impedancesmodal and total loss parameterdipole wakes, damping and detuningequivalent circuit modellosses

in principle, problems without/with losses, perturbation methods, example, notation

Page 3: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

computer programs:

time‐domain solverfor short range wakes

Page 4: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

in principle

EB

JBE

curl

curl 111

dtddtd

211111

curlcurl

nnn

tE

JBBE

BE

or leap frog schemes

source term (the beam)

initial fields 1

BE

spatial discretization  (resolution ~ )+ recursion in time:

boundary conditions: perfect electric/magnetic conducting“beam boundary”waveguidefinite conductivity

tnt n

Page 5: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

fixed volume

bunch enters and exits domain through boundary  “beam boundary”

excited EM fields propagate through boundary  “waveguide boundary”“open boundary”

decay of fields can be observed“middle” range wakes

window (moving mesh)

beam, waveguide &  open boundariesare not required

bunch starts with surrounding fieldshort and ultra‐short range wakes

Ez component

energy density

W

Page 6: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

wake integration:

resolution and numerical dispersion Ez component

spatial resolution:          cavity geometry and bunchmesh has to be fine compared to bunch

z

accuracy and stability: tc

propagation of waves: numerical dispersion error2numerical c

1st generation of wake‐field codes: FDTD (finite‐differences‐time domain) methods; criterion:with L >> W , the length of interaction

2nd generation: codes without dispersion error in z‐direction; for instance DG (discrete Galerkin) methods; see table

Lz32

W

z

2/

2/,,,,

L

LdzczszEdzczszE

errornumericalphase, cv

Page 7: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

indirect wake integration

long catch‐up distance22

2 dd

bzc

example: monopole wake of pillbox cavity sWsbWsW 0

||0

||0

|| ,0,,0,0,0,0,0,0

b

2

2,,0,,,0,

g

gzz dzczazbEdzczazbE

short integration path

this simple method is not always applicable, but there are schemes that are!f.i. use decomposition into waveguide modes in beam pipes

see:I. Zagorodnov: Indirect Methods for Wake Potential Integration, Phys. Rev. ST Accel. Beams 9, (2006).Henke, W. Bruns: Calculation of Wake Potentials in General 3D Structures, Proc. of EPAC’06, Edinburgh, UK (2006), WEPCH110.E. Gjonaj, T. Lau, T. Weiland, R. Wanzenberg: Computation of Short Range Wake Fields with PBCI, BD‐Newsletter No 45.

g

Page 8: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

20 years

5 years

table from: S. Schnepp, W. Ackermann, E. Arevalo, E. Gjonaj, T. Weiland: Large Scale 3D Wakefield Simulations with PBCI, ILC wakefield workshop at SLAC 2007

ABCI, Yong Ho Chin, KEK http://abci.kek.jp/abci.htmEcho 2D, Igor Zagorodnov, DESY   http://www.desy.de/~zagor/WakefieldCode_ECHOz/

an (incomplete) survey of available codes

FDTD = finite differences time d.DG = discontinuous GalerkinIW = indirect wake integrationLC = large finite conductivity

Tim

e1980

2007

2002

FDTD

FDTD

FDTD

FDTD

IW

(IW)

(IW)

IW

IW

IW

IW

LC

LC

LC

DG

DG

Page 9: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

NOVO: beam‐pipe with random surface roughnessM. Timm, PhD Thesis (2000); S. Novokhatsky

Page 10: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

wakefield accelerator

de‐chirper de‐chirper

FELs: chirp (longitudinal energy distribution with slope) is needed for bunch compression; it can be reduced (afterwards) by a de‐chirper

Page 11: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

bunch

-20 -10 0 10 20 Ez / [kV /m]1mm step

FD analysis reconstruction

PBCI: diagnostic cross in PITZ (injector section)

b) quasi‐analytic field propagation in long intermediate pipes

from: E. Gjonaj, et. al.: Large Scale Parallel Wake Field Computations with PBCI, ICAP 2006

a) full time domain calculation: effect of a small step before the cross

Page 12: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

Echo: ultra short‐range wake in module with TESLA‐cavities

geometry

module 0.12:1

contribution of 3rd module (with 8 cavities)

L 0 .. 25 m for module 1 & 2, 25 .. 37 m for module 3

= 700 ... 50 m

Page 13: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

extrapolation: bunch‐length  0contribution of 3rd module (with 8 cavities)

longitudinal wake (monopole)

transverse wake (dipole)

from: The Short‐Range Transverse Wake Function for TESLA Accelerating StructureT. Weiland, I. Zagorodnov, TESLA Report 2003‐19

0|| exp ssAsw

11 exp11 ssssBsw

asymptotic model:

Page 14: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

computer programs:

eigenmode solverfor long range interaction

Page 15: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

eigenmode solver, in principle

EB

BE

ˆcurl

ˆcurlˆˆ

ˆ11 i

curl‐curl equation

case “no losses”

EE ˆcurlcurlˆ ˆ 112 (similar for B)

eigenvalue eigenvector

problem: curl‐curl operator has an (in)finite number of “static” eigenvalues but we are interested in “dynamic” solutions

0 ˆ 2 0ˆcurl E

0 ˆ 0ˆcurl E

EB

JBE

curl

curl 111

dtddtd

Page 16: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

trick: modify curl‐curl equation so that “dynamic” solutions are not changed, but eigenvalues of “static” solutions are shifted from zero; this is done by adding the grad‐div equation

EEE ˆdivgradˆcurlcurlˆ ~ 112 f

loss‐free problems: there are very effective simultaneous eigenmode solvers; usually they find a specified number of lowest eigen‐solutions and distinguish between static and dynamic modes

~

shifted eigenvalues:

0(density increases with frequency)

“static” and “dynamic”

Page 17: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

lossy eigenmode problems: f.i. Jacobi‐Davidson eigenvalue solver in the complex plane; modes are iterative searched, one‐by‐one large numerical effort

pictures from W. Ackermann and Cong Liu, TEMF‐TU‐Darmstadt

example: eigenmodes in TESLA cavity

complex frequency plane

Re{f} / GHz

Im2Re

Q

Page 18: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

example: eigenmodes in TESLA cavity

losses by waveguide modes above fc

accellerating mode

1st and 2nd dipole band(pairs of modes)

pictures from W. Ackermannand Cong Liu, TEMF‐TU‐Darmstadt

log(Q) of monopole/dipole/qudrupole/sextupole‐modes

1stcutoff freq

uency of beam‐pipe

2ndcutoff freq

uency

Page 19: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

example: eigenmodes in TESLA cavity

pictures from W. Ackermann and Cong Liu, TEMF‐TU‐Darmstadt

accelerating mode

Page 20: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

example: eigenmodes in TESLA cavity

pictures from W. Ackermann and Cong Liu, TEMF‐TU‐Darmstadt

a pair of “dipole” modes

not quite perpendicular!

Page 21: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

example: accelerating mode in 3.9 GHz superconducting cavity

pictures from E. Gjonaj, TEMF‐TU‐Darmstadt

upstream downstream

electric fieldstrength

magnetic fieldstrength

thermal quench

multipacting

EM fields in HOM couplers

Page 22: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

example: trapped modes in 3.9 GHz superconducting cavity

pictures from J. Sekutovicz, TEMF‐TU‐Darmstadt

azimuthal geometry (without dampers), monopole modessome (of many) trapped modes

f/f0 = 2.94

f/f0 = 2.96

f/f0 = 3.66

Page 23: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

perturbation methodssurface losses

waveguide ports

[1] N. Kroll, D. Yu:  Computer determination of the external Q and resonant frequency of waveguide loaded cavities,SLAC‐PUB‐5171, Jan 1990

[2] P. Balleyguier: A straightforward method for cavity external Q computation, Particle Accelerators, Vol. 57, p113‐127, 1997 

PWQ ˆˆˆˆ

power‐loss method: with AAHE dHZdP 2surface

* ˆRe21ˆˆRe

21ˆ

2

Re surface Z conductivity

Kroll‐Yu method: calculate          for resonator with perfect reflection in wave port, for different reference planes (length L to the port)  resonance frequency and quality; (it is more than a pert. method and works even for low Q)

L

Balleyguier method: calculate eigenmodes for two different boundary conditions (E=0, H=0); superimpose these modes to get the travelling wave in the waveguide;  power flow through waveguide

Page 24: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

there are many eigenmodes “” with eigenvalues      , spatial fields           ,and mode amplitudes

rEˆ rB

ˆ

for simplicity we skip the index, but write every quantity with “hat” 

complex eigenvalues:                               with 

ˆˆ1ˆ i decay time

ˆˆ

resonance frequency

2ˆˆˆ

Q quality factor

notation

tieatt ˆ

ˆˆ

ˆRe,,

rBrE

rBrE

a

EM field energy, without losses

WadVtrtrWEMˆˆ,,

21 2212 BE

dVBdVEW 212 ˆ21ˆ

21ˆ

Page 25: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

unexpected resonance in a klystron  instability

gap

from: B. Krietenstein, K. Ko, T. Lee, U. Becker, T. Weiland, M. Dohlus: Spurious Oscillations in high Power Klystrons, SLAC‐PUB‐9957

consider all resonances!

Page 26: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

modal part of wakeand long range wake

Page 27: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

splitting into resonant part and rest

syxyxsyxyxsyxyx ,,,,,,,,ˆ,,,, 2211rest22112211 www

this splitting is unique if the modes are fully excited (the source particle “1” is not longer in interaction with the field of the mode) and the mode is just ringing

csieyxyxLsyxyx /ˆ22112211 ,,,ˆRe,,,,ˆ fw

the modal part contributes essentially to long range interactions (from bunch to bunch); usually the bunch distance is larger than L, the length of the field of the mode

for ultra‐relativistic bunches the wake function is causaland it is useful to define:

0w 0,,,, 2211 syxyx

0w 0,,,, 2211rest syxyx

0w 0,,,,ˆ 2211 syxyx

Page 28: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

closed cavities without losses

it can be shown* that the expansion into an infinite set of modes is complete, and:

no beam pipes, perfect conductivity

0,,,, 2211rest syxyxw

csieyxyxshsyxyx 22112211 ,,,ˆRe,,,,ˆ fw

otherwise2

0for 10for 0

ss

shwith

* see: T. Weiland, R. Wanzenberg: Wake Fields and Impedances, DESY M91‐06

therefore csieyxyxshsyxyx 22112211 ,,,ˆRe,,,, fw

Page 29: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

two particle interaction per modefor simplicity we choose zero offset of both particles and skip the offset coordinates  

particle 1 travels alone through the cavity and excites the mode

energy loss of the particle 0ˆˆ||

21

211 wqkqW

mode rings with complex amplitude kqA ˆ~ 11

particle 2 travels alone through the cavity, but shifted in time

energy loss of the particle 0ˆˆ||

22

222 wqkqW

mode rings with different phase csiekqA 22

ˆ~

cst

kwith      an unknown constant

Page 30: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

0ˆˆˆ0ˆ ||22||12||21||

2121 wqswqqswqqwqWW

both particles together, in any distance

energy loss

mode keqqAAA csi ˆ~ ˆ2121

kqcskqqkqW ˆˆcosˆ2ˆ 2221

21mode

2mode ~ AW

with energy conservation                                                 follows0mode21 WWW

kw ˆ0ˆ||

cskswsw cosˆ2ˆˆ ||||

with (defined) causality for ultra‐relativistic bunches

shcsksw ˆcosˆˆ ||

otherwise2

0for 10for 0

ss

sh

Page 31: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

modal loss parameter

swqqwqWW ||12||2121 ˆ0ˆ

particle 1 travels through the cavity and excites the mode

kqW ˆ21mode

particle 2 is a test charge (q20)

voltage observed by test particle

cskq cosˆ21kqV ˆ21mode

mode

2mode

WVk modal loss parameter

with dVBdVEW 212mode

ˆ21ˆ

21ˆ and dzezEV czi

z~

mode ,0,0ˆ

Page 32: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

two particle interaction per mode, more general

arbitrary offset of source particle (index=1) and test particle (index=2)

csieyxvyxvshsyxyxw 22||11

*||2211|| ,ˆ,ˆRe,,,,ˆ

W

dzezyxEyxvczi

z

ˆ2

,,ˆ,ˆ

~

||

with

modal loss‐parameters and voltages are post‐processing results from eigenmodesolvers; transverse wake functions are

yxvy

ciyxvy ,ˆˆ

,ˆ ||

csi

yy

csixx

eyxvyxvshsyxyxw

eyxvyxvshsyxyxw

ˆ2211

*||2211

ˆ2211

*||2211

,ˆ,ˆRe,,,,ˆ

,ˆ,ˆRe,,,,ˆ

the transverse voltages vx, vy are either calculated directly (as v||), or with help of the Panofsky‐Wenzel theorem:

yxvx

ciyxvx ,ˆˆ

,ˆ ||

Page 33: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

azimuthal symmetry

longitudinal field (of TM modes):

mm

zrEE mzz sin

cos,ˆˆ

for m > 0 there are always pairs of modes (with cos(m) and sin(m)) 

m = 0 monopole modes1       dipole modes2       sextupole modes…

with

mm

W

dzezrEyxvczim

z

sincos

ˆ2

,ˆ,ˆ

~

||

ultra‐relativistic case:

mm

rvyxvv mm

sincos

ˆ,ˆ0ˆ ||||2

2ˆ:ˆ mm vk

can be chosen real mv

normalized loss‐parameter:

Page 34: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

monopole modes: constvyxv 0|| ˆ,ˆ

0,ˆ

ˆcosˆ,ˆ

0

00||

sw

cskshsw

dipole modes:

yx

vrvyxv 11|| ˆ

sincos

ˆ,ˆ

csykcshsyxyxw

csxkcshsyxyxw

csyyxxkshsyxyxw

y

x

ˆsinˆˆ

,,,,ˆ

ˆsinˆˆ

,,,,ˆ

ˆcosˆ,,,,ˆ

11

22111

11

22111

21211

22111

||

the pair of modes is combined to

longitudinal kick is second order;transverse kick depends linear on the offset of the source particle,it does not depend on the offset of the test particle

Page 35: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

longitudinal wakes and impedances

pictures from: Zagorodnov, T. Weiland, M.Dohlus: Wake Fields Generated by the LOLA‐IV Structure and the 3rd Harmonic Section in TTF‐II, TESLA Report 2004‐01 and T. Weiland, R. Wanzenberg: Wake Fields and Impedances, DESY M91‐06

longitudinal wake for a multicell structure (transverse deflecting cavity LOLA)

real part of impedance, in principle

mm 1z

few cells of LOLA

1000 ... 50, ,25μm z

dashed curve = mode expansiondashed curve = extrapolation 0

Page 36: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

modal and total loss parameters for finite bunch length

swswsw ,,ˆ, rest||,|||| splitted longitudinal wake function:

calculation by time‐domain wake code gives wake potential:

duusuwsW ,, ||||

total loss parameter: dsssWk ,||tot, and

with normalized line charge density , in particular s 221 2exp2 ss

0,||tot wk

modal loss parameters with: cskshsw cosˆ,ˆ ||

otherwise2

0for 10for 0

ss

shand

uscudusdskk

ˆcosˆ2ˆ

0

222ˆexpˆˆ ckk

Page 37: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

travelling wave accelerator structure

one periode of a„disc loaded“ structure:

these structures are tapered, individual parameters for each cell: a, b, t, …

the parameters per period can be tuned to fulfill several conditions simultaneously, as resonance frequency and phase advance of the fundamental mode and frequency and loss‐parameter of the 1st and 2nd dipole band

beam

Page 38: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

(de)tuning of dipole modes:2 modes, with nearly the same strength (k(1))

4 modes, „detuned“ k, distribution

15 modes

detuned coherence

recoherence

adjust k and

Page 39: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

damping and detuning

15 modes with damping

from: R. Jones, N. Kroll, R. Miller, R. Ruth, W. Wang: Advanced damped detuned structure development at SLAC, PAC 1997

a multi‐cell structure with damping and detuning (=DDS)

cell

waveguides(to absorber)

Page 40: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

s/m

recoherence in detunedstructure with natural losses

natural +  external damping

a multi‐cell structure with damping and detuning (=DDS)

from: R. Jones, N. Kroll, R. Miller, R. Ruth, W. Wang: Advanced damped detuned structure development at SLAC, PAC 1997

calculationmeasurement● ● ●

transverse long‐range wake is reducedby two orders of magnitude, in comparison to the short range wake

Page 41: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

equivalent circuit model for longitudinal wake

ˆcosˆ20 tktV

i(t)

V(t)

R

LC

kC2

1

ˆ

ˆ2

no losses:

tqti bunch current:

with

voltage:

the voltage V(t) induced by a series of particles i(t) = q1(t t1) + q2(t t2) + … corresponds to voltage observed by a test particle at time t(t, t1, t2, … corresponds to time in a certain reference plane)

with losses:

ˆ

ˆˆ2ˆˆˆˆ QkLQC

QR

longitudinal impedance (per mode):

11 ˆˆ

ˆ1ˆ

ˆˆ211ˆ

QiQk

RCi

LiIVZ

shunt impedance

this is the Fourier‐transform of , as defined in part 1 ˆ sw

Page 42: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

(angular) resonance frequency

ˆˆ2ˆ QkR

loss parameter

quality

shunt impedance

„R/Q“

2ˆ4ˆˆ VWk

Q

some important cavity parameters

ˆ2ˆˆ kQR

Page 43: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

losses (absorption by R)

„single“ bunch losses

fully resonant losses

TkqPkqWˆˆˆ

2

12

1 decay time  is large compared to bunch distance T:

RIRIPr 2~21 22 for and :  2ˆ nT T

ˆ22

1

1ˆT

T

e

eTqkP

in general

ˆˆ1ˆ iwith and

i(t)

V(t)

2ˆˆˆ

Q

TP 2

1

t

TmIIti 2cos 2

I~

tcIRtu os 2 rr Tm 2

V~

Page 44: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

weak decay

22

ˆ22

)1(ˆ

1

1ˆ1

iT

T

eT

RIe

eTqkP

resonant losses phase dependentterm

the phase dependent term

2,ˆmod T

T

2, 5, 50RI

Pˆ2

with

it is not very likely to excite a sharp resonance, and it is very difficult to determine the phase , but …

Page 45: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

2ˆT

T single bunch losses P1 T losses may be resonant

2ˆT

spectrallines

ofthebe

am

if the probability for  is equally distributed or

the exact frequency of parasitic, unwanted resonances is usually not known and may depend on geometric parameters that are not exactly determined (f.i. length of bellows)

12

ˆ

T

ˆ2)1(

ˆ1

21

2

0

2T

eT

d

i

1

22 )1(

ˆ1 Pe

TRIP i

with

the worst case losses are resonant; in best case the losses are much smaller than P1, but typically: 

Page 46: Wakefields and Impedances Part II · 2019. 2. 28. · Martin Dohlus Rainer Wanzenberg CAS Nov. 2, 2015. computer programs time domain solver for short range wakes eigenmode solver

acknowledgement

We thank Wolfgang Ackermann, Erion Gjonai, Torsten Limbergand Igor Zagorodnov for their interest and stimulating 

discussions.