vol 1 of 1 - plant operation maintenance and safety manual

234
4 Abu Dhabi Gas Industries Ltd. Abu Dhabi Gas Industries Ltd. GASCO Project No. 5221 Ethane Recovery Maximization Project DIVISION 10 PLANT OPERATION, MAINTENANCE AND SAFETY MANUAL Volume 1 of 1 FLUOR Contract AOWT 2004

Upload: tiotet33

Post on 19-Jul-2016

409 views

Category:

Documents


14 download

DESCRIPTION

Plant Operation Maintenance and Safety Manual

TRANSCRIPT

Page 1: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

4

A b u D h a b i G a s Industr ies L td .

Abu Dhabi Gas Industries Ltd.

GASCO Project No. 5221

Ethane Recovery Maximization Project

DIVISION 10

PLANT OPERATION, MAINTENANCE AND SAFETY

MANUAL

Volume 1 of 1

FLUOR Contract AOWT

2004

Page 2: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

ETHANE RECOVERY MAXIMIZATION (ERM) PROJECT

Operating, Maintenance and Safety Manual Addendum for the ERM Project

Approved

Rev. Date Description By Chk. Disc. Proj. GASCO

20-Dec-04 Client Comments Incorporated DTS DTS RvdV MS

26-Sept-04 Issued for Review DTS DTS RvdV MS

Page 3: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Operating, Maintenance and Safety Manual - Unit 44 Addendum for the ERM Project

T A B L E OF CONTENTS

INTRODUCTION

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

CHAPTER 5:

CHAPTER 6:

CHAPTER 7:

CHAPTER 8:

CHAPTER 9:

CHAPTER 10:

DESIGN BASIS

PROCESS DESCRIPTION

INITIAL START-UP

NORMAL START-UP

NORMAL OPERATION

NORMAL SHUTDOWN

EMERGENCY SHUTDOWN

SAFETY

EQUIPMENT AND DATA SHEETS

DRAWINGS

Page 4: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

INTRODUCTION

CONTENTS

SECTION PAGE

1.0 FOREWORD 2

2.0 PROJECT OVERVIEW 3

INTRODUCTION

Page 5: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

1.0 FOREWORD

This manual describes the modifications made to Unit 44 for the Ethane Recovery Maximization (ERM) Project. This manual should be read in conjunction with the existing Unit 44 Operating, Maintenance and Safety Manual and the supplement prepared for the C2 Enhancement Project (Project 1219).

The information contained in this manual provides a basis for the safe start-up, normal operation, normal shutdown, and emergency shutdown for the new equipment and systems. The manual provides a description ofthe new E R M operating modes and discusses how the new systems are integrated into the existing unit.

The procedures described in this manual should be considered as guidelines and may have to be adapted at site. It is the prime responsibility of the Operations personnel to interpret the instructions and where necessary adjust them to suit the conditions prevailing at any time taking into account the local conditions during the preparation and commissioning of the new E R M extension.

In order to facilitate assimilation and understanding of information, the format and contents of this manual follow that of the existing Operating, Maintenance and Safety Manual.

INTRODUCTION

Page 6: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

2.0 PROJECT OVERVIEW

The objective of the ERM Project was to increase the ethane production from Unit 44 by at least 400 TPD based on the design feed rate, composition, and inlet conditions defined in the Design Basis Memorandum.

C2 recovery is increased in Unit 44 by adding the following new equipment:

• Cold Demethanizer (44-V-308) • Cold Demethanizer Bottoms Pumps (44-P-302A/B) • 2 n d Feed Chiller (44-E-318) • Debutanizer Trim Condenser (44-E-406) • NGL Subcooler (44-E-407) • Propane Refrigeration Package (44-ME-201)

The new Refrigeration Package includes a two-stage Refrigeration Compressor (44-C-202) with an electric motor driver. An existing air cooler purchased for a previous project is used as the Refrigerant Condenser (44-E-203) for the new system. The package also includes two KO drums (44-V-206/207) and two subcooling exchangers (44-E-204/5).

INTRODUCTION

Page 7: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

3.0 PURPOSE

The puipose of this addendum is:

• To review and explain the modifications that have been made to the existing unit and update, as required, the process description and the start up and shutdown procedures.

• To provide the procedure to switch from C2 Enhancement mode to ERM mode.

• To provide the procedure to switch from ERM mode to lower ethane recovery modes.

• Provide details for the normal operation ofthe E R M mode.

INTRODUCTION

Page 8: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. ContractNo. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

CHAPTER 1

DESIGN BASIS

CONTENTS

SECTION PAGE

1.0 GENERAL 2

1.1 Integration of E R M Project into Existing Facilities 2

2.0 FEED CHARACTERISTICS 3

2.1 Feed Gas Flow and Conditions 3 2.2 Feed Gas Composition 4

2.3 Flexibility and Turndown 4

3.0 PRODUCT SPECIFICATIONS 5

3.1 Lean Gas 5 3.2 N G L 5 3.3 C5+ Condensate 5

4.0 EFFLUENTS 6

5.0 PRINCIPLES OF OPERATION

5.1 Feed Chilling 7 5.2 Demethanizer / Recycle Gas Loop 7 5.3 Debutanizer 7 5.4 New Propane Refrigeration System 8

6.0 PROCESS FLOW DIAGRAMS AND MATERIAL BALANCES 9

7.0 UTILITY REQUIREMENTS 10

8.0 CHEMICALS AND CONSUMABLES 11

CHAPTER 1

Page 9: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. ContractNo. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

1.0 GENERAL

A comprehensive Design Basis Memorandum containing mutually agreed and approved compilations of basic data, design criteria, and other parameters was developed for the ERM Project. The key information is provided in this section ofthe manual. Refer to RPT-AOWT-44-06-001 for additional data.

1.1 Integration of ERM Project into Existing Facilities

OGD-I Train 3 was commissioned in 1996 and processes approximately 610 MMSCFD of Thammama-F gas. The train consists of condensate stabilization (Unit 24), MDEA sweetening (Unit 34), molecular sieve dehydration of gas, and deep-NGL recovery by propane chilling followed by a turboexpander-based unit (Unit 44).

OGD-I Train 3 was originally designed to produce a NGL stream containing a minimum quantity of ethane (maximum 5 mol %). However, in 2001, the unit underwent some modifications to recover about 300 TPD of total C2 (known as C2 Enhancement Project) to supplement the feed to the petrochemical plant at Ruwais. The objective ofthe E R M Project was to further increase the ethane production from OGD-I Train 3 by at least 400 TPD based on the design feed rate, composition, and inlet conditions defined in the Design Basis Memorandum.

Within OGD-I Train 3, the focus ofthe E R M Project was entirely on Unit 44. No modifications were made to Unit 24 and 34. The main functions of Unit 44 are:

• Chill the sweet gas from Unit 34 to condense HC liquids and water upstream of the molecular sieve dryers

• Dehydrate the feed gas to the NGL Recovery Unit

• Recover C2+ NGL

• Fractionate the raw NGL into a C2-C4 product and a C5+ product

CHAPTER 1

Page 10: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

2.0 FEED CHARACTERISTICS

The feed to OGD-I Train 3 is non-associated gas from the Thammama-F reservoir. The well fluid is sent to Unit 24 where the gas is separated from the condensate, and the condensate is stabilized to the specification. The sour gas from Unit 24 is then fed to the Gas Sweetening Unit, Unit 34, for acid gas removal. The sweet gas is sent to Unit 44, the Dehydration and NGL Recovery Units.

The following cases were originally considered in the design of Train 3:

• Low Condensate Case

• Maximum Condensate Case

• Low H2S Case

Unit 44 was originally designed for the Low Condensate Case, and checked for the other cases.

For the E R M Project, the design of the new equipment was based on the Low Condensate Case. The original design feed rate was increased by 5% to reflect the results of Step 1 of the Habshan Capacity Enhancement.

The new equipment is also suitable for the Max Condensate Case. As for Low Condensate Case, the original Max Condensate design feed rate was increased by 5% to reflect the results of Step 1 of the Habshan Capacity Enhancement.

The rates, conditions, and compositions for the sweet gas from Unit 34 are given in the sections below.

2.1 Feed Gas Flow and Conditions

Source of Feed

Normal Rate (dry basis), MMscfd

Temperature, 0 C

Pressure, barg

Water Content

Low Condensate Case

Max Condensate Case

34-V-103

616 + 5% 627 + 5%

58 max.

65.5 min

Saturated

Data source: Low Condensate Case data are from the C2 Enhancement Material Balance, PFD 44-0020-012. Max Condensate Case data are from the C2 Enhancement Material Balance, PFD 44-0020-013.

CHAPTER 1

Page 11: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

2.2 Feed Gas Composition

Component

N2

C l

C2

C3

iC4

nC4

iC5

nC5

NC6

NBP[I]_91

NBP[1]_138

NBP[1L182

H2S

C02

M-Mercaptan

E-Mercaptan

nP-Mercaptan

Outlet of 34-V-103 (Dry Basis)

Low Condensate Case

Mole %

0.300%

76.766%

9.313%

5.089%

1.569%

2.558%

0.714%

0.595%

0.444%

0.431%

0.065%

0.006%

20 ppmv

2.143%

11 ppmv

13 ppmv

45 ppmv

Max Condensate Case

Mole %

0.319%

75.463

9.733

5.637

1.771

2.904

0.772

0.640

0.453

0.394

0.056

0.005

20 ppmv

1.850%

0 ppmv

0 ppmv

18 ppmv

Data Source: Low Condensate Case data are from the C2 Enhancement Material Balance, PFD 44-0020-012. Max Condensate Case data are from the C2 Enhancement Malerial Balance, PFD 44-0020-013.

2.3 Flexibility and Turndown

Unit 44 can be operated in either C2 recovery mode or C2 rejection mode. As the objective of the project is to recover additional C2, the design case for the E R M Project was the C2 recovery mode of operation. However, the design of the new equipment allows the unit to be switched back to C2 rejection mode of operation without demerits to existing performance. The plant is also designed with the flexibility to operate at any point between the maximum C2 recovery case and the C2 rejection case.

New equipment was designed for turndown to 50% of design rates.

CHAPTER

Page 12: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

3.0 PRODUCT SPECIFICATIONS

3.1 Lean Gas

The lean gas specifications are given below.

Hydrocarbon dew point

Water dew point

H2S Content

Net calorific value

-50C max. at 39.2 bara

-30oC max. at 39.2 bara

20 ppm vol. max

900 BTU/SCF min.

Required conditions at the export gas grid:

Temperature 62°C max.

Pressure 41.5 barg

Data Source: OGD-II "Operating, Maintenance and Safety Manual: Overall Plant Summary and Start-up Considerations", Chapter]: Overall Plant Description. Date: October 1999, Rev.:A, Page 1-16.

3.2 N G L

The N G L product specifications are given below.

C2 Recovery Mode C2 Rejection Mode

C1/C2 4.5 wt% max. Not Applicable

C02/C2 5.5 wt% max. Not Applicable

C2 and lighter Not Applicable 5 mol% max.

Water Content 5 ppm wt max. 5 ppm wt max.

C5+ Content 4 mol% max. 4 mol% max.

3.3 C5+ Condensate

The C5+ condensate from the bottom ofthe Debutanizer (44-V-401) is to contain 1 mol% (max.) C4.

CHAPTER 1

Page 13: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

4.0 EFFLUENTS

The ERM Project does not impact the effluents from Unit 44.

CHAPTER 1

Page 14: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

5.0 PRINCIPLES OF OPERATION

The E R M Project impacts the following areas of Unit 44:

• Feed Chilling

• Demethanizer / Recycle Gas Loop

• Debutanizer

• Propane Refrigeration System

A high-level overview of the modified operation is provided in this section. Refer to Chapter 2 for additional information.

5.1 Feed Chilling

The 2nd Feed Chiller (44-E-318) is added upstream of the 1 st Stage Feed KO Drum (44-V-301). Propane refrigerant from the new Refrigeration Package is fed to the shell side of the kettle-type exchanger. This new exchanger lowers the temperature profile of the majority of the downstream unit and allows more ethane to be recovered from the feed gas.

5.2 Demethanizer / Recycle Gas Loop

The Demethanizer (44-V-306) in Unit 44 is fabricated out of Low Temperature Carbon Steel (LTCS). This currently limits ethane recovery as operating temperatures at the top of the tower must be maintained a safe margin from the design temperature (-45°C). In order to operate at the colder temperatures that result from the addition of the 2 n d Feed Chiller, a new 8-tray stainless steel Cold Demethanizer (44-V-308) is added. This column acts as an extension ofthe existing Demethanizer. The liquid from the existing Recovery Tower Bottom Flash Drum (44-V-307) and 2nd Stage Liquid from 44-E-314 are combined and fed to the top of 44-V-308. The overhead vapor from 44-V-306 is fed to the bottom of 44-V-308 and the new Cold Demethanizer Bottoms Pumps (44-P-302A/B) pump the liquid from the bottom of 44-V-308 back to the top of 44-V-306 via the existing Demethanizer Reflux Condenser (44-E-305).

In the recycle gas loop, new bypasses are added around 44-E-315 and 44-E-303. The total bypass of the 1st Stage Liquid/Recycle Gas Exchanger (44-E-315) helps maintain lower temperatures in 44-V-306. The Recovery Tower Reboiler (44-E-303) is not required when operating in C2 recovery mode.

5.3 Debutanizer

Raw N G L from the Demethanizer is sent to the Debutanizer (44-V-401) for fractionation into C2-C4 NGL and a C5+ product. Currently, the Debutanizer overhead vapor is fully condensed in an air-cooled condenser. The Debutanizer currently operates very close to the design pressure of the equipment. Because the pressure of the Debutanizer cannot be increased any further, the temperature required to condense the Debutanizer overhead stream

CHAPTER 1

Page 15: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

will decrease as the ethane content of the NGL increases. For the E R M Project, a new Debutanizer Trim Condenser (44-E-406) is added downstream of the existing aircooler to completely condense the C2 rich NGL product. Propane refrigerant from the new Refrigeration Package is fed to the shell side ofthe kettle-type exchanger. New cold insulation is applied to the existing Debutanizer Overhead Accumulator (44-V-402) and to the existing line from 44-V-402 to the Debutanizer Overhead Pumps (44-P-401 A/B).

A new NGL Subcooler (44-E-407), which is a kettle-type exchanger with propane refrigerant on the shell side, cools the NGL product from Unit 44 down to 20 oC. Subcooling the NGL ensures that the vapor pressure of the combined NGL stream is less than the maximum operating pressure of the existing NGL Storage Spheres (45-V-501 A/B/C).

5.4 New Propane Refrigeration System

The new Refrigeration Package (44-ME-201) includes a two-suction Propane Compressor (44-C-202) with an electric motor driver, a high pressure knock-out drum (44-V-206), a low pressure knock-drum (44-V-207), and a propane receiver (44-V-205). As discussed above, the new system provides the following two levels of refrigerant to the process:

o Low level at about -26 0 C and 1.0 barg to 44-E-318 for chilling the feed gas

» High level at about 160C and 6.4 barg to 44-E-406/7 for condensing and subcooling the NGL product

Subcooling the refrigerant is required due to the remote location ofthe new chillers. An existing air cooler (currently tagged 45-E-701) purchased for a previous project is used as the Propane Condenser for the new system (44-E-203).

CHAPTER 1

Page 16: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

6.0 PROCESS FLOW DIAGRAMS AND MATERIAL BALANCES

The E R M Process Flow Diagrams for Unit 44 are included in this section.

Drawing Number Description

44-00-20-001 Inlet Gas Dehydration

44-00-20-003 NGL Recovery Plant Sheet 1

44-00-20-004 NGL Recovery Plant Sheet 2

44-00-20-004A NGL Recovery Plant Sheet 3

44-00-20-005 Fractionation

44-00-20-006 NGL Refrigeration Area

44-00-20-006A E R M Refrigeration Package

The following four Material Balance cases are also provided:

Document Number Description

44-00-20-010 Low Condensate Case - C2 Rejection Mode

44-00-20-011 Max Condensate Case - C2 Rejection Mode

44-00-20-012 Low Condensate Case - C2 Recovery Mode

44-00-20-013 Max Condensate Case - C2 Recovery Mode

CHAPTER 1

Page 17: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

44-V-101 41-F-I01 A/8

A.lm IQ I 15.Orr. t/t

44-r-ios P£C£t€R»nOH C« FLttR

4'1-ME-^01-8L,. i/B 44-WE-)0!-H1 44-/-102/I03/1'34/105 fiiCtHEFHItW G»S HUIER C« CEKYOSlICfiS

- . 1 , GMl/kr J.im ID I 5.2a I/l

«f-E-101 (IEC£H;fiit:tn Ct i COOLER

5.Si C:oi/Hr REtfNEPiTlQH C4S 5EF/?l*Tffi DUTl.tl CtS FlLTEfl

ntt FEzB c*s FROM ^ - E - J l O

UOUO PHASE TO

" - E - g 5 2 <e>

. . . | FIRIVC h (FC;

i l :mTRal Y fii 1-

H-IC-101-8L1 A/B

NOTES;

i . *L l TEtPEHMUBIS. PflESSUHES. FLG* QUAHIITIES AUD COI^CSIHOIIS *RE fCR PROCESS 0ESIGJ1 PURPISES DHLT. NO G'JAfUNrEE IS EXPR-SSEO 3R [UPUEO.

I. IHC ClUlPtCNI C»P*C!T1ES U C l CUED CII IKIS P^D REFER IO THE LO* CCNDidSilE WSE. « flECOVtF.r UOOE.

:.FOR V-iJEfiJu WL»»K5. fl£FEP IC IHE FDllOUWC DRAWINGS: 44-00-20012 : LOK COVDEnSUE C*SE. C2 RECO'/ERI i*-00-;001D : LOW COH0ENi*TE C*S-:. C2 REJEC"!OH 4iHX)-2001J : M»X CON0EHS*TE C»Si. C: RECOVEST * » - 0 0 - ! 0 0 ; I : M l CONKHSm C»SE. RZJEC'ION

W.IJ ;s;^o -'dfl fiEwrv

FLUOR. EJHAKE RECOVERV MAX IMIZAT; OM

PROCESS FLOW OI^GFfiM I M E T GftS DEHYGRflTiON

THAMMAMA 'F*

S23!

|4,4l 1001

Page 18: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 19: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

ftl F[£t) CHILLER 10.78 Gcol/Hr

FECfCLE O'S COVPRESSOR

(STElU ItSSlNE DRIVER)

^ - £ - 3 0 6 FEED CHiLLEfi B.99 Gcul/Hr

1ST SUK L fOyiC/FEtO EJC--»HG£R S.N Ocol/Hr

ISl SEISE lIOJID/HiCYCL: MS FKChlMCEFI

0.03 Gcol/Hr

«-E-3:6 ^4-£-31•^ -f^-f-JO? 4J-V-306 44-£-3C5 44-P-301A/B PtCTCLE IRIH COOLER WD SHOE LlOUIO/fEtD EJCHJHCEB DEltTHlHITta SIOE REBDILER CErflHiVIZEfl BDIIOU RtBOSLEfi DEUElHWIIIER OEtfir^lKlUR REFIL1 CCKDEHSES CEiCrHfJIUR REBOIlEfl

0.3S CMt/Mr Z-Ot Ceat/hr J.COCeai/Mr i .DCeo i /Hr 2.<o ID K (.Sfa I-I COO CiCl/Hr OR»»-CFr PLWS i . Jff ID x IE.in I-I

NOTES: 1. tLl Ifl*EB*TyRES" PRESSURES. FLO» iUANT11IES

IND CWOSIIIIWS »RE FDR PRCCESS DrslCN PURPOSES OKLY. NO CU*BJ.HI££ IS EXPRESSED OR ItfUEC-.

2. UL FLOn R*IES WO PROCESS -IWSIT IONS SHQUM »F!E 11 OPERA TINO COHDHIOHS. Wf.ESS OTWERUSE MOIED.

3. THE EOUIPVEfJT C*P»CITiES IN:lC*TEO DM '415 PFO P£/Ea 10 7H£ i o * C O N D C « * ; £ CSSI. cs Rczon t r UOOE.

(.FOR wTEfi;*L BlLiNCES. REfE" TO THE FCLLOtll i: OH**INGS: t*~2Q-!00-2 t LC* CONDENS*C»S£. Z2 SECOVEST <*~jO-200;0 : LCW COiDEtftilE CASE. C2 REJECTION *4-00-ZDD): : M»X COSDENSATE CASE. CZ BECO.'ERT *J-?0-Z00n i MAI CONOEMSATE CASE- Cl REJSCTICM

JJE* LINES.

FLUOR. ETHANE RECOVERY MAXi M IZAT IGN PR3JECT

PROCESS FLOW DIAGRAM KGL PSCGVESY PLAMT SHT 2

THAKMAMA T '

D=flW;riG MJH9ER

\4A} 100. e i S l S ^ J

Page 20: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

RECDVEHY imrEH t w m SUCE H i t EXCKIWCIR 1.90 •^ccl/Kr

•14-V-JOT fllCOvEH'r r^tP. ETU FL»y CR«

2.9 n ID i 9.S5 a I-l COLO OEKIHtHIJER

2.* n ID t M.t n ! - l COLO OEKTHWIZER STU PIUPS

m nVHr

EICHAL FBQU <4-V-306 i 4<-oo-;:ooT>-

<iH-00-?C003 )-- - - -

<M-oo-;:oor"

COLD 0EICTUNI7ES 0VCTKE*D i o M - E - i o ;

ISI SUCt VAF-QR FHOU 4<-V-301 ®i—bs)

e :

^-P-3C2A/B CO.O OEuETf!-N:ZE=

10 " - £ - l o s

HQTES: I. ALL lEuPERATUBES. PRESSURES. FLO* C U A N I T T V E S "

i.vo c & p o s n m w JB£ FOB PROCESS ; E S I C H FUKPOSES o n n . na cuARAWTiE is EXPRESSED OT I W L I E D .

!. IKE EOUIPMENI CAPACITIES l ^ K S I t ; OH IHIS PFJ REFER TO THE 10* C0W)EI1S*!£ CASE. Ci RECOVER" UOOE.

I. FOfi MATERIAL BALANCES. REFER TO l^E FOLLOXINC ORAMINOS: •M-03-20017 : LO* COttCENSAlE CASE. C2 RECOVERT <1-0>200IO = L0» COIIC-EHSAIE CASE- C2 FEJECTICH J < - 0 0 - 2 0 0 1 3 : VAX CONDEHSAIE CASE. CZ RECQvERi « i -03- ;00 l l : VAX COWCEMSAIE CASE. C2 ^EJECrjCM

NEK LINES. EOUIPMENT. ANO INS7RUIENIS

WPBOVEO FOR CON'SIFOiO*

AP=ROV£D FOR OESIGN ESIE33ISI3EIBI ISSUED FJI APPFOWL

ISStEO RE •'IE v

!i4. FLUOR, E T H A N E R E C O V E R Y MAX I M l ZAT ] Of I P R O J E C T j

^ D C t S S FLOW DIfiGRftK I «GL RECOVERY PLANT SHT 3 |

TKftMMAKA ' f

ORflWIHD HUKBER

L4I4J 1010) g^na . e^ , ^

HEV.

Page 21: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

4A-l-40\ OISOIAJIIIER FEED/BIM EXCM1NCER

1.26 Cc:l/Hr

4 4 - L - m CCi[l[KS*]E COOLER

O.OS CcoUHr CEBUrtHIiER

4m !) t ;2.5» I-I B-auUMIIER REBOIL-IR

11.Oi CCfll/Hr OISJilHIZEP. CPiDENSifl

l.SD Gcul/Hr

44-£-406 DEBUIiN17ER TRIM CO'DirtSER

b.79 Ccoi/iir

44-P-iOI A/B 0E3UTAH1ZEH OVERHEAD RUIPS

44-V-402 DEeuTiNIZEH O'/ER^EO ACCUUJIAl

Z.5 n ID 1 10.0a I-l

44-e-402

LP SIEiu SUPfLT

DEUEIHAMZER BOITOH FHGU 44-V-105

1 44-oo-;oocr>

LP P1PEHSA1E < - ~

i -£-401

-,L-0- * 44-E-407 :S;FER IO PFC 44-00-ZC0051 FOR SHELL SiOE) < ^ TO s&L STCRAGL

— ; «i-oo-o:-i ~>

3 » - E S S -

-p s :E iy s.-P": - < 62-00-003

6Z-OO-:M >

10 CDNDLN'SAT: SIIRtCE l i f t t 26 - ' F - lD : i /3

HQTES: 1. ALL • E I P E B A I U R E S . PRESSURES. FLO* OUA-UIIIES

AHD COlPOSiriONS ARE FOR PROCESS OESIvN PURPOSES DMLY. NO CUARAMIEE IS EXPRESSED OR IMPLIED-

2. ALL FLO RATES WO PROCESS CONDIIIONS SHOVN m AT OPERAIINC C0N0II10I1S. O-T.ESS CTKER^ISE NOTEO.

3. TKE EOUIPMENT CAPAClliES MCICATED OH IHIS PFO REFER TO IHE LC» CCKDENStlc CASE. C2 RECOVERI lOCE.

4. FOR MAT-RIAL BALANCES. REFER 10 THE FOL LOW! IiG DRAVINGS: 44-O0-2CO13 : LCW COMDENSATE CASL. C2 RECOVERV 44-00-20010 : LOT COWDENSAIE CASE. C2 PEJECIION 44-O0-2C013 : UAX COMOEHSAlE CASE. Ct RECDvERY 4'-O0-ZO0H : MAX CONDENSATE CASE. C2 REJECT IOM

NE* LINES. EOUIPNENT. AKD INSIRJICHIS

APPROND FGR lONSIRUCIION

eepfiOVEO TOP. I S O

ISSIJEO FCP APPROVE

liSLEO FCF RE»]EW

FLUOR. THOIJE R E C O V E R Y M A X I M I Z A T I O N P P O J E C T

PRDCESS FLCW DIAGRAM FRACTiONAT!DN TH^^MftHfl ' F '

ORfiwiNG NUMBER

l ± 4 j 10,0]

Page 22: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

44 -E -306 FEED CKILLER

tcol/Hr

44-V-2CJ nm siiCE sxricN osuu

ID » J.T™ T-I

44-v -202 •EFRIGERMK FLASH ORIN

Z.ifn IP « 4.0-n I-I

44-C-201 CJ REFRICERATW C0iffitSS3H

12 S7ACB) 5St2 «

(SiEAK TlffiflJ.'.E M / V E S ;

4a-v-204 :JO SUCE SUCTICH aw.

2.on ID X M n I-I

44-E-310 HEI FEED CHlUEt

10.71 Gcol/Hr

44-E-201 BEFRtSERWI COwaENSER

21.6! Ctol/Hr

44 -E-202 REFR1CEPAM I 5U3COOLifl

l . l l Gcoi/Xr

4 4 - V - 2 0 i RilRICERAHI SUHCE KIM

J.CCT ID ) S.Om T-I

P. SIEAV SUPPLT

E.?. STEAM RETURN < 6;-00-OOj |

FRCM IC AT «<-V-J01

I 4<-oo-;ooor> - - •

- - 0 -«-v-JC1 I

rr ;<H>-

FRO>J « - f - i - : ; A / B / £ \ J L

FHC

Jfc-

J L

J>

= •1-00-20005* >

• r i FEID LJCU13 F=;CU A4-V-IC1

I 2'-C'Q-2O:0?>

NOTES: 1. ALL TEMPERATURES. PRESSURCS. ELC" DUAiniTIES

XUO COUPOSHIONS ARE FOR PROCESS DESIGN PURPOSES ONLT- NO GUARANTEE IS EXPR-ISSEO OR IfP'.IED.

2. ALL LOw RATES AND PROCESS CCNOITIONS SHOWi APE Af (FEB* f I WC COWfTICWS. yvLESS 0IrtER»I5E NE-TEO.

J.IHE ZOUIPICNI CAPACITIES IN0ICAIE3 ON IHIS PFD REFEi TO IHE LO* CEWOENSAIE CASE• CZ RECOVERT IODE.

4. FOR IATERIAL BALANCES. REF;R 10 TrE FOLLO*iNG DRAVINGS: 4^-03-?00ir i LCV CONCENSAIE CASE. C2 firCOVES) 4^-02-20010 : LOV CDIICEHSATE CASE. Z i REJLCIION 4'-00-200l3 : MAX CDNCtNEATE CASE- CZ RECOVERi 4 ' -0a-200n : UAX CONCENSATE CASE. C2 SEJECTION

W i t i t p m , n FOR OESIGM

IFF ROV E J FCR COAISUIIICA

ISSUED fCH APPPOVftL

m v u ISSLtO FCR R

FLUOR. E T H A N E R E C O V E R t MAX IMf ZA TION P R O J E C T

PRDCESS FLOW DIAGRAM NGL REFRIGERATION AREA

THSKMAKP "F"

DflAWiHC NUMEIER

Page 23: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

44-C-202 PMPASE CDWEESSEH

44-V-2C7 vm PP.tssiR-INOZF.CUt ZfLU

44 -E -205

LCi U*EP.UU3£

0.7* C c a l / *

44-E-40&

;.?[« co-^WEfl

44-V-2?t HICH PPESVJRE WOClOlI VWU

A<-E-204 HICH TEWEAMlSE

SIBCOOtER J.<I Ccol/Hr

a4-E-'i07 MCI SUBCtaEH 0.51 C;3t/Mr

44 -E -203 PfiWNE CCOEWSES

15.11 Ceol '*-

44-V-205 PflCPiHE RECEIV-R

: I : I j l ! I : : : <^ ; ' 0 L 0 -

0

-<5>-

••©-—«>.

^ ^ $ £1 VEHDOR iiat Fl'JOR BT fLUDR

i i r _2 P

44-E- ;C '3

4 4 - E - i i 8 , • ' * . . ' T - n • SEFES ; c • ^ \ 0 { pro K-oo- iooD* \ ' ' . i ' ^ y FOS TU2E SIDE I '.' I

4 4 - L - ' 1 G 6 IPEFE- 10 ' PID "-OO-ZOCM , FCfi l-EE SIDE! '

¥ REFRICERANT Wit.E-UP

—< ^ - o o - z c o o n

44-E-4C7 I REFER ID FFD «-00-?COOS FOR WEi SICE)

11 NO'E

W1& l . t L l TElfER&TlRES. PRESSURES. f tO* OUJNlJnES

IND CC^OSIIIONS ARE FOR PPOCESS DESIGN PURPOSIS CMY. NO CUAHANIEt IS EXPRESSED CR lUPLIEC.

I. ALL FLOK RATES AIID PROCESS CONDI HONS SHOUN Afl; AT OPERATING CONDIT IOHS- UNLESS 0THERK1SE tlOIE:.

3. LEVEL IK «4-:-40T CAN BE ADJUSTED *S NECESSAR! TO L l u i l 44-:-302 SIDE LDAD CIO BE ACDRESSED IN OPERAIINC PRCCEOJRESi.

4. IHE ECUIPMENT CAPACITIES INDICATED ON IHIS PFD REFER -0 THE 10* CONOENSAFE CASE. C2 RE COt ERI" WCE.

5. ALL EOUIPMENT. PIPING AN; INSIRUICNTS ON IHIS DRAWING AP.E NE*.

i.FOR WA-JSJAL BALANCES. B:fE» TO IHE FCIL0»!NG DRAVINGS: 44-00-20012 : LOW CONDENSATE CASE. C2 RECOVERT 44-00-:OOIO : LOV CONDENSATE CASE. CZ REJECTION 44-00-20013 : U i * CDNOEKSATE CASE. C2 RECOVERT 44-00-?001l : UIK CONOENSAIE CASE. C2 REJECTION

fi'PPCvEO FDR CONS I RUCTION

iffif»EO FC=I PESICV

ISSWX FCR ATSCV6.

issm: FCR REVIE>

Sk^ j FLU0R-ETHAIJE R E C O V E R Y v i f tx IMIZATION P R O J E C T

PROCESS FLOW DIAGRAM ERM REFRIGERATION PACKAGE

THAKMPHA ' - '

DRflWItj; HUX&ER | REV.

I-4,4| 1 0 0 1

Page 24: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Material Balance

Low Condensate Case - C2 Rejection Mode Rev.2

GASCO ProjectNo.: 13522102 Doc. No.: 44-00-20010

ETHANE RECOVERY MAXIMIZATION (ERM) PROJECT

Material Balance

Low Condensate Case

C2 Rejection Mode

Revision 2

Approved

Rev. Date Description By Chk. Disc. Proj. GASCO

13-Feb-04 Approved for Construction >l9 GS-L-FML-046

4-Sep-03 Approved for Design OPM DTS ED

7-Aug-03 Issued for Approval OPM DTS ED

Page 25: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Reoovery Maxtmization

LOW CONDENSATE CASE - C2 REJECTION MODE

FLUOR Conlracl AOWT

Rev.2

Stream Number 1 Composilion (kgmole/h)

Nilrooen 96.6 Methane 24733.6 Ethane 3000.5 Propane 1639.8 i-Butane 50S.5 n-Butane 824.2 i-Pentane 229.9 n-Pentane 191.7 n-Hexane 143.0 NBP91 138.7 NBP138 20.8 NBP182 1.9 H2S 0.6 C02 690.4 CS2 0.0 M-Mercaptan 0.4 E-Mercaptan 0.4 nPMercaptan 1.5 H20 110.5

Total Stream Molar Flow (kgmole/h) 32330.0 Mass Flow (kg/h) 732576 Temperature (°C) 5B.0 Pressure (bara) 66.5 Vapour Fraction 1.00 Heat Row (Gcal/h) -686.7 Molecular Weighl 22.66

Vapor Phase Density (kg/m3) 64.4 Heal Capacity (kcal/kg-C) 0.62 Viscosity (cP) 0.014 Thermal Conductivity (Kcal/m-hr-C) 0.034 Molecular Weighl 22.66 Mass Flow (kg*) 732575 Std Gas Flow (MMSCFD) 647.9

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosily (cP) Thermal Conductivity (Kcal/m-hr-C) Surtace Tension (dyne/cm) Molecular Weight Mass Row (kg/h) — Actual Volume Flow (m3/h)

Water Phase Mass Flow (kg/h)

96.6 24733.6

3000.5 1639.B 505.5 824.2 229.9 191.7 143.0 138.7 20.8

1.9 0.6

690.4 0.0 0.4 0.4 1.5

110.5

32330.0 732576

43.9 65.8 0.98

-694.9 22.66

66.6 0.64

0.014 0033 22.14

703470 636.6

529.8 0.60

0.129 0.073

7.99 55.33 28130

53.1

976

96.6 24733.6

3000.5 1639.6 505.5 8242. 229.9 191.7 143.0 138.7 20.8

1.9 0.6

690.4 0.0 0.4 0.4 1.5

110.5

32330.0 732576

27.0 65.4 0.95

-705.4 22.66

69.3 0.66

0.014 0.032 21.32

653737 614.4

513.4 0.60

0.121 0.074

7.70 48.87 77259 150.5

1580

95.8 24294.1

2827.8 1427.1 395.2 605.7 134.9 104.6 49.7 31.9

1.5 0.0 0.6

667.7 0.0 0.3 0.3 0.5

21.9

30659.8 653637

27.0 65.3 1.00

-647.7 21.32

69.2 0.66

0.014 0.032 21.32

653637 614.4

513.6 0.60

0.121 0.074

7.71 48.88

95.8 24294.1

2827.8 1427.1 395.2 605.7 134.9 104.6 49.7 31.9

1.5 0.0 0.6

667.7 0.0 0.3 0.3 0.5 0.0

30637.9 653241

27.8 62.8 1.00

-645.5 21.32

65.6 0.65

0.013 0.032 21.32

653241 614.0

0.8 439.5 172.7 212.6 110.3 218.5

95.0 87.0 93.2

106.9 19.3

1.9 0.0

22.7 0.0 0.1 0.1 1.0 0.9

1582.5 77359

27.0 65.3 0.00

-51.7 48.88

69.2 0.66

0.014 0.032 21.32

513.6 0.60

0.121 0.074

7.71 48.88

77359 150.6

0.8 439.5 172.7 212.6 110.3 218.5

95.0 87.0 93.2

106.9 19.3 1.9 0.0

22.7 0.0 0.1 0.1 1.0 0.9

1582.5 77359

18.1 31.4 0.23

-51.7 48.88

32.4 0.54

0.012 0.027 22.08 8149

7.4

577.8 0.57

0.168 0.081 10.59 57.04

69207 119.8

10

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

o.o 0.0 0.0 0.0 0.0 0.0

87.7

87.7 1581 27.0 65.3 0.00 -6.0

18.02

69.2 0.66

0.014 0.032 21.32

513.6 0.60

0.121 0.074 7.71

48.88

1581

11

0.8 439.5 172.7 212.6 110.3 216.5

95.0 87.0 93.2

106.9 19.3

1.9 0.0

22.7 0.0 0.1 0.1 1.0 0.9

1582.5 77359

51.9 30.7 0.36

-49.7 48.88

35.0 0.54

0.013 0.028 27.02 15318

11.4

551.9 0.60

0.137 0.073

8.59 61.09 62041 112.4

20

39.5 10013.0 1165.5 568.2 162.9 249.7

55.6 43.1 20.5 13.1 0.6 0.0 0.2

275.2 0.0 0.1 0.1 0.2 0.0

12627.7 269239

27.6 62.5 1.00

-266.1 21.32

65.3 0.65

0.013 0.032 21.32

269239 253.1

22

39.5 10013.0 1165.5 588.2 162.9 249.7 55.6 43.1 20.5 13.1 0.6 0.0 0.2

275.2 0.0 0.1 0.1 0.2 0.0

12627.7 269239

-7.0 60.8 0.91

-274.2 21.32

71.9 0.74

0.012 0.030 19.72

227245 230.9

480.6 0.62

0.103 0.079

7.53 38.02 41994

87.4

23

56.3 14281.0

1662.3 838.9 232.3 356.1 79.3 61.5 29.2 18.7 0.9 0.0 0.3

392.5 0.0 0.2 0.2 0.3 0.0

18010.1 384000

27.6 62.5 1.00

•379.5 21.32

65.3 0.65

0.013 0.032 21.32

384000 360.9

24

43.9 11119.8

1294.4 653.2 180.9 277.3

61.8 47.9 22.8 14.6 0.7 0.0 0.3

305.6 0.0 0.1 0.1 0.2 0.0

14023.5 299000

27.5 62.4 1.00

-295.5 21.32

65.2 0.65

0.013 0.032 21.32

299000 281.0

Simulation Basis: Train 3 - Selecled Option + 5'X. - C3 Mode Rev. 5A Paget of 10

Page 26: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhane Recovery Maximization

FLUOR Contract AOWT

Rev.2

LOW CONDENSATE CASE - C2 REJECTION MODE

Stream Number 25 26 28 29 30 31 32 33 34 36 37 38 43 Compoaition (kgmole/h)

Nilrogen 43.9 12.5 12.5 56.3 95.8 93.9 54.7 54.7 14.6 14.8 93.9 92.2 92.2 Methane 11119.8 3161.2 3161.2 14281.0 24294.1 23052.2 13434.6 13434.6 3622.9 3622.9 23052.4 22086.3 22086.3 Ethane 1294.4 368.0 368.0 1662.3 2827.8 2308.3 1345.2 1345.2 362.8 362.8 2308.4 1945.6 1945.6 Propane 653.2 185.7 185.7 83B.9 1427.1 869.6 506.8 506.8 136.7 136.7 869.7 564.8 564.8 I-Butane 180.9 51.4 51.4 232.3 395.2 169.6 99.0 99.0 26.7 26.7 169.8 79.9 79.9 n-8utane 277.3 78.8 78.8 356.1 605.7 216.5 126.2 126.2 34.0 34.0 216.5 85.5 85.5 i-Pentane 61.8 17.6 17.6 79.3 134.9 27.3 15.9 15.9 4.3 4.3 27.3 6.2 6.2 n-Pentane 47.9 13.6 13.6 61.5 104.6 18.1 10.5 10.5 2.8 2.8 18.1 3.5 3.5 n-Hexane 22.8 6.5 6.5 29.2 49.7 3.7 2.2 2.2 0.6 0.6 3.7 0.3 0.3 NBP91 14.6 4.1 4.1 18.7 31.9 1.3 0.7 0.7 0.2 0.2 1.3 0.1 0.1 NBP138 0.7 0.2 0.2 0.9 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 'NBP182 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H2S 0.3 0.1 0.1 0.3 0.6 0.5 0.3 0.3 0.1 0.1 0.5 0.4 0.4 C02 305.6 86.9 86.9 392.5 667.7 596.8 349.0 349.0 94.1 94.1 598.8 546.0 546.0 CS2 o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o M-Mercaptan 0.1 0.0 0.0 0.2 0.3 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 E-Mercaptan 0.1 0.0 0.0 0.2 0.3 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 nPMercaptan 0.2 0.1 0.1 0.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total Stream Molar Row (kgmole/h) 14023.5 3986.6 3986.6 18010.1 30637.9 27360.2 15945.2 15945.2 4300.0 4300.0 27360.6 25410.9 25410.9 Mass Flow (kg/h) 299000 85000 85000 384000 653241 532785 310501 310501 83734 83734 532797 474718 474718 Temperature (°C) -6.7 27.5 -21.4 -15.2 -11.9 -11.9 -11.9 -35.9 -11.9 -32.4 -32.3 -32.2 -50.7 Pressure (bara) 61.3 62.4 60.9 60.8 60.7 60.7 60.7 60.2 60.7 60.2 60.2 60.2 39.6 Vapour Fraction 0.91 1.00 0.85 0.88 0.89 1.00 1.00 0.91 1.00 0.93 0.93 1.00 0.95 Heat How (Qcal/h) • -304.5 -84.0 -87.8 -394.2 -668.4 -573.6 -334.3 -342.2 -90.2 -91.9 -584.8 -532.7 -535.5 Molecular Weight 21.32 21.32 21.32 21.32 21.32 19.47 19.47 19.47 19.47 19.47 19.47 18.68 18.68

Vapor Phase Density (kg/m3) 72.5 65.2 77.1 74.6 73.3 73.3 73.2 85.9 73.2 83.4 83.2 83.4 52.0 Heat Capacity (kcal/kg-C) 0.74 0.65 0.82 0.78 0.76 0.76 0.76 0.98 0.76 0.93 0.93 0.93 0.75 Viscosity (cP) 0.012 0.013 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.010 Thermai Conductivity (Kcal/m-hr-C) 0.030 0.032 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.024 Molecular Weighl 19.74 21.32 19.00 19.31 19.47 19.47 19.47 18.53 19.47 18.67 18.68 18.68 18.04 Mass Row (kg/h) 252761 85000 64216 305472 532749 532785 310458 267767 83722 74485 474504 474718 433423 Std Gas Flow (MMSCFD) 256.6 79.9 67.7 317.0 548.3 548.3 319.5 289.7 86.2 79.9 509.1 509.2 481.6

Hydrocarbon Liquid Phase Density (kg/m3) 479.5 - 466.1 473.1 476.6 476.4 476.5 421.3 476.5 430.5 431.1 430.7 474.9 Heat Capacity (kcal/kg-C) 0.62 — 0.63 0.63 0.62 0.62 0.62 0.69 0.62 0.68 0.68 0.68 0.64 Viscosity (CP) 0.103 — 0.096 0.100 0.101 0.101 0.101 0.074 0.101 0.07B 0.079 0.079 0.096 Thermal Conductivity (Kcal/m-hr-C) 0.079 — 0.080 0.080 0.079 0.079 0.079 0.079 0.079 0.080 0.080 0.080 0.087 Surtace Tension (dyne/cm) 7.49 — 7.33 7.45 7.50 7.49 7.49 6.26 7.49 6.49 6.50 6.49 8.27 Molecular Weighl 37.98 - 34.21 35.87 36.78 36.75 36.75 28.66 36.75 29.75 29.80 29.79 29.94 Mass Flow (kg/h) 46239 - 20784 78528 120493 - 43 42734 12 9249 58293 - 41296 Actual Volume Flow (m3/h) 96.4 — 44.6 166.0 252.8 — 0.1 101.4 0.0 21.5 135.2 - 87.0

Waler Phase Mass Flow (kg/h) - - - - - - — ~ -

Slmulalion Basis: Train 3 • Selected Option . 514 • C3 Mono Rev. 5A Page 2 of 10

Page 27: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

QASCO Elhane Recoveiy Maximizalion

LOW CONDENSATE CASE - C2 REJECTION MODE

FLUOR Contract AOWT

Rev.2

Stream Number Composition (kgmole/h)

Nitrogen Methane Ethane Propane i-Butane n-Butane I-Pentane n-Pentane n-Hexane NBP91 N8P138 NBP182 H2S C02 CS2 M-Mercaptan E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperalure C O Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weighl

Vapor Phase Density (kg/mS) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/mS) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surface Tension (dyne/cm) Molecular Weight Mass Row (kg/h) Actual Volume Row (m3/h)

Water Phase Mass Flow (kg/h)

50

2.0 1241.9 519.6 557.5 225.4 389.2 107.6 86.6 46.0 30.6

1.5 0.0 0.1

68.9 0.0 0.2 0.2 0.5 0.0

3277.6 120456

-11.9 60.7 0.00

-94.7 36.75

73.3 0.76

0.012 0.029 19.47

476.4 0.62

0.101 0.079

7.49 36.75

120456 252.8

52

1.4 527.3

56.5 17.6 2.9 34 0.4 0.2 0.0 0.0 0.0 00 0.0

15.2 0.0 0.0 0.0 0.0 0.0

624.9 12055 -20.5 39.7 1.00

•13.1 19.29

44.7 0.62

0.011 0.026 19.29

12055 12.5

531.5 0.59

0.134 0.086 9.78

40.86

53

0.6 714.6 463.1 539.9 222.5 385.8 107.2 86.3 46.0 30.6

1.5 0.0 0.1

53.7 0.0 0.2 0.2 0.5 0.0

2652.7 108401

-20.5 39.7 0.00

-81.6 40.86

44.7 0.62

0.011 0.026 19.29

531.5 0.59

0.134 0.086 9.78

40.86 108401

204.0

64

1.6 966.1 362.8 304.9

90.0 131.0 21.1 14.6 3.4 1.2 0.0 0.0 0.1

52.9 0.0 0.1 0.1 0.0 0.0

1949.8 58079 -32.2 60.2 0.00

-52.1 29.79

83.4 0.93

0.012 0.029 18.68

430.7 0.68

0.079 0.080 6.49

29.79 58079 134.9

se

i.i

386.5 30.6 6.4 0.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.6 0.0 0.0 0.0 0.0 0.0

435.7 7943 -43.9 39.7 l.OO -9.1

18.23

49.6 0.71

O.OtO 0.024 18.23 7 9 «

8.7

498.8 0.62

0.112 0.088 9.04

33.11

57

0.5 S79.6 332.2 298.4

89.3 130.3 21.1 14.5 3.4 1.2 0.0 0.0 0.1

43.2 0.0 0.1 0.1 0.0 0.0

1514.0 50136 -43.9 39.7 0.00

-43.0 33.11

49.6 0.71

0.010 0.024 18.23

498.8 0.62

0.112 0.088 9.04

33.11 50136 100.5

58

2 5 913.9

87.1 24.0

3.6 4.1 0.4 0.2 0.0 0.0 0.0 0.0 0.0

24.8 0.0 0.0 0.0 0.0 0.0

1060.7 19998 -29.7 39.7 1.00

•22.2 18.85

46.1 0.65

0.011 0.025 18.82 19926

21.2

521.1 0.69

0.127 0.087

9 64 37.88

72 0.1

70

95.8 24294.4 2747.4 139.6 2.6 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.6

667.7 0.0 0.0 0.0 0.0 0.0

27949.2 510831 -56.6 39.5 1.00

-588.4 18.28

57.2 0.83 0.010 0.024 18.28

510829 560.1

415.8 0.75 0.065 0.085 6.40 24.79

2 0.0

72

95.8 24294.3

2747.3 139.6

2.6 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.6

667.7 0.0 0.0 0.0 0.0 0.0

27949.0 510826 -46.0 39.1 1.00

-584.1 18.28

49.8 0.71 0.010 0.024 18.28

510826 560.1

73

0.0 0.0 0.0 o.o o.o o.o o.o o.o o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0

22.0 38.6 1.00 0.0

18.28

31.4 0.57

0.012 0.030 18.28

75

95.8 24294.3 2747.3

139.6 2.6 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.6

667.7 0.0 0.0 0.0 0.0 0.0

27949.0 510826

-11.9 38.8 1.00

•572.9 18.28

37.9 0.59

0.011 0.027 18.28

510826 560.1

76

95.8 24294.3

2747.3 139.6

2.6 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.6

667.7 0.0 0.0 0.0 0.0 0.0

27949.0 510826

22.0 38.6 1.00

-562.9 18.28

31.4 0.57

0.012 0.030 18.28

510826 560.1

77

89.7 22735.7 2671.1 130.6 2.4 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.5

624.8 0.0 0.0 0.0 0.0 0.0

26156.0 478055

22.0 38.4 1.00

-526.7 18.28

31.3 0.57

0.012 0.030 18.28

478055 524.2

Slmulalion Basis: Train 3 • Salocted Option . 5% • C3 Mode Bev. 5A Page 3 o l i o

Page 28: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization

LOW CONDENSATE CASE - C2 REJECTION MODE

FLUOR Contract AOWT

Rev. 2

Stream Number 78 79 80 81 89 90 91 92 93 94 95 96 103 Composition (kgmole/h)

Nitrogen 89.7 89.7 89.7 6.1 1.1 1.1 0.1 0.6 0.6 0.6 0.5 0.5 0.0 Methane 22735.7 22735.7 22735.7 1558.5 1511.9 1511.9 205.5 714.6 714.6 714.6 579.6 579.6 146.1 Ethane 2571.1 2571.1 2571.1 176.2 1380.5 1380.5 1625.3 463.1 463.1 463.1 332.2 332.2 933.3 Propane 130.6 130.6 130.6 9.0 714.6 714.6 1010.4 539.9 539.9 539.9 298.4 298.4 1896.0 i-Butane 2.4 2.4 2.4 0.2 939 93.9 105.3 222.5 222.5 222.5 89.3 89.3 328.5 n-Butane 1.1 1.1 1.1 0.1 97.8 97.8 106.3 385.8 385.8 385.8 130.3 130.3 410.3 I-Pentane 0.0 0.0 0.0 0.0 6.8 6.8 7.1 107.2 107.2 107.2 21.1 21.1 49.5 n-Pentane 0.0 0.0 0.0 0.0 3.9 3.9 4.0 66.3 86.3 86.3 14.5 14.5 32.8 n-Hexane 0.0 0.0 0.0 0.0 0.4 0.4 0.4 46.0 46.0 46.0 3.4 3.4 6.8 NBP91 0.0 0.0 0.0 0.0 0.1 0.1 0.1 30.6 30.6 30.6 1.2 1 2 24 NBP138 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 1.5 1.5 0.0 0.0 0.0 NBP182 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H2S 0.5 0.5 0.5 0.0 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.2 C02 624.8 624.8 624.8 42.8 144.6 144.6 41.6 53.7 53.7 53.7 43.2 43.2 25.3 CS2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 M-Mercaplan 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.3 E-Mercaptan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.1 0.1 0.2 nPMercaptan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.0 0.0 0.1 H20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total Stream Molar Flow (kgmole/h) 26156.0 26156.0 26156.0 1793.0 3956.0 3956.0 3106.5 2652.7 2652.7 2652.7 1514.0 1514.0 3831.8 Mass Flow (kg*) 478055 478055 478055 32771 115642 115642 111715 108401 108401 108401 50136 50136 164887 Temperature C O 52.2 64.4 53.8 22.0 -42.5 -53.9 0.2 -27.2 16.0 32.0 -54.0 -16.8 33.2 Pressure (bara) 38.0 43.4 42.8 38.4 39.6 25.2 29.6 25.5 24.8 24.1 24.8 24.1 23.8 Vapour Fraction 1.00 1.00 1.00 1.00 0.00 0.17 0.00 0.13 0.34 0.45 0.17 0.42 0.00 Heat Flow (Gcal/h) -518.5 -515.8 -518.6 -36.1 -106.9 -106.9 -83.9 -81.6 -77.8 -76.0 -43.0 -41.2 -110.6 Molecular Weight 18.28 18.28 18.28 18.28 29.23 29.23 35.96 40.86 40.86 40.86 33.11 33.11 43.03

Vapor Phase Density (kg/m3) 27.2 29.9 30.6 31.3 - 31.8 - 28.1 29.9 31.1 29.5 28.6 Heat Capacity (kcal/kg-C) 0.56 0.57 0.57 0.57 - 0.60 - 0.55 0.52 0.52 0.59 0.53 Viscosity (cP) 0.013 0.013 0.013 0.012 - 0.009 - 0.010 0.011 0.011 0.009 0.010 Thermal Conductivity (Kcal/m-hr-C) 0.033 0.035 0.034 0.030 - 0.021 - 0.023 0.024 0.024 0.021 0.023 Molecular Weighl 18.28 18.28 18.28 18.28 - 18.88 - 19.57 25.22 28.25 18.15 21.83 Mass Flow (kg/h) 478055 478055 478055 32771 - 12847 - 6960 22986 33874 4667 13995 Std Gas Flow (MMSCFD) 524.2 524.2 524.2 35.9 - 13.6 - 7.1 18.3 24.0 5.2 12.9

Hydrocarbon Liquid Phase Density (kg/mS) - - - - 456.5 506.5 466.1 565.9 537.0 527.0 546.3 534.7 468.7 Heat Capacity (kcal/kg-C) - - - - 0.67 0.62 0.66 0.57 0.60 0.61 0.58 0.59 0.67 Viscosity (CP) - - - - ™ 0.083 0.113 0.087 0.168 0.132 0.120 0.153 0.135 0.085 Thermal Conduclivity (Kcal/m-hr-C) - - - - - 0.088 0.097 0.081 0.091 0.079 0.074 0.096 0.089 0.070 Surface Tension (dyne/cm) - - - - 7.55 9.96 5.99 11.77 8.88 7.93 11.65 9.99 5.24 Molecular Weight - - - - 29 23 31.38 35.96 44.16 49.06 51.27 36.17 41.40 43.03 Mass Flow (kg*) - - - - - 115642 102795 111715 101441 85415 74527 45469 36141 164887 Actual Volume Row (m3*) - — - - 253.3 202.9 239.7 179.2 159.1 141.4 83.2 67.6 3S1.8

Water Phase Masa Flow (kg/h) — — — — — — —

Simulalioo Basis: Tram 3 - Salocted Option • 5% - C3 Mode Rev. 5A Page 4 of 10

Page 29: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

OASCO Elhane Recovery Maximization

LOW CONDENSATE CASE - C2 REJECTION MODE

FLUOR Contract AOWT

Rev.2

Stream Number Composition (kgmole/h)

Nitrogen Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane NBP9I NBP138 NBP182 H2S C02 CS2 M-Mercaptan E-Meroaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conduclivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Sld Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surface Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Aclual Volume Flow (m3/h)

Water Phase Mass Flow (kg/h)

104

0.0 146.1 933.3

1896.0 328.5 410.3 49.5 32.8 6.8 2.4 O.O 0.0 0.2

25.3 0.0 0.3 0.2 0.1 0.0

3831.8 164887

44.9 23.8 0.17

-107.8 43.03

43.1 0.58

0.011 0.022 36.38

23340 12.9

458.6 0.69

0.082 0.067 4.67

44.37 141547

308.6

109

0.0 0.0

80.7 1287.6 392.6 604.6 134.9 104.6 49.7 31.9

1.5 0.0 0.0 0.0 0.0 0.3 0.3 0.5 0.0

2689.3 142428

88.9 23.9 O.OO

-83.1 52.96

440.9 0.75

0.076 0.055

2.99 52.96

142428 323.1

110

1.1 1499.3 2339.6

561.0 24.4 17.7 0.5 0.2 0.0 0.0 0.0 0.0 0.5

138.5 0.0 0.0 0.0 0.0 0.0

4582.9 127791

2.5 23.7 1.00

-105.4 27.88

36.2 0.55

0.010 0.021 27.88

127790 91.8

468.2 0.67

0.088 0.080

6.04 36.63

1 0.0

111

2.2 2806.0 2095.2

265.3 13.0 9.3 0.2 0.1 0.0 0.0 0.0 0.0 0.4

241.5 0.0 0.0 0.0 0.0 0.0

5433.5 131752

-19.3 23.3 1.00

-126.8 24.25

32.6 0.54

0.010 0.021 24.21

131139 108.5

484.5 0.64

0.098 0.089

7.62 34.35

613 1.3

112

2.2 2806.1 2095.3

265.3 13.0 9.3 0.2 0.1 0.0 0.0 0.0 0.0 0.4

241.5 0.0 0.0 0.0 0.0 0.0

5433.7 131757

-11.0 22.9 1.00

-126.2 24.25

30.2 0.52

0.010 0.021 24.25

131757 108.9

113

2.2 2806.1 2095.3 265.3

13.0 9.3 0.2 0.1 0.0 0.0 0.0 0.0 0.4

241.5 0.0 0.0 0.0 0.0 0.0

5433.7 131757

22.0 22.6 1.00

-123.9 24.25

24.8 0.50

0.011 0.024 24.25

131757 108.9

115

2.2 2806.1 2095.3 265.3

13.0 9.3 0.2 0.1 0.0 0.0 0.0 0.0 0.4

241.5 0.0 0.0 0.0 0.0 0.0

5433.7 131757

86.9 52.5 1.00

-120.6 24.25

47.6 0.57

0.014 0.034 24.25

131757 108.9

116

2.2 2806.1 2095.3 265.3

13.0 9.3 0.2 0.1 0.0 0.0 0.0 0.0 0.4

241.5 0.0 0.0 0.0 0.0 0.0

5433.6 131755

86.9 52.5 1.00

-120.6 24.25

47.6 0.57

0.014 0.034 24.25

131755 108.9

117

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1

86.9 52.5 1.00 0.0

24.25

47.6 0.57

0.014 0.034 24.25

1 0.0

118

2.2 2606.1 2095.3 265.3

13.0 9.3 0.2 0.1 0.0 0.0 0.0 0.0 0.4

241.5 0.0 0.0 0.0 0.0 0.0

5433.6 131755

49.8 51.9 1.00

-123.4 24.25

56.3 0.59

0.013 0.030 24.25

131755 108.9

119

0.0 0.0 o.o o.o o.o o.o o.o o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1

86.9 52.5

• 1.00 0.0

24.25

47.6 0.57

0.014 0.034 24.25

1 0.0

120

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1

55.0 51.9 1.00 0.0

24.25

54.7 0.58

0.013 0.030 24.25

1 0.0

121

2.2 2806.1 2095.3 265.3

13.0 9.3 0.2 0.1 0.0 0.0 0.0 0.0 0.4

241.5 0.0 0.0 0.0 0.0 0.0

5433.7 131757

49.8 51.9 1.00

-123.4 24.25

56.3 0.59

0.013 0.030 24.25

131757 108.9

SiTHjlation Basis: Train 3 • Selected Option • 5% - C3 Mode Rev. SA Page 5 of 10

Page 30: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

QASCO Elhane Recovery Maximizalion

LOW CONDENSATE CASE - C2 REJECTION MODE

FLUOR Contraci AOWT

Rev.2

Stream Number Composilion (kgmole/h)

Nitrogen Methane Ethane Propane I-Butane n-Butane I-Pentane n-Pentane n-Hexane NBP91 NBP13B NBP182 H2S C02 CS2 M-Mercaplan E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Row (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosily (cP) Thermal Conduclivity (Kcal/m-hr-C) Molecular Weight Mass Row (kg/h) Std G a s F low ( M M S C F D )

Hydrocarbon Uquid Phase Density (kg/m3) Heat Capaciiy (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surtace Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Aclual Volume Flow (m3/h)

Waler Phase Mass Flow (kg/h)

122

2.2 2806.1 2095.3

265.3 13.0 9.3 0.2 0.1 0.0 0.0 0.0 0.0 0.4

241.5 0.0 0.0 0.0 0.0 0.0

5433.7 131757

27.5 51.5 1.00

-125.1 24.25

64.4 0.64

0.013 0.028 24.25

131757 108.9

123

2.2 2806.1 2095.3 265.3 13.0 9.3 0.2 0.1 0.0 0.0 0.0 0.0 0.4

241.5 0.0 0.0 0.0 0.0 0.0

5433.7 131757

•6.0 51.2 0.86

-129.3 24.25

82.9 0.86 0.012 0.027 23.50

110234 94.0

373.3 0.84 0.053 0.077 4.07 28.97 21523 57.7

124

2.2 2806.1 2095.3

265.3 13.0 9.3 0.2 0.1 0.0 0.0 0.0 0.0 0.4

241.5 0.0 0.0 0.0 0.0 0.0

5433.7 131757

-21.9 51.0 0.51

•133.3 24.25

80.4 0.69

0.012 0.027 21.57

59344 55.1

376.7 0.84

0.053 0.081 4.78

26.99 72412 192.2

125

2.2 2806.1 2095.3

265.3 13.0 9.3 0.2 0.1 0.0 0.0 0.0 0.0 0.4

241.5 0.0 0.0 0.0 0.0 0.0

5433.7 131757

-30.6 50.7 0.32

-135.3 24.25

79.3 092

0.012 0.027 20.57

35608 34.7

377.4 0.83

0.053 0.082

5.07 25.97

96148 254.8

126

2.2 2806.1 2095.3 265.3

13.0 9.3 0.2 0.1 0.0 0.0 0,0 0.0 0.4

241.5 0.0 0.0 0.0 0.0 0.0

5433.7 131757

-55.7 50.5 O.OO

-139.5 24.25

404.8 0.76

0.061 0.085

6.06 24.25

131757 . 325.5

127

2.2 2806.1 2095.3

265.3 13.0 9.3 0.2 0.1 0.0 0.0 0.0 0.0 0.4

241.5 0.0 0.0 0.0 0.0 0.0

5433.7 131757

-56.8 39.5 0.02

-139.5 24.25

58.1 0.84

0.010 0.024 18.37 1805

2.0

409.8 0.77

0.062 0.085 6.23

24.36 129952

317.1

128

0.8 1032.9 771.2

97.7 4.8 3.4 0.1 0.0 0.0 0.0 0.0 0.0 0.2

88 9 0.0 0.0 0.0 0.0 0.0

2000.0 48496 -21.9 51.0 0.51

-49.1 24.25

80.4 0.89

0.012 0.027 21.57

21843 20.3

376.7 0.84

0.053 0.081

4.78 26.99

26653 70.6

129

0.8 1032.9 771 2

97.7 4.8 3.4 0.1 0.0 0.0 0.0 0.0 0.0 0.2

88.9 0.0 0.0 0.0 0.0 0.0

2000.0 48496 -47.6 50.7 0.00

-51.1 24.25

383.3 0.81

0.054 0.082 5.45

24.25 48496 126.5

130

0.0 0.0

80.7 1287.6 392.6 604.6 134.9 104.6 49.7 31.9

1.5 0.0 0.0 0.0 0.0 0.3 0.3 0.5 0.0

26B9.3 142428

75.8 18.0 0.16

-83.1 52.96

39.7 0.59

0.011 0.021 48.12

21163

473.4 0.69

0.090 0.061

4.37 53.91

121265 256.2

131

0.0 0.0

80.7 1287.6 392.6 604.6 134.9 104.6 49.7 31.9

1.5 0.0 0.0 0.0 0.0 0.3 0.3 0.5 0.0

2689.3 142428

75.0 16.8 0.30

-82.0 52.96

37.0 0.58

0.010 0.021 48.66

39284 16.2

480.8 0.68

0.094 0.062 4.69

54.81 103144

214.5

132

o.o 0.0

80.7 1287.6 392.6 604.6 134.9 104.6 49.7 31.9

1.5 0.0 0.0 0.0 0.0 0.3 0.3 0.5 0.0

2689.3 142428

74.2 16.5 0.31

-82.0 52.96

362 0.57

0.010 0.021 48.66

40228 16.6

482.6 0.68

0.094 0.062

4.78 54.87

102200 211.8

141

0.0 0.0

121.5 1938.3 590.9 906.3 62.3 28.4 0.5 0.0 0.0 0.0 0.0 0.1 0.0 0.4 0.4 0.0 0.0

3649.2 182792

74.8 16.0 1.00

-98.5 50.09

36.4 0.56

0.010 0.021 50.09

182792 73.1

142

0.0 0.0

121.5 1938.3 590.9 906.3 62.3 28.4 0.5 0.0 0.0 0.0 0.0 0.1 0.0 0.4 0.4 0.0 0.0

3649.2 182792 59.8 22.5 0.00

-112.1 50.09

478.5 0.68 0.092 0.065 4.93 50.09

182792 382.0

Simulation Baale: Train 3 - Selectea Option + 5% • C3 Mode Rov. 5A Page 6ot10

Page 31: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization

LOW CONDENSATE CASE - C2 REJECTION MODE

FLUOft Contract AOWT

Rev.2

Stream Number Composition (kgmole/h)

Nitrogen Methane Ethane Propane I-Butane n-Butane i-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 CS2 M-Mercaptan E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature ("C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weighl Mass Flow (kgm) Sld Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heal Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surtace Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Row (m3/h)

Water Phase Mass Row (kg/h)

ISO

0.0 0.0

80.7 1287.6 392.5 602.1

41.4 18.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.0

2424.1 121424

59.8 22.5 0.00

-74.5 50.09

151

0.0 0.0 0.0 0.0 o.i 2.5

93.5 85.8 49.4 31.9

1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0

265.2 21004 160.5 16.3 0.00

-10.1 79.20

152

0.0 0.0 0.0 0.0 0.1 2.5

93.5 85.8 49.4 31.9

1.5 0.0

o.o o.o o.o 0.0 0.0 0.5 0.0

265.2 21003

82.0 15.6 0.00

-11.2 79.20

153

0.0 0.0 0.0 0.0 0.1 25

93.5 85.8 49.4 31.9

1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0

2652 21003

49.0 15.4 0.00

•11.6 79.20

478.5 0.68

0.092 0.065

4.93 50.09

121424 253.8

470.1 0.75

0.084 0 049

3.21 79.20

21004 44.7

584.9 0.61

0.156 0.077 10.21 79.20

21003 35.9

620.4 0.57

0.205 0.086 13.53 79.20 21003

33.9

501

14.1 3467.1

347.2 130.8 25.5 32.6 4.1 2.7 0.6 0.2 0.0 0.0 0.1

90.1 0.0 0.0 0.0 0.0 0.0

4115.0 80131 •11.9 60.7 1.00

-86.3 19.47

73.2 0.76

0.012 0.029 19.47

80120 82.5

476.5 0.62

0.101 0.079

7.49 36.75

11 0.0

502

14.1 3467.1

347.2 130.8 25.5 32.6 4.1 2.7 0.6 0.2 0.0 0.0 0.1

90.1 0.0 0.0 0.0 0.0 0.0

4115.0 80131 -30.3 60.2 0.94

-87.8 19.47

82.1 0.90

0.012 0.029 18.76

72451 77.4

435.4 0.67

0.081 0.080

6.61 30.38 7680 17.6

503

1.1 1511.9 1380.5 714.6

93.9 97.8

6.8 3.9 0.4 0.1 0.0 0.0 0.3

144.6 0.0 0.1 0.0 0.0 0.0

3956.0 115642

-43.2 24.6 0.29

-105.4 29.23

31.1 0.57

0.010 0.021 20.08

22923 22.9

507.3 0.62

0.112 0.096 9.68

32.95 92719 182.8

504

1.0 882.5 190.4 22.4

1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

43.7 0.0 0.0 0.0 0.0 0.0

1141.8 22923

-43.2 24.6 1.00

-25.4 20.08

31.1 0.57

0.010 0.021 20.08

22923 22.9

507.3 0.62

0.112 0.096

9.68 32.95

505

0.2 629.4

1190.1 692.2

92.9 97.1 6.6 3.9 0.4 0.1 0.0 0.0 0.2

100.9 0.0 0.1 0.0 0.0 0.0

2614.2 92719 -43.2 24.6 0.00

-80.0 32.95

31.1 0.57

0.010 0.021 20.08

507.3 0.62

0.112 0.096

9.68 32.95

92719 182.8

507

0.2 629.4

1190.1 692.2

92.9 97.1

6.8 3.9 0.4 0.1 0.0 0.0 0.2

100.9 0.0 0.1 0.0 0.0 0.0

2814.2 92719 -44.3 23.3 0.02

-80.0 32.95

29.4 0.56

0.009 0.021 20.10

941 0.9

511.6 0.62

0115 0.097 9.93

33.16 91778 179.4

600

0.2 629.7

1190.3 692.4 93.0 97.2 6.8 3.9 0.4 0.1 0.0 0.0 0.2

100.9 0.0 0.1 0.0 0.0 0.0

2815.2 92752 -44.3 23.3 0.02

-80.0 32.95

29.4 0.56

0.009 0.021 20.10

951 0.9

511.6 0.62

0.115 0.097 9.93

33.17 91801 179.4

601

43.9 11119.8

1294.4 6S3.2 180.9 277.3

61.8 47.9 22.8 14.6 0.7 0.0 0.3

305.6 0.0 0.1 0.1 0.2 0.0

14023.5 299000

•13.3 60.9 0.B9

•306.4 21.32

74.1 0.77

0.012 0.029 19.40

241227 249.2

474.6 0.63

0.100 0.079 7.46

36.34 57773 121.7

602

1.3 1920.2 1899.6 241.7

12.0 8.6 0.2 0.1 0.0 0.0 0.0 0.0 0.4

197.5 0.0 0.0 0.0 0.0 0.0

4281.7 108549

•14.0 23.3 1.00

-101.2 25.35

33.8 0.54

0.010 0.021 25.35

108549 85.8

478.8 0.65

0.092 0.087 7.09

34.61 0

0.0

Simulation Basis: Train 3 • Selected Option . 5% • C3 Mode Rev. 5A Page 7 of 10

Page 32: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization

FLUOR Contract AOWT

Rev.2

LOW CONDENSATE CASE - C2 REJECTION MODE

Stream Number Composition (kgmole/h)

Nitrogen Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane NBP91 NBP138 NBPie2 H2S C02 CS2 M-Mercaptan

E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weighl Mass Flow (kg*) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surtace Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Flow (m3/h)

Water Phase Mass Row (kg/h)

504

0.1 205.5

1625.3 1010.4

105.3 106.3

7.1 4.0 0.4 0.1 0.0 0.0 0.3

41.6 0.0 0.1

0.0 0.0 o.o

3106.5 111715

0.2 27.0 0.00

-83.9 35.96

466.1 0.66

0.087 0.081

5.99 35.96

111715 239.7

605

0.0 0.0

121.5 1936.3 590.9 906.3 62.3 28.4

0.5 0.0 0.0 0.0 0.0 0.1 0.0 0.4

0.4 0.0 0.0

3649.2 182792

59.0 15.7 0.00

-112.2 50.09

476.3 0.68

0.093 0.066 5.00

50.09 182792

383.7

606

0.0 0.0

121.5 1938.3 590.9 906.3 62.3 28.4 0.5 0.0 0.0 0.0 0.0 0.1 0.0 0.4 0.4 0.0 0.0

3649.2 182792

59.0 15.5 0.00

-112.2 50.09

476.3 0.68

0.093 0.066 5.00

50.09 182792

383.7

607

0.0 0.0

80.7 1287.6 392.5 602.1

41.4 18.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.0

2424.1 121424

35.0 22.0 0.00

-76.4 50.09

518.9 0.62

0.116 0.075

7.51 50.09

121424 234.0

Simulation Baji i : Train 3 • Selactao Option - 5% • C3 Mode Rav. 5A PageSol 10

Page 33: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ettiane Recovery Maximization

LOW CONDENSATE CASE - C2 REJECTION MODE • REFRIGERATION SYSTEMS

FLUOR Contract AOWT

Rev.2

Stream Number Composition (kgmole/h)

Elhane Propane t-Bulane

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heal Capacity (kcal/kg-C) Viscosity (cP) Thermal Conduclivity (Kcal/m-hr-C) Molecular Weighl Mass Flow (kg/h) Sld Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surtace Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Row (m3/h)

200

148.7 7212.5

74.4

7435.5 326842

57.4 21.0 0.00

-205.9 43.96

47.7 0.66

0.010 0.021 43.56

432.3 0.77

0.072 0.065

3.28 43.96

326842 756.1

201

148.7 7212.5

74.4

7435.5 326842

49.2 20.3 0.00

-207.8 43.96

450.9 0.72

0.078 0.069

4.12 43.96

326842 724.8

202

148.7 7212.5

74.4

7435.5 326842

20.5 8.8

0.24 -207.8 43.96

18.6 0.48

0.009 0.016 43.58

77530 35.7

499.1 0.64

0.104 0.083 7.38

44.07 249312

499.5

203

23.2 2687.5

42.9

2753.6 121704

21.1 8.8

0.00 -79.6 44.20

16.7 0.48

O.OOS 0.016 43.82

498.9 0.64

0.104 0.083

7.35 44.20

121704 243.9

204

23.2 2687.5

42.9

2753.6 121704

-9.2 3.6

0.20 -79.6 44.20

7.8 0.41

0.007 0.013 43.88

24619 112

541.9 0.59

0.141 0.098 11.13 44.28 97085 179.2

205

23.3 2685.4 44.6

2753.3 121712

-8.2 3.6 1.00 -70.6 44.21

7.8 0.41 0.007 0.013 44.21

121712 55.2

542.6 0.59 0.142 0.098 11.10 44.70

206

23.3 2685.4

44.6

2753.3 121712

-8.5 3.5

1.00 -70.6 44.21

7.6 0.40

0.007 0.013 44.21

121712 55.2

207

8.2 4174.2

196.8

4379.1 195750

-8.2 3.6

0.00 -131.3 44.70

7.8 0.41

0.007 0.013 44.21

542.6 0.59

0.142 0.098 11.10 44.70

195750 360.8

208

8.2 4174.2

196.8

4379.1 195750

-7.6 3.6

0.50 -122.3 44.70

7.8 0.41

0.007 0.013 44.39 97201

43.9

543.2 0.59

0.143 0.097 11.09 45.01 98549 181.4

210

125.5 4524.9

31.4

4681.9 205136

21.1 8.8

1.00 -117.8 43.82

18.7 0.48

0.009 0.016 43.82

205138 93.8

498.9 0.64

0.104 0.083

7.35 44 20

213

125.5 4524.9

31.4

4681.9 205138

20.5 8.5

1.00 -117.8 43.82

18.1 0.47

0.008 0.016 43.82

205138 93.8

220

148.8 7210.4

76.0

7435.2 326850

71.6 21.7 1.00

-182.7 43.96

45.2 0.61

0.011 0.022 43.96

326850 149.0

701

42.1 2041.6

21.0

2104,8 92519

54.5 19.8 0.00

-58.5 43.96

44.4 0.63

0.010 0.020 43.56

438.4 0.75

0.074 0.066

3.57 43.96 92519 211.0

Slmulalion Baaia: Train 3 • SelectBd Option • 5% - C3 Moda Rev. 5A Page 9 otIO

Page 34: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization

LOW CONDENSATE CASE • C2 REJECTION MODE • REFRIGERATION SYSTEMS

FLUOR Contract AOWT

Rev. 2

Stream Number Composition (kgmoia/h)

Ethane Propane i-Butane

Total Stream Molar Ftow (kgmole/h) Mass How (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Row (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weighl Mass Flow (kg/h) Sld Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surtace Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Row (m3/h)

706

10.8 524.1

5.4

540.3 23751

18.1 19.2 0.00

-15.6 43.96

505.8 0.63

0.107 O.OBS 7.62

43.96 23751

47.0

708

10.8 524.1

5.4

540.3 23750

14.5 7.6

0.03 -15.6 43.96

16.1 0.46

0.008 0.015 43.28

6S9 0.3

507.4 0.63

0.110 0.086

8.06 43.98

23090 45.5

709

10.8 524.1

5.4

540.3 23750

16.0 7.6

1.00 -13.7 43.96

16.2 0.46

O.ooa 0.015 43.96

23750 10.8

711

0.0 0.0 0.0

0.0 1

14.5 7.6

0.03 0.0

43.96

16.1 0.46

0.008 0.015 4328

0 0.0

507,4 0.63

0.110 0.086 8.06

43.98 1

0.0

712

0.0 0.0 0.0

0.0 1

14.3 7.6

0.03 0.0

43.96

16.0 0.46

0.008 0.015 43.29

0 0.0

507.7 0.63

0.110 0.086

8.08 43.98

1 0.0

716

55.2 2679.5

27.6

2762.4 121424

16.0 7.4

1.00 -69.8 43.96

15.8 0.46

0.008 0.015 43.96

121424 55.'4

469.6 0.63

0.105 0.086

8.00 44.35

718

21.4 1040.2

10.7

1072.4 47140

18.1 19.2 0.00

-31.0 43.96

505.8 0.63

0.107 0.085

7.62 43.96

47140 93.2

722

9.2 445.5

4.6

459.3 20190 -21.3 18,7 0.00

-13.7 43.96

558.7 0.58

0.158 0.104 12.57 43.96

20190 36.1

723

9.2 445.5

4.6

459.3 20190

•25.0 2.2

0.03 •13.7 43.96

4.8 0.38

0.007 0.012 42.87

507 02

560.3 0.58

0.163 0.106 13.07 43.99 19682

35.1

724

9.2 445.5

4.6

459.3 20190 -23.5

2.1 1.00

-11.8 43.96

4.8 0.38

0.007 0.011 43.96

20190 9.2

727

20.8 1011.1

10.4

1042.4 45821 -24.4

2.0 1.00

-26.8 43.96

4.6 0.38

0.007 0.011 43.96 45821

20.9

530.6 0.57

0.160 0.106 13.14 44.49

732

76.1 3690.6 38.0

3804.8 167245

76.3 20.3 1.00 -92.8 43.96

39.8 0.58 0.011 0.022 43.96

167245 76.3

Simulation Basis: Train 3 - Selected Option + 5% - C3 Mode Rev. 5A Page 10 o l i o

Page 35: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Material Balance

Max. Condensate Case - C2 Rejection Mode Rev.2

GASCO ProjectNo.: 13522102 Doc. No.: 44-00-20011

ETHANE RECOVERY MAXIMIZATION (ERM) PROJECT

Material Balance

Max. Condensate Case

C2 Rejection Mode

Revision 2

Approved

Rev. Date Description By Chk. Disc. Proj. GASCO

13-Feb-04 Approved for Construction 'prs- GS-L-FML-046

4-Sep-03 Approved for Design OPM DTS ED

Page 36: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization

MAX. CONDENSATE CASE - C2 REJECTION MODE

FLUOR Contract AOWT

Rev.2

Stream Number Composition (kgmole/h)

Nilrogen Methane Ethane Propane 1-Butane n-Butane I-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 CS2 M-Mercaptan

E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (0C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conduclivity (Kcal/m-hr-C) Molecular Weigh! Mass Flow (kg'h) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capaciiy (kcal/kg-C) Viscosity (cP) Thermal Conduclivity (Kcal/m-hr-C) Surface Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Flow (m3/h)

Water Phase Mass Flow (kg/h)

104.6 24757.9 3193.1 1849.2 560.9 952.9 253.1 210.1 148.5 129.3 18.4

1.7 0.6

607.0 0.0 0.0 0.0 0.6

112.2

32920.0 758433

58.0 66.5 1.00

-696.3 23.04

66.2 0.63

0.014 0.034 23.04

758432 659.7

104.6 24757.9

3193.1 1849.2 580.9 952.9 253.1 210.1 148.5 129.3 18.4

1.7 0.6

607.0 0.0 0.0 0.0 0.6

112.2

32920.0 758433

44.8 65.8 0.98

-704.4 23.04

68.0 0.64

0.014 0.033 22.50

726421 647.0

515.2 0.61

0.119 0.072

7.54 53.40

31069 60.3

943

104.6 24757.9

3193.1 1849.2 580.9 952.9 253.1 210.1 148.5 129.3

18.4 1.7 0.6

607.0 0.0 0.0 0.0 0.6

112.2

32920.0 758433

27.0 6S.4 0.94

-716.3 23.04

70.5 0.67

0.014 0.032 21.51

663625 618.3

499.6 0.61

0.112 0.073

7.32 47.11

93202 186.5

1606

103.5 24200.0

2967.1 1562.8 433.5 663.0 137.2 105.3 46.2 26.3

1.2 0.0 0.6

582.2 0.0 0.0 0.0 0.2

22.0

30851.1 663517

27.0 65.3 1.00

-647.3 21.51

70.3 0.67

0.014 0.032 21.51

663517 618.3

499.9 0.61

0.113 0.073

7.32 47.13

103 5 24200.0 2967.1 1562.8 433.5 663.0 137.2 105.3 46.2 26.3

12 0.0 0.6

582.2 0.0 0.0 0.0 0.2 0.0

30829.1 663120

27.8 62.8 1.00

-645.1 21.51

66.7 0.65

0.013 0.032 21.51

663120 617.8

1.1 557.9 226.0 286.4 147.4 289.9 116.0 104.8 102.3 103.0 17.3

1.7 0.1

24.7 0.0 0.0 0.0 0.4 1.1

1979.8 93309

27.0 65.3 0.00

-63.0 47.13

70.3 0.67

0.014 0.032 21.51

499.9 0.61

0.113 0.073

7.32 47.13

93309 186.7

1.1 557.9 226.0 286.4 147.4 269.9 116.0 104.8 102.3 103.0

17.3 1.7 0.1

24.7 0.0 0.0 0.0 0.4 1.1

1979.8 93309

17.4 31.4 0.24

-63.0 47.13

32.8 0.55

0.012 0.027 22.21 10542

9.5

567.6 0.58

0.158 0.080 10.21 55.00

82763 145.8

10

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0

89.1

89.1 1607 27.0 65.3 0.00 -6.1

18.02

70.3 0.67

0.014 0.032 21.51

499.9 0.61

0.113 0.073

7.32 47.13

1607

11

1.1 557.9 226.0 286.4 147.4 289.9 116.0 104.8 102.3 103.0

17.3 1.7 0.1

24.7 0.0 0.0 0.0 0.4 1.1

1979.8 93309

49.2 30.7 0.37

-60.6 47.13

35.5 0.54

0.013 0.028 27.01 19602

14.5

543.3 0.61

0.131 0.073 8.32

58.77 73708 135.7

20

43.6 10186.2

1248.9 657.8 182.5 279.1

57.7 44.3 19.4 11.1 0.5 0.0 0.2

245.0 0.0 0.0 0.0 0.1 0.0

12976.5 279118

27.6 62.5 1.00

-271.5 21.51

66.4 0.65

0.013 0.032 21.51

279118 260.0

22

43.6 10186.2

1246.9 657.8 182.5 279.1

57.7 44.3 19.4 11.1 0.5 0.0 0.2

245.0 0.0 0.0 0.0 0.1 0.0

12976.5 279118

-4.0 60.8 0.91

-279.4 21.51

71.4 0.73

0.013 0.030 19.90

235403 237.0

475.3 0.63

0.101 0.078

7.34 38.08

43715 92.0

23

59.9 14013.8

1718.2 905.0 251.0 363.9 79.4 61.0 26.8 15.2 0.7 0.0 0.3

337.1 0.0 0.0 0.0 0.1 0.0

17852.5 384000

27.6 62.5 1.00

-373.5 21.51

66.4 0.65

0.013 0.032 21.51

384000 357.8

24

46.7 10911.8

1337.9 704.7 195.5 298.9

61.9 47.5 20.8 11.9 0.5 0.0 0.3

262.5 0.0 0.0 0.0 0.1 0.0

13900.8 299000

27.5 62.4 1.00

-290.9 21.51

66.3 0.65

0.013 0.032 21.51

299000 278.6

Sftnulation Baeis: Train 3 - Mar Condensale + S% - C3 Mode Rev. 3A Page 1 of 10

Page 37: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization

FIUOR Contract AOWT

Rev. 2

MAX. CONDENSATE CASE • C2 REJECTION MODE

Stream Number 25 26 28 29 30 31 32 33 34 36 37 38 43 Composition (kgmole/h)

Nitrogen 46.7 13.3 13.3 59.9 103.5 101.1 69.8 69.8 16.0 16.0 101.1 99.3 99.3 Methane 10911.8 3102.0 3102.0 14013.8 24200.0 22822.1 15749.9 15749.9 3609.6 3609.6 22822.1 21869.1 21869.1 Ethane 1337.9 380.3 380.3 1718.2 2967.1 2376.8 1640.3 1640.3 375.9 375.9 2376.8 2006.0 2006.0 Propane 704.7 200.3 200.3 905.0 1562.8 919.4 634.5 634.5 145.4 145.4 919.4 599.6 599.6 I-Butane 195.5 55.6 55.6 251.0 433.5 177.7 122.6 122.6 28.1 28.1 177.7 84.2 84.2 n-Butane 298.9 85.0 85.0 383.9 663.0 225.4 155.5 155.5 35.6 35.6 225.4 89.8 89.8 i-Pentane 61.9 1 7.6 17.6 79.4 137.2 26.3 18.1 18.1 4.2 4.2 26.3 6.1 6.1 n-Pentane 47.5 1 3.5 13.5 61.0 105.3 17.2 11.9 11.9 2.7 2.7 17.2 3.4 3.4 n-Hexane 20.8 5.9 5.9 26.8 46.2 3.3 2.3 2.3 0.5 0.5 3.3 0.3 0.3 NBP91 11.9 3.4 3.4 15.2 26.3 1.0 0.7 0.7 0.2 0.2 1.0 0.0 0.0 NBP138 0.5 0.1 0.1 0.7 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NBP182 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H2S 0.3 0.1 0.1 0.3 0.6 0.5 0.3 0.3 0.1 0.1 0.5 0.4 0.4 C02 262.5 74.6 74.6 337.1 562.2 516.6 356.5 356.5 81.7 81.7 516.6 471.5 471.5 CS2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 M-Mercaptan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 E-Mercaptan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o o.o nPMercaptan 0.1 0.0 0.0 0.1 0,2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total Stream Molar Flow (kgmole/h) 13900.8 3951.7 3951.7 17852.5 30829.1 27187.4 18762.4 18762.4 4300.0 4300.0 27187.4 25229.7 25229.7 Mass Flow (kg*) • 299000 85000 85000 384000 663120 630687 366234 366234 83934 83934 530687 471978 471978 Temperature CC) -5.7 27.5 -21.8 -15.9 -11.0 -11.0 -11.0 -31.0 -11.0 -30.9 -30.7 -30.7 -49.0 Pressure (bara) 61.3 62.4 60.9 60.8 60.7 60.7 60.7 60.2 60.7 60.2 60.2 60.2 39.6 Vapour Fraction 0.90 1.00 0.83 0.86 0.88 1.00 1.00 0.93 1.00 0.93 0.93 1.00 0.95 Heat Flow (Gcal/h) -299.8 -82.7 -86.6 -389.0 -668.4 -564.5 -389.6 -397.2 -89.3 -91.0 -575.4 -523.5 -526.3 Molecular Weight 21.51 21.51 21.51 21.51 21.51 19.52 19.52 19.52 19.52 19.52 19.52 18.71 18.71

Vapor Phase Denslly (kg/m3) 72.6 66.3 77.4 75.0 73.2 73.3 73.2 82.4 73.2 82.3 82.1 82.4 51.3 Heat Capacity (kcal/kg-C) 0.74 0.65 0.82 0.78 0.76 0.76 0.76 0.92 0.76 0.92 0.91 0.91 0.74 Viscosity (cP) 0.013 0.013 0.012 0.012 0.012 0.012 0.012 0,012 0.012 0.012 0.012 0.012 0.010 Thermal Conductivity (Kcal/m-hr-C) 0.030 0.032 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.024 Molecular Weight 19.81 21.51 18.96 19.26 19.52 19.52 19.52 18.69 19.52 18.70 18.70 18.71 18.05 Mass Flow (kg*) 248878 85000 61915 295152 530652 530667 366178 324858 83922 74495 471765 471978 430893 Std Gas Flow (MMSCFD) 251.8 79.2 65.4 307.1 544.8 544.8 376.0 348.3 86.2 79.9 505.5 505.6 478.4

Hydrocarbon Liquid Phase Density (kg/m3) 472.7 • - 459.7 455.9 470.4 470.3 470.3 429.6 470.3 429.8 430.4 430.0 475.5 Heat Capacity (kcal/kg-C) 0.63 - 0.64 0.63 0.63 0.63 0.63 0.68 0.63 0.68 0.68 0.68 0.64 Viscosity (CP) 0.099 — 0.093 0.096 0.098 0.098 0.098 0.078 0.098 0.079 0.079 0 079 0.097 Thermal Conductivity (Kcal/m-hr-C) 0.078 - - 0.080 0.079 0.079 0.079 0.079 0.080 0.079 O.OBO 0.080 0.080 0.087 Surtace Tension (dyne/cm) 7.29 - 7.17 7.27 7.33 7.32 7.33 6.47 7.33 6.4B 6.49 6.48 6.31 Molecular Weight 37.53 - - 33.65 35.14 36.37 36.37 36.36 29.92 36.36 29.94 30.00 29.99 30.31 Mass Flow (kg/h) 50122 - 23085 88848 132468 - 58 41376 13 9439 58922 - 41084 Actual Volume Flow (m3/h) 106.0 - - 50.2 190.7 281.6 - 0.1 96.3 0.0 22.0 136.9 - 86.4

Water Phase Mass Flow (kg*)

SimuiaUm Basis: Train 3 - Max Condensale * 5% - C3 Mode Rev. 5A Page 2 0110

Page 38: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization

MAX. CONDENSATE CASE - C2 REJECTION MODE

FLUOR Contract AOWT

Rev.2

Stream Number Composition (kgmole/h)

Nitrogen Methane Ethane Propane i-Butane n-Butane I-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 CS2 M-Mercaptan

E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (0C) Pressure (bara) Vapour Fraction Heat Row (Gcal/h) Molecular Weight

Vapor Phase Density (kg/mS) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Row (kg/h) Std Gas Flow (MMSCFD)

Hydrocarbon Uquld Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surface Tension (dyne/cm) Molecular Weight Mass Row (kg/h) Actual Volume Flow (m3/h)

Water Phase Mass Flow (kg/h)

50

2.4 1377.9 590.2 643.4 255.8 437.6 110.9 88.1 42.9 25.3

1.2 0.0 0.1

65.6 0.0 o.o 0.0 0.2 0.0

3641.7 132433

•11.0 60.7 0.00

•103.8 36.37

73.3 0.76

0.012 0.029 19.52

470.3 0.63

0.098 0.079

7.32 36.37

132433 281.6

52

1.7 587.4

65.4 20.9 3.4 4.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0

14.7 0.0 0.0 0.0 0.0 0.0

698.3 13489 •19.7 39.7 1.00

-14.5 19.32

44.6 0.62

0.011 0.026 19.32 13489

14.0

525.9 0.59

0.130 0.085

9.59 40.41

53

0.7 790.5 524.8 622.5 252.3 433.6 110.5 87.9 42.9 25.3

1.2 0.0 0.1

50.9 0.0 0.0 0.0 0.2 0.0

2940.4 118944

-19.7 39.7 0.00

-89.3 40.41

44.6 0.62

0.011 0.026 19.32

525.9 0.59

0.130 0.085

9.59 40.41

118944 226.2

54

1.7 953.1 370.9 319.9 93.5

135.5 20.2 13.8 3.0 1.0 0.0 0.0 0.1

45.0 0.0 0.0 0.0 0.0 0.0

1957.7 58710 -30.7 60.2 0.00

-51.8 29.99

82.4 0.91

0.012 0.029 18.71

430.0 0.68

0.079 0.080

6.48 29.99

58710 136.5

56

1.2 363.7

32.0 7.0 0.8 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.4 0.0 0.0 0.0 0.0 0.0

433.9 7922 -422 39.7 1.00 -8.9

18.26

49.0 0.70

0.010 0.024 18.26 7922

8.7

497.4 0.62

0.111 0.087

9.00 33.33

57

0.5 569.4 338.8 312.8 92.8

134.8 20.2 13.8 3.0 1.0 o.o 0.0 o.i

36.7 0.0 0.0 0.0 0.0 0.0

1523.8 50788 -42.2 39.7 0.00

-42.9 33.33

49.0 0.70

0.010 0.024 18.26

497.4 0.62

0.111 0.087

9.00 33.33

50788 102.1

58

2.9 971.1 97.4 27.9 4.2 4.7 0.4 0.3 0.0 0.0 0.0 0.0 0.0

23.1 0.0 0.0 0.0 0.0 0.0

1132.2 21411

-27.9 39.7 1.00

-23.4 18.91

45.8 0.65

0.011 0.025 18.88

21337 22.7

5178 0.60

0.125 0.086 9.51

37.92 74

0.1

70

103.5 24200.1 2880.1

157.6 2.9 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.6

582.1 0.0 0.0 0.0 0.0 0.0

27928.1 510575

-55.3 39.5 1.00

-581.4 1828

56.6 0.82

0.010 0.024 18.28

510573 559.7

416.2 0.74

0.066 0.086 6.43

25.00 2

0.0

72

103.5 24200.0 2880.1

157.7 2.9 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.6

582.1 0.0 0.0 0.0 0.0 0.0

27928.1 510578

-41.5 39.1 1.00

-576.0 18.28

47.8 0.69

0.010 0.024 18.28

510578 559.7

73

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0

22.6 38.6 1.00 0.0

18.26

31.4 0.57

0.012 0.030 18.28

75

103.5 24200.0 2880.1

157.7 2.9 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.6

582.1 0.0 0.0 0.0 0.0 0.0

27928.1 510578

-9.2 38.8 1.00

-565.6 18.28

37.3 0.59

0.011 0.027 18.28

510578 559.7

76

103.5 24200.0 2880.1

157.7 2.9 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.6

582.1 0.0 0.0 0.0 0.0 0.0

27928.1 510578

22.6 38.6 1.00

-556.1 18.28

31.4 0.57

0.012 0.030 18.28

510578 559.7

77

96.9 22646.3 2695.2

147.5 2.7 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.5

544.8 0.0 0.0 0.0 0.0 0.0

26135.1 477799

22.6 38.4 1.00

-520.4 18.28

31.2 0.57

0.012 0.030 18.28

477799 523.7

Simulation Basis: Train 3 • Max Condensate t 5% - C3 Mode Rev. 5A PageSol 10

Page 39: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

OASCO Ethane Recovery Maximization

MAX. CONDENSATE CASE - C2 REJECTION MODE

FLUOR Contract AOWT

Rev.2

Stream Number Composition (kgmole/h)

Nitrogen Methane Ethane Propane i-Butane n-Butane i-Penlane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 CS2 M-Mercaptan E-Mercaptan nPMercaptan H20

Tolal Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heal Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/mS) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surface Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Flow (m3/h)

Water Phase Mass Flow (kgm)

78

96.9 22646.3 26952

147.5 2.7 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.5

544.8 0.0 0.0 0.0 0.0 0.0

26135.1 477799

52.4 38.0 1.00

•512.3 18.28

27.2 0.57

0.013 0.033 18.28

477799 523.7

79

96.9 22646.3

2695.2 147.5

2.7 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.5

544.8 0.0 0.0 0.0 0.0 0.0

26135.1 477799

64.7 43.5 1.00

•509.5 18.28

29.9 0.58

0.013 0.035 18.28

477799 523.7

80

96.9 22646.3

2695.2 147.5

2.7 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.5

544.8 0.0 0.0 0.0 0.0 0.0

26135.1 477799

54.0 42.8 1.00

-512.4 18.28

30.7 0.57 0.013 0.034 18.28

477799 523.7

81

6.6 1553.7

184.9 10.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

37.4 0.0 0.0 0.0 0.0 0.0

1793.0 32779

22.6 38.4 1.00

-35.7 18.28

31.2 0.57

0.012 0.030 18.28

32779 35.9

1.3 1520.9 1439.3 775.7 100.2 103.8

6.7 3.8 0.3 0.1 0.0 0.0 0.3

124.2 0.0 0.0 0.0 0.0 0.0

4076.3 120037

-40.9 39.6 0.00

-108.6 29.45

455.4 0.67

0.083 0.088 7.51

29.45 120037

263.6

90

1.3 1520.9 1439.3 775.7 100.2 103.8

8.7 3.8 0.3 0.1 0.0 0.0 0.3

124.2 0.0 0.0 0.0

o.o 0.0

4076.3 120037

-52.2 25.2 0.17

•108.6 29.45

31.5 0.60

0.009 0.021 18.91

13137 13.9

504.6 0.62

0.113 0.097

9.88 31.61

106899 211.8

91

0.1 208.4

1557.1 1159.9 114.4 114.2

7.0 3.9 0.3 0.1 0.0 0.0 0.3

35.3 0.0 0.0 0.0 0.0 0.0

3201.0 116987

2.7 29.6 0.00

•86.6 36.55

466.6 0.66

0.087 0.080 5.97

38.55 116987

250.7

92

0.7 790.5 524.8 622.5 252.3 433.6 110.5 879 42.9 25.3 1.2 0.0 0.1

50.9 0.0 0.0 0.0 0.2 0.0

2943.4 118944

•26.4 25.5 0.13

-89.3 40.41

28.0 0 55

0.010 0.023 19.59 7747

7.9

560.6 0.57

0.163 0.091 11.56 43.64

111197 198.3

93

0.7 790.5 524.8 622.5 252.3 433.6 110.5 87.9 42.9 25.3 1.2 0.0 0.1

50.9 0.0 0.0 0.0 0.2 0.0

2943.4 118944

14.0 24.8 0.33

-85.4 40.41

29.8 0.52

0.011 0.024 24.94

24462 19.7

533.6 0.60

0.130 0.079 8.B4

48.14 94481 177.1

94

0.7 790.5 524.8 622.5 252.3 433.6 110.5 87.9 42.9 25.3 1.2 0.0 0.1

50.9 0.0 0.0 0.0 0.2 0.0

2943.4 118944

30.0 24.1 0.44

-83.4 40.41

31.1 0.52

0.011 0.024 27.98 36473

26.1

523.4 0.61

0.120 0,074

7.86 50.29 82471 157.6

95

0.5 569.4 338.8 312.8 92.8

134.8 20.2 13.8 3.0 1.0 0.0 0.0 0.1

36.7 0.0 0.0 0.0 0.0 0.0

1523.8 50788 •52.1 24.8 0.17

-42.9 33.33

29.2 0.59

0.009 0.021 18.19 4652

5.1

544.1 0.58

0.152 0.096 11.57 36.38

46135 84.8

96

0.5 569.4 338.8 312.8

92.8 134.8 20.2 13.8 3.0 1.0 0.0 0.0 0.1

36.7 0.0 0.0 0.0 0.0 0.0

1523.8 50788 •15.8 24.1 0.41

•41.2 33.33

28.5 0.53

0.010 0.023 21.84 13645

12.5

531.8 0.59

0.133 0.088

9.86 41.32 37142

69.8

103

0.1 157.4 919.6

2020.0 349.1 433.7

48.2 31.6 6.0 1.9 0.0 0.0 0.2

22.9 0,0 0.0 0.0 0.0 0.0

3990.7 172250

33.9 23.8 0.00

•115.1 43.16

468.2 0.67

0.085 0.070 5.25

43.16 172250

367.9

Simulation Basis: Tram 3 • Max Condensale • 5% • C3 Mode Rev. 5A Page 4 ol 10

Page 40: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhana Recovery Maximization

MAX. CONDENSATE CASE - C2 REJECTION MODE

FLUOR Contract AOWT

Rev.2

Stream Number Composition (kgmole/h)

Nitrogen Methane Ethane Propane I-Butane n-Butane i-Pentane n-Pentana n-Hexane NBP91 NBP138 NBP1B2 H2S C02 CS2 M-Mercaptan E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Row (kg/h) Temperature (nC) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heal Capadty (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Sld Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surface Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Flow (m3/h)

Water Phase Mass Flow (kg/h)

104

0.1 157.4 919.6

2020.0 349.1 433.7 46.2 31.6

6.0 1.9 0.0 0.0 0.2

22.9

0.0

0.0

0.0

0.0

0.0

3990.7

172250

46.0

23.8

0.17

•112.1

43.16

43.2

0.58

0.011

0.022

36.60

24931

13.7

457.5

0.70

0.082

0.067

4.63

44.51

147319

322.0

109

0.0

0.0

87.0

1405.3

430.6

661.7

137.2

105.3

46.2

26.3

1.2

0.0

0.0

0.0

o.o 0.0

0.0

0.2

0.0

2901.0

152546

88.1

23.9

0.00

•89.3

52.58

439.3

0.75

0.076

0.055

2.95

52.58

152546

347.3

110

1.3

1567.9

2333.5

689.7

28.9

20,9

0.5

0.2

0.0

0.0

0.0

0.0

0.5

122.8

0.0

0.0

0.0

0.0

0.0

4766.2

134139

5.3

23.7

1.00

•108.4

28.14

36.1

0.54

0.010

0.021

28.14

134139

95.5

468.6

0.67

0.088

0.080

6.01

37.27

0

0.0

111

2.5

2880.7

2215.9

305.6

14.7

10.5

0.2

0.1

0.0

0.0

0.0

O.O

0.4

211.7

0.0

0.0

0.0

0.0

0.0

5642.5

137221

•17.5

23.3

1.00

-129.0

24.32

32.5

0.54

0.010

0.021

24.29

136608

112.7

482.8

0.65

0.095

0.089

7.51

34.58

613

1.3

112

2.5

2680.8

2215.9

305.6

14.7

10.5

0.2

0.1

0.0

0.0

0.0

0.0

0.4

211.7

0.0

0.0

0.0

0.0

0.0

5642.6

137223

-11.0

22.9

1.00

•128.4

24.32

30.5

0.52

0.010

0.021

24.32

137223

113.1

113

2.5

2880.8

2215.9

305.6

14.7

10.5

0.2

0.1

0.0

0.0

0.0

0.0

0.4

211.7

0.0

0.0

0.0

0.0

0.0

5642.6

137223

21.0

22.6

1.00

-126.1

24.32

25.1

0.50

0,011

0.024

24.32

137223

113.1

115

2.5

2880.8

2216.9

305.6

14.7

10.5

0.2

0.1

0.0

0.0

0.0

0.0

0.4

211.7

0.0

0.0

0.0

0.0

0.0

5642.6

137223

85.4

52.5

1.00

-122.7

24.32

48.2

0.58

0.014

0.033

24.32

137223

113.1

116

2.5

2880.7

2215.9

305.6

14.7

10.5

0.2

0.1

0.0

0.0

0.0

0.0

0.4

211.7

0.0

0.0

0.0

0.0

0.0

5642.5

137221

85.4

52.5

1.00

-122.7

24.32

48.2

0.58

0.014

0.033

24.32

137221

113.1

117

0.0

0.0

0.0

0.0

0.0

0.0

o.o 0.0

o.o o.o 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1

85.4

52.5

1.00

0.0

24.32

48.2

0.58

0.014

0.033

24.32

1

0.0

118

2.5

2880.7

2215.9

305.6

14.7

10.5

0.2

0.1

0.0

0.0

0.0

0 0

0.4

211.7

0.0

0.0

0.0

0.0

0.0

5642.5

137221

47.7

51.9

1.00

-125.7

24.32

57.5

0.60

0.013

0.030

24.32

137221

113.1

119

0.0 0.0 0.0 0.0 0.0 0.0

o.o 0.0 0.0 0.0 0.0 0.0

o.o 0.0 0.0 0.0 0.0 0.0

o.o o.o

i 85.4 52.5 1.00 0.0

24.32

48.2 0.58 0.014 0.033 24.32

1 0.0

120

0.0

0.0

0.0

o.o o.o o.o o.o 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.0

0.0 1

55.0

51.9

1.00

0.0

24.32

55.1

0.59

0.013

0.030

24.32

1

0.0

121

2.5

2880.8

2215.9

305.6

14.7

10.5

0.2

0.1

0.0

0.0

0.0

0.0

0.4

211.7

0.0

0.0

0.0

O.O

0.0

5642.6

137223

47.7

51 .9

1.00

-125.7

24.32

57.5

0.60

0.013

0.030

24.32

137223

113.1

Simulallon Basis: rrain 3 - Max Condensate -* 5% - C3 Mode Rev. 3A Page 5 o f l 0

Page 41: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization

FLUOR Contract AOWT

Rev.2

MAX. CONDENSATE CASE • C2 REJECTION MODE

StreamNumber 122 123 124 125 126 127 128 129 130 131 132 141 142 Composition (kgmole/h)

Nitrogen 2.5 2.5 2.5 2.5 2.5 2.5 0.8 0.8 0.0 0.0 0.0 0.0 0.0 Methane 2880.8 2880.8 2880.8 2880.8 2880.8 2880.8 867.9 867.9 0.0 0.0 0.0 0.0 0.0 Ethane 2215.9 2215.9 2215.9 2215.9 2215.9 2215.9 667.6 667.6 87.0 87.0 87.0 126.9 126.9 propane 305.6 305.6 305.6 305.6 305.6 305.6 92.1 92.1 1405.3 1405.3 1405.3 2048.8 2048.8 I-Butane 14.7 14.7 14.7 14.7 14.7 14.7 4.4 4.4 430.6 430.6 430.6 627.6 627.6 n-Butane 10.5 10.5 10.5 10.5 10.5 10.5 3.2 3.2 661.7 661.7 661.7 961.2 961.2 i-Pentane 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 137.2 137.2 1372 65.7 65.7 n-Pentane 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 105.3 105.3 105.3 30.2 30.2

n-Hexane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.2 46.2 46.2 0.5 0.5 NBP91 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.3 26.3 26.3 0.0 0.0 NBP138 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 1.2 1.2 0.0 0.0 NBP182 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H2S 0.4 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 C02 211.7 211.7 211.7 211.7 211.7 211.7 63.8 63.8 0.0 0.0 0.0 0.1 0.1 CS2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.O 0.0 0.0 0.0 0.0 0.0 M-Mercaptan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 E-Mercaptan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 nPMercaptan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.0 0.0 H20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total Stream Molar Flow (kgmole/h) 5642.6 5642.6 5642.6 5642.6 5642.6 5842.6 1700.0 1700.0 2901.0 2901.0 2901.0 3861.2 3861.2 Mass Flow (kg*) 137223 137223 137223 137223 137223 137223 41342 41342 152546 152546 152546 193488 193488 Temperature C O 24.5 -4,0 -17.0 -25.3 -54.4 -55.9 -17.0 -47.3 75.0 73.8 73.1 74.9 59.9 Pressure (bara) 51.5 51.2 51.0 50.7 50.5 39.5 51.0 50.7 18.0 16.8 16.5 16.0 22.5 Vapour Fraction 1.00 0.87 0.58 0.41 0.00 0.02 0.58 0.00 0.16 0.29 0.30 1.00 0.00 Heat Flow (Gcal/h) -127.6 -131.5 -134.9 -136.9 -142.3 -142.3 -40.6 -42.6 -89.3 -88.3 -88.3 -104.2 -118.7 Molecular Weight 24.32 24.32 24.32 24.32 24.32 24.32 24.32 24.32 52.58 52.58 52.58 50.11 50.11

Vapor Phase Density (kg/m3) 66.7 82.4 80.1 78.6 - 57.4 80.1 - 39.8 37.0 36.3 36.4 Heat Capacity (kcal/kg-C) 0.65 0.85 0.87 0.89 - 0.83 0.87 — 0.59 0.58 0.57 0.58 Viscosity (cP) 0.013 0.012 0.012 0.012 - 0.010 0.012 — 0.011 0.010 0.010 0.010 Thermal Conductivity (Kcal/m-hr-C) 0.028 0.027 0.027 0.027 - 0.024 0.027 - 0.021 0.021 0.021 0.021 Molecular Weight 24.32 23.58 21.98 21.01 — 18.35 21.98 — 48.04 48.50 48.50 50.11 Mass Row (kg/h) 137223 115349 71818 48026 - 2577 21637 — 22767 40576 41599 193488 Sld Gas Flow (MMSCFD) 113.1 98.1 65.5 45.8 - 2.8 19.7 - 9.5 16.8 17.2 77.4

Hydrocartxm Uquld Phase Density (kg/m3) - 371.0 374.3 376.4 402.3 409.2 374.3 383.8 471.7 478.9 480.6 - 478.4 Heat Capacity (kcal/kg-C) - 0.85 0.64 0.83 0.76 0.76 0.84 0.80 0.69 0.68 0.68 - 0.68 Viscosity (cP) — 0.053 0.053 0.053 0.061 0.062 0.053 0.055 0.089 0.093 0.094 — 0.092 Thermal Conductivity (Kcal/m-hr-C) - 0.076 0.080 0.081 0.084 0.085 0.080 0.083 0.061 0.062 0.062 - 0.065 Suriace Tension (dyne/cm) - 3.96 4.56 4.90 5.39 6.22 4.56 5.46 4.34 4.65 4.74 - 4.92 Molecular Weight - 29.17 27.53 26.58 24.32 24.47 27.53 24.32 53.47 54.24 54.30 - 50.11 Mass Flow (kg*) - 21874 65405 89197 137223 134646 1970S 41342 129779 111970 110947 - 193488 Actual Volume ROW (m3m) — 59.0 174.8 237.0 34t.1 329.0 52.7 107.7 275.1 233.8 230.8 — 404.5

Water Phase Mass Flow (kgm)

Simulalioo Basla: Train 3 - Max Conflonsala + 5% • C3 Moda Rev. 5A Page6ot 10

Page 42: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization

MAX. CONDENSATE CASE - C2 REJECTION MODE

FLUOR Contract AOWT

Rev.2

Stream Number Composition (kgmole/h)

Nilrogen Methane Ethane Propane l-Butane n-Butane i-Peraane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 CS2 M-Mercaptan E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Row (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capaciiy (kcal/kg-C) Viscosity (cP) Thermal Conduclivity (Kcal/m-hr-C) Suriace Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Flow (m3/h)

Water Phase Mass Flow (kg/h)

150

0.0 0.0

87.0 1405.3 430.5 659.3 45.1 20.7

0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2648.3 132710

59.9 22.5 0.00

-81.4 50.11

151

0.0 0.0

o.o 0.0 0.1 2.4

92.1 84.6 45.8 26.3 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

252.7 19836 159.2

16.3 0.00 -9.6

78.50

152

0.0 0.0 0.0 0.0 0.1 2.4

92.1 84.5 45.8 26.3

1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

252.7 19833

80.3 15.6 0.00

-10.6 78.50

153

0.0 0.0 0.0

o.o 0.1 2.4

92.1 84.5 45.8 26.3

1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

252.7 19833

49.0 15.4 0.00 •11.0 78.50

478.4 0.68

0.092 0.065

4.92 50.11

132710 277.4

468.8 0.75

0.083 0.049

3.19 78.50 19836

42.3

584.2 0.61

0.156 0.077 10.25 78.50 19833

34.0

618.0 0.58

0.202 0.085 13.40 78.50 19833

32.1

501

15.3 3454.3 359.8 139.2 26.9 34.1 4.0 2.6 0.5 0.2 0.0 0.0 0.1

78.2 0.0 0.0 0.0 0.0 0.0

4115.0 80323 -11.0 60.7 l.OO

-85.5 19.52

73.2 0.76

0.012 0.029 19.52

80311 82.5

470.3 0.63

0.098 0.079

7.33 36.36

12 0.0

502

15.3 3454.3

359.8 139.2 26.9 34.1 4.0 2.6 0.5 0.2 0.0 0.0 0.1

78.2 0.0 0.0 0.0 0.0 0.0

4115.0 80323 -29.2 60.2 0.94

-87.0 19.52

81.4 0.90

0.012 0.029 18.77

72273 77.2

433.4 0.67

0.080 0.060 6.56

30.44 8050 18.6

503

1.3 1520.9 1439.3 775.7 100.2 103.8

6.7 3.8 0.3 0.1 0.0 0.0 0.3

124.2 0.0 0.0 0.0 0.0 0.0

4076.3 120037

•41.7 24.6 0.28

-107.1 29.45

30.8 0.57

0.010 0.021 20.08

23005 23.0

504.9 0.62

0.111 0.096

9.57 33.11 97031 192.2

504

1.1 881.4 198.9 24.7

1.1 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

37.7 0.0 0.0 0.0 0.0 0.0

1145.6 23005 -41.7 24.6 1.00

-25.0 20.08

30.8 0.57

0.010 0.021 20.08

23005 23.0

504.9 0.62

0.111 0.096 9.57

33.11

505

0.2 639.5

1240.4 750.9 99.1

103.0 6.7 3.8 0.3 0.1 0.0 0.0 0.2

86.5 0.0 0.0 0.0 0.0 0.0

2930.8 97031 -41.7 24.6 0.00

-62.2 33.11

30.8 0.57

0.010 0.021 20.08

504.9 0.62

0.111 0.096

9.57 33.11

97031 192.2

507

0.2 639.5

1240.4 750.9 99.1

103.0 6.7 3.8 0.3 0.1 0.0 0.0 0.2

86.5 0.0 0.0 0.0 0.0 0.0

2930.8 97031 -42.8 23.3 0.02

-62.2 33.11

29.1 0.56

0.009 0.021 20.11

972 1.0

509.1 0.62

0,114 0.097

9.82 33.33 96060 188.7

600

0.2 639.9

1240.6 751.1 99.2

103.1 6.7 3.8 0.3 0.1 0.0 0.0 0.2

86.5 0.0 0.0 0.0 0.0 0.0

2931.8 97065

-42.8 23.3 0.02

-82.2 33.11

29.1 0.56

0.009 0.021 20.11

981 1.0

509.1 0.62

0.114 0.097

9.82 33.33

96083 188.7

601

46.7 10911.8

1337.9 704.7 195.5 298.9 61.9 47.5 20.8 11.9 0.5 0.0 0.3

262.5 0.0 0.0 0.0 0.1 0.0

13900.8 299000

-14.1 60.9 0.87

-302.3 21.51

74.5 0.78

0.012 0.029 19.35

233213 241.5

467.2 0.63

0,097 0.079

7.28 35.55

65787 140.8

602

1.4 1999.3 2017.0 280.9

13.6 9.8 0.2 0.1 0.0 0.0 0.0 0.0 0.4

174.1 0.0

o.o 0.0 0.0 0.0

4497.0 114216

-12.5 23.3 1.00

-104.0 25.40

33.6 0.54

0.010 0.021 25.40

114216 90.1

477.3 0.65

0.092 0.086

7.00 34.83

0 0.0

Simulation Basis: Train 3 • Max Contonsato + 5% • C3 Mode Rev. 5A Page7ol 10

Page 43: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recoveiy Maximization

FLUOR Contract AOWT

Rev.2

MAX. CONDENSATE CASE • C2 REJECTION MODE

Stream Number Composition (kgmole/h)

Nitrogen Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 CS2 M-Mercaptan E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature ("C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/mS) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Row (kg/h) Std Gas Row (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Suriace Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Flow (m3/h)

Water Phase Mass Flow (kg/h)

604

0.1 208.4 1557.1 1159.9 114.4 114.2 7.0 3.9 0.3 0.1 0.0 0.0 0.3 35.3 0.0 0.0 0.0 0.0 0.0

3201.0 116987

2.7 27.0 0.00 -86.6 36.55

466.7 0.66 0.087 0.080 5.97 36.55

116987 250.7

605

0.0 0.0

126.9 2048.8 627 6 961.2 65.7 30.2 0.5 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

3861.2 193488 59.1 15.7 0.00

-118.7 50.11

476.2 0.68 0.093 0.066 4.99 50.11

193488 406.3

606

0.0 0.0

126.9 2048.8 627.6 961.2 65.7 30.2 0.5 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

3861.2 193488 59.1 15.5 0.00

-118.7 50.11

476.2 0.68 0.093 0.066 4.99

50.11 193488 406.3

607

0.0 0.0 87.0

1405.3 430.5 659.3 45.1 20.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2648 3 132710 35.0 22.0 0.00 -83.5 50.11

518.9 0.62 0.116 0.075 7.51 50.11

132710 255.7

Stmulalron Basis: Train 3 - Max Condansata + 5% • C3 Moda Rav. 5A PageSol 10

Page 44: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhane Recovery Maximization

MAX. CONDENSATE CASE - C2 REJECTION MODE - REFRIGERATION SYSTEMS

FLUOR Conirad AOWT

Rev.2

Stream Number Composition (kgmole/h)

Elhane Propane I-Butane

Total Stream Molar Row (kgmole/h) Mass Flow (kg/h) Temperature f C ) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conduclivity (Kcal/m-hr-C) Suriace Tension (dyne/cm) Molecular Weight Mass Flow (kg*) Actual Volume Flow (m3/h)

200

157.8 7652.4

78.9

7889.1 346778

57.4 21.0 0.00

-218.4 43.96

47.7 0.66

O.OIO 0.021 43.58

432.3 0.77

0.072 0.065

3.28 43.96

346778 802.2

201

157.8 7652.4

78.9

7889.1 346778

48.4 20.3 0.00

-220.7 43.96

452.8 0.72

0.079 0.069

4.21 43.96

346778 765.8

202

157.8 7652.4

78.9

7889.1 346778

19.6 8.6

0.24 -220.7 43.96

18.2 0.47

0.008 0.016 43.58 81605

37.5

500.4 0.64

0.105 0.084

7.49 44.07

265173 529.9

203

22.5 2677.4

43.7

2743.6 121282

20.3 8.6

0.00 -79.4 44.21

18.3 0.47

0.008 0.016 43.82

500.2 0.64

0.105 0.084

7.46 44.21

121262 242.4

204

22.5 2677.4

43.7

2743.6 121282

-10.2 3.5

0.20 -79.4 44.21

7.5 0.40

0.007 0.013 43.89

24519 11.2

543.2 0.59

0.142 0.099 11.26 44.29 96763 178.1

205

22.5 2677.4

43.7

2743.6 121281

-9.3 3.5

1.00 -70.4 44.21

7.6 0.40

0.007 0.013 44.21

121281 55.0

543.9 0.59

0.143 0.098 11.23 44.70

206

22.5 2677.4

43.7

2743.6 121281

-9.5 3.4

1.00 -70.4 44.21

7.3 0.40

0.007 0.0)3 44.21

121281 55.0

207

7.8 4162.0

194.5

4364.3 195070

-9.3 3.5

0.00 -131.0 44.70

7.6 0.40

0.007 0.013 44.21

543.9 0.59

0.143 0.098 11.23 44.70

195070 358.6

208

7.8 4162.0

194.5

4364.3 195070

-8.7 3.5

0.50 -122.0 44.70

7.6 0.40

0.007 0.013 44.39 96866

43.7

544.6 0.59

0.145 0.097 11.22 45.00 98205 180.3

210

135.3 4975.0

35.2

5145.5 225496

20.3 8.6

1.00 -129.5 43.82

18.3 0.47

0.008 0.016 43.82

225496 103.1

500.2 0.64

0.105 0.084

7.46 44.21

213

135.3 4975.0

35.2

5145.5 225496

19.8 8.4

1.00 -129.5 43.62

17,8 0.47

0.008 0.016 43.82

225496 103.1

220

157.8 7652.4

78.9

7889.0 346777

71.6 21.7 1.00

•193.8 43.96

45.2 0.61

0.011 0.022 43.96

346777 158.1

701

49.1 2383.7

24.6

2457.4 108021

54.5 19.8 0.00

-68.3 43.96

44.4 0.63

0.010 0.020 43.56

436.4 0.75

0.074 0.066

3.57 43.96

108021 246.4

Simulabixi Basis: Train 3 • Max Condensata * 5% - C3 Mode Rav. 5A Page 9 ol 10

Page 45: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhane Recovery Maximization

MAX. CONDENSATE CASE - C2 REJECTION MODE - REFRIGERATION SYSTEMS

FLUOR Contract AOWT

Rev.2

Stream Number Composilion (kgmole/h)

Ethane Propane i-Butane

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperalure (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Sld Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/mS) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surtace Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Flow (m3/h)

706

11.9 576.0

5.9

593.8 26102

18.1 19.2 0.00

-17.1 43.96

505.8 0.63

0.107 0.085 7.62

43.96 26102

51.6

708

11.9 575.0

5.9

5928 26058

14.5 7.6

0.03 •17.1 43.96

16.1 0.46

0.008 0.015 43.28

724 0.3

507.4 0.63

0.110 0.086

8.06 43.98 25334

49.9

709

11.9 575.0

5.9

592.8 26058

16.0 7.6

I. 00 -15.0 43.96

16.2 0.46

0.008

0.015 43.96 26058

II. 9

711

0.0 1.0 0.0

1.0 44

14.5 7.6 0.03 0.0

43.96

16.1 0.46 0.006 0.015 43.28

1 0.0

507.4 0.63

0.110 0.086

8.06 43.98

43 0.1

712

0.0 1.0 0.0

1.0 44

14.3 7.6 0.03 0.0

43.96

16.0 0.46 0.008 0.015 43.29

1 0.0

507.7 0.63

0.110 0.086 8.08

43.98 43 0.1

716

56.2 2725.5

28.1

2809.6 123511

17.4 7.4

1.00 -70.9 43.96

15.7 0.46

0.008 0.015 43.96

123511 56.3

467.1 0.63

0.103 0.085

7.84 44.35

718

22.5 1088.9

11.2

1122.6 49346

18.1 19.2 0.00

-32.4 43.96

505.8 0.63

0.107 0.085

7.62 43.96

49346 97.6

722

12.0 580.3 6.0

598.2 26295 •21.3 18.7 0.00 -17.9 43.96

558.7 0.58 0.158 0.104 12.57 43.98 26295 47.1

723

12.0 580.3

6.0

598.2 26295 -25.0

2.2 0.03

-17.9 43.96

4.8 0.38

0.007 0.012 42.87

661 0.3

560.3 0.58

0.163 0.106 13.07 43.99 25634

45.8

724

12.0 580.3

6.0

598.2 26295 •23.5

2.1 1.00

•15.4 43.96

4.8 0.38

0.007 0.011 43.96 26295

12.0

727

20.0 967.7

10.0

997.6 43852 •21.0

2.0 1.00

-25.6 43.96

4.5 0.38

0.OO7 0.012 43.96 43852

20.0

526.0 0.58

0.154 0.104 12.70 44.48

732

76.1 3693.2 38.1

3807.4 167362

77.9 20.3 1.00 -92.7 43.96

39.4 0.58 0.011 0.022 43.96

167362 76.3

Simulallon Basis: Train 3 • Max Condensale • 5% - C3 Mode Rev. SA Page 10 o l i o

Page 46: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Material Balance

Low Condensate Case - C2 Recovery Mode Rev.2

GASCO ProjectNo.: 13522102 Doc. No.: 44-00-20012

ETHANE RECOVERY MAXIMIZATION (ERM) PROJECT

Material Balance

Low Condensate Case

C2 Recovery Mode

Revision 2

Approved

Rev. Date Description By Chk. Disc. Proj. GASCO

13-Feb-04 Approved for Construction m GS-L-FML-046

4-Sep-03 Approved for Design OPM DTS ED

7-Aug-03 Issued for Approval OPM DTS ED

Page 47: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximizat ion

LOW CONDENSATE CASE - C2 RECOVERY MODE

FLUOH

Contract AOWT Rev. 2

St ream Number

Compos i l ion (kgmole/h)

Nitrogen

Methane

E lhane

Propane

i-Butane

n-Butane

i-Pentane

n-Pentane

n-Hexane

NBP91

N B P 1 3 8

N B P 1 8 2

H S S

C 0 2

C S 2

M-Mercaptan

E-Mercaptan

nPMercaptan

H 2 0

Total Stream

Molar F low ( kgmo le * )

Mass Flow (kg/h)

Temperalure ("C)

Pressure (bara)

Vapour Fract ion

Heat F low (Gcal/h)

Molecular Weight

Vapor Phase

Density (kg/m3)

Heat Capaci ty (kcal/kg-C)

Viscos i ly (cP)

Thermal Conducl iv i ty (Kcal/m-hr-C)

Molecular Weight

M a s s Flow (kg/h)

Std G a s F low ( M M S C F D )

Hydrocarbon Liquid Phase

Density (kg/m3)

Heat Capaci ty (kcal/kg-C)

Viscosity (cP)

Thermal Conductivity (Kcal/m-hr-C)

Surface Tension (dyne/cm)

Molecular Weight

M a s s Flow (kg/h)

Ac lua l Vo lume Flow (m3/h)

Water Phase

M a s s Ftow ( M i )

1

96.6

24733.6

3000.5

1639.8

505.5

824.2

229.9

191.7

143.0

138.7

20.8

1.9

0.6

690.4

0.0

0.4

0.4

1.5

110.5

32330.0

732576

58.0

66.5

1.00

-686.7

22.66

64.4 0.62

0.014 0.034 22.66

732575 647.9

96.6

24733.6

3000.5

1639.8

505.5

824.2

229.9

191.7

143.0

138.7

20.8

1.9

0,6

690.4

0.0

0.4

0.4

1,5

110.5

32330.0 732576

44.4 65.8 0.98

-694.6 22.66

66.5

0.64

0.014

0.033

22.17

704689

637.1

530.4

0.60

0.129

0.073

8.00

55.55

26936

50.8

951

96.6

24733.6

3000.5

1639.8

505.5

824.2

229.9

191.7

143.0

138.7

20.8

1.9

0.6

690.4

0.0

0.4

0.4

1.5

110.5

32330.0 732576

27.0 65.4 0.95

•705.4 22.66

69.3

0.66

0.014

0.032

21.32

653737

614.4

513.4

0.60

0.121

0.074

7.70

48.87

77259

150.5

1580

95.8

24294.1

2B27.B

1427.1

39S.2

605.7

134.9

104.6

49.7

31.9

1.5

0.0

0.6

667.7

0.0

0.3

0.3

0.5

21.9

30659.8

653637

27.0

65.3

1.00

-647.7

21.32

69.2

0.66

0.014

0.032

21.32

653637

614.4

513.6

0.60

0.121

0.074

7.71

48.88

95.8

24294.1

2827.8

1427.1

395.2

605.7

134.9

104.6

49.7

31.9

1.5

0.0

0.6

667.7

0.0

0.3

0.3

0.5

0.0

30637.9

653242

27.8

62.8

1.00

-645.5

21.32

65.6

0.65

0.013

0.032

21.32

653242

614.0

0.8

439.5

172.7

212.6

110.3

218.5

95.0

87.0

93.2

106.9

19.3

1.9

0.0

22.7

0.0

0.1

0.1

1.0

0.9

1582.5

77358

27.0

65.3

0.00

-51.7

48.88

69.2

0.66

0.014

0.032

21.32

513.6

0.60

0.121

0.074

7.71

48.88

77358

150.6

0.8

439.5

172.7

212.6

110.3

218.5

95.0

87.0

93.2

106.9

19.3

1.9

0.0

22.7

0.0

0.1

0.1

1.0

0.9

1582.5

77358

18.1

31.4

0.23

•51.7

48.88

32.4

0.54

0.012

0.027

22.08

8149

7.4

577.8

0.57

0.168

0.081

10.59

57.04

69207

119.8

10

0.0

0.0

0.0

0.0

0.0

0.0

0.0

o.o 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

87.7

87.7

1581

27.0

65.3

0.00

-6.0

18.02

69.2

0.66

0.014

0.032

21.32

513.6

0.60

0.121

0.074

7.71

48.88

11

0.8

439.5

172.7

2 1 2 6

110.3

218.5

95.0

87.0

93.2

106.9

19.3

1.9

0.0

22.7

0.0

0.1

0.1

1.0

0.9

1582.5

77358

50.2

30.7

0.35

-49.8

48.88

34.8

0.54

0.013

0.028

25.74

14870

11.1

553.2

0.60

0.138

0.074

8.68

60.88

62488

113.0

20

39.5

10013.0

1165.5

5BB.2

162.9

249.7

55.6

43.1

20.5

13.1

0.6

0.0

0.2

275.2

0.0

0.1

0.1

0.2

0.0

12627.7

269240

27.6

62.5

1.00

•266.1

21.32

65.3

0.65

0.013

0.032

21.32

269240

253.1

22

39.5

10013.0

1165.5

588.2

162.9

249.7

55.6

43.1

20.5

13.1

0.6

0.0

0.2

275.2

0.0

0.1

0.1

0.2

0.0

12627.7

269240

-22.5

60.8

0.84

-278.4

21.32

77.6

0.82

0.012

0.029

18.95

201505

213.1

465.0 0.64

0.096 0.080

7.31

33.95 67735 145.7

23

56.3

14281.0

1662.3

838.9

232.3

356.1

79.3

61.5

29.2

18.7

0.9

0.0

0.3

392.5

0.0

0.2

0.2

0.3

0.0

18010.1

384000

27.6

62.5

1.00

-379.5

21.32

65.3

0.65

0.013

0.032

21.32

384000

360.9

24

43.9

11119.8

1294.4

653.2

180.9

277.3

61.8

47.9

22.8

14.6

0.7

0.0

0.3

305.6

0.0

0.1

0.1

0.2

0.0

14023.5

299000

27.5

62.4

1.00

•295.5

21.32

65.2

0.65

0.013

0.032

21.32

299000

281.0

Simulaiion Basis Train 3 - Selected Option • 5% - C2 Mode Rev. BA Page 1 o l 10

Page 48: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhane Recovery Maximization

LOW CONDENSATE CASE - C2 RECOVERY MODE

FLUOR Conlract AOWT

Rev.2

Stream Number Composilion (kgmo!e/h)

Nitrogen Methane Elhane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 CS2 M-Mercaptan E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature ("C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Sld Gas Flow (MMSCFD)

Hydrocarbon Uquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surtace Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Ftow {m3/h)

Water Phase Mass Flow (kg/h)

25

43.9 11119.8

1294.4 653.2 160.9 277.3 61.8 47.9 22.8 14.6 0.7 0.0 0.3

305.6 0.0 0.1 0.1 0.2 0.0

14023.5 299000

-6.7 61.3 0.91

-304.5 21.32

72.5 0.74

0.012 0.030 19.74

252750 256.6

479.5 0.62

0.103 0.079

7.49 37.98

46250 96.5

26

12.5 3161.2 368.0 185.7 51.4 78.8 17.6 13.6 6.5 4.1 0.2 0.0 0.1 86.9 0.0 0.0 0.0 0.1 0.0

3986.6 85000 27.5 62.4 1.00 -84.0 21.32

65.2 0.65 0.013 0.032 21.32 85000 79.9

28

12.5 3161.2

368.0 185.7 51.4 78.8 17.6 13.6 6.5 4.1 0.2 0.0 0.1

86.9 0.0 0.0 0.0 0.1 0.0

3986.6 85000 -35.3 60.9 0.75

-89.1 21.32

84.8 0.96

0.012 0.029 18.37

55242 60.3

443.9 0.66

0.085 0.080

6.79 30.39 29758

67.0

29

56.3 14281.0 1662.3 838.9 232.3 356.1 79.3 61.5 29.2 18.7 0.9 0.0 0.3

392.5 0.0 0.2 0.2 0.3 0.0

18010.1 384000

-21.6 60.8 0.85

-396.8 21.32

77.1 0.82

0.012 0.029 19.00

289744 305.7

466.1 0.63

0.096 0.080

7.33 34.19 94256 2022

30

95.8 24294.1

2827.8 1427.1 395.2 605.7 134.9 104.6 49.7 31.9

1.5 0.0 0.6

667.7 0.0 0.3 0.3 0.5 0.0

30637.9 653242

-22.0 60.7 0.84

-675.2 21.32

77.1 0.82

0.012 0.029 18.98

491188 518.7

465.9 0.63

0.096 0.080

7.33 34.10

162054 347.8

31

92.6 22268.9

2025.3 660.0 114.6 139.2

15.9 10.3 2.0 0.6 0.0 0.0 0.4

555.7 0.0 0.1 O.t 0.0 0.0

25865.7 491218

-22.0 60.7 1.00

•541.4 18.96

77.2 0.82

0.012 0.029 18.98

491218 518.7

465.8 0.63

0.096 0.080 7.33

34.09

32

62.6 15029.6 1366.9 445.4

77.3 94.0 10.7 6.9 1.3 0.4 0.0 0.0 0.3

375.0 0.0 0.1 0.0 0.0 0.0

17470.6 331529

•22.0 60.7 1.00

•365,4 18.98

77.1 0.62

0.012 0.029 18.98

331481 350.1

465.8 0.63

0.096 0.080

7.33 34.09

49 0.1

33

62.5 15029.6

1366.9 445.4

77.3 94.0 10.7 6.9 1.3 0.4 0.0 0.0 0.3

375.0 0.0 0.1 0.0 0.0 0.0

17470.6 331529

•41.5 60.2 0.92

-372.6 18.98

90.9 1.10

0.012 0.029 18.30

294251 322.2

402.6 0.73

0.067 0.078

5.76 26.82 37278

92.6

34

15.4 3699.2 336.4 109.6

19,0 23.1 2.6 1.7 0.3 0.1 0.0 0.0 0.1

92.3 0.0 0.0 0.0 0.0 0.0

4300.0 81599 -22.0 60.7 1.00

-89.9 18.98

77.1 0.82

0.012 0.029 18.98

81587 86.2

465.8 0.63

0.096 0.080

733 34.09

12 0.0

36

15.4 3699.2

336.4 109.6

19.0 23.1 2.6 1.7 0.3 0.1 0.0 0.0 0.1

92.3 0.0 0.0 0.0 0.0 0.0

4300.0 81599 -44.0 60.2 0.90

-92.0 18.98

93.5 1.16

0.012 0.030 18.20

70472 77.6

392.3 0.75

0.063 0.078 5.49

25.96 11126

28.4

37

92.6 22269.1

2025.4 660.0 114.6 139.3 15.9 10.3 2.0 0.6 0.0 0.0 0.4

555.7 0.0 0.1 0.1 0.0 0.0

25886.0 491225

-42.2 60.2 0.91

-552.6 18.98

91.5 1.11

0.012 0.029 18.27

432670 474.6

399.9 0.73

0.066 0.078 5.69

26.57 58555 146.4

38

90.3 20994.1

1624.6 390.5 47.6 48.1 3.1 1.7 0.1 0.0 0.0 0.0 0.3

490.2 0.0 0.0 0.0 0.0 0.0

23691.0 432930

•42.2 60.2 1.00

•496.2 18.27

91.8 1.12

0.012 0.029 18.27

432930 474.8

399.4 0.73

0.066 0.078

5.68 26.56

43

90.3 20994.1

1624.8 390.5

47.6 48.1 3.1 1.7 0.1 0.0 0.0 0.0 0.3

490.2 0.0 0.0 0.0 0.0 0.0

23691.0 432930

-59.5 40.6 0.93

-498.3 18.27

57.6 0.85

0.010 0.024 17.67

389966 442.3

443.5 0.69

0.079 0.084

7.10 26.50

42964 96.9

Simutation Basis: Train 3 - Selecled Oplion + 5% - C2 Mode Rev. 8A Page 2 of 10

Page 49: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

QASCO Ethane Recovery Maxtmization

LOW CONDENSATE CASE - C2 RECOVERY MODE

FLUOR Contract AOWT

Rev. 2

Stream Number Composition (kgmole/h)

Nilrogen Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 CS2 M-Mercaptan

E-Mercaptan nPMercaptan H20

Total Slream Molar Row (kgmole/h) Mass Flow (kg/h) Temperalure (°C) Pressure (bara) Vapour Fracilon Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density {kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Row (kg/h) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surtace Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Flow (m3/h)

Water Phase Mass Flow (kg/h)

50

3.3 2025.2 802.5 767.2 280.6 466.5 119.0 94.3 47.8 31.2

1.5 0.0 0.2

112.0 0.0 0.2 0.2 0.5 0.0

4752.2 162024

-22.0 60.7 0.00

-133.8 34.09

77.2 0.82

0.012 0.029 18.98

465.8 0.63

0.096 0.080

7.33 34.09

162024 347.8

52

22 806.1

73.3 18.9 2.7 3.0 0.3 0.2 0.0 0.0 0.0 0.0 0,0

21.5 0.0 00 0.0 0.0 0.0

928.3 17348 •31.3 40.7 1.00

-19.4 18.69

47.7 0.66

0.011 0.025 18.69 17348

18.6

523.0 0.59

0.129 0.087 9.66

37.83

53

1.0 1219.0 729.2 746,2 277.9 463.5 118.7 94.2 47.8 31.2

1.5 0.0 0.2

90.6 0.0 0.2 0.2 0.5 0.0

3823.9 144676

•31.3 40.7 0.00

•114.4 37.83

47.7 0.66

0.011 0.025 18.69

523.0 0.59

0.129 0.087

9.66 37.83

144676 276.6

54

2.3 1275.0 400.5 269.5 67.0 91.1 12.8 8.6 1.8 0.6 0.0 0.0 0.1

65.5 0.0 0.1 0.0 0.0 0.0

2195.0 58296 •42.2 60.2 0.00

-56.4 26.56

91.8 1.12

0.012 0.029 18.27

399.4 0.73

0.066 0.078 5.68

26.56 58296 145.9

56

1.5 470.3 28.9

4.7 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10.2 0.0 0.0 0.0 0.0 0.0

516.5 9163 -54.8 40.7 1.00

-10.7 17.74

54.9 0.80

0.010 0.024 17.74 9163 10.4

472.4 0.65

0.095 0.086 8.07

29.27

57

0.8 804.6 371.6 264.8 66.6 90.7 12.8 8.6 1.8 0.6 0.0 0.0 0.1

55.3 0.0 0.1 0.0 0.0 0.0

1678.4 49133 -54.8 40.7 0.00

-45.8 29.27

54.9 0.80

0.010 0.024 17.74

472.4 0.65

0.095 0.086

8.07 29.27

49133 104.0

58

• 3.8 1276.4

102.2 23.6

3.1 3.4 0.3 0.2 0.0 0.0 0.0 0.0 0.0

31.7 0.0 0.0 0.0 0.0 0.0

1444.8 25511

•39.5 40.7 1.00

•30.0 18.35

49.6 0,69

0.010 0.025 18 32

26419 28.9

508.9 0.60

0.119 0.087

9.31 34.89

92 0.2

70

95.8 24269.4

1722.0 105.2

2.3 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.3

626.9 0.0 0.0 0.0 0.0 0.0

26823.1 476258

•63.9 40.5 1.00

-563.3 17.76

61.6 0.94

0.010 0.024 17.76

476258 537.5

72

95.8 24269.1

1722.0 105.2

2.3 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.3

626.9 0.0 0.0 0.0 0.0 0.0

26822.9 476258

-53.5 40.1 1.00

-559.0 17.76 .

52.8 0.76

0.010 0.024 17.76

476258 537.5

73

0.0 0.0 0.0 0.0 o.o o.o 0.0 o.o o.o o.o o.o o.o o.o 0.0 0.0 0.0 0.0 o.o o.o

0.0 0

21.9 39.6 1.00 0.0

17.76

31.2 0.57

0.012 0.030 17.76

75

95.8 24269.1

1722.0 105.2

2.3 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.3

626.9 0.0 0.0 0.0 0.0 0.0

26822.9 476258

-26.3 39.8 1.00

-550.2 17.76

41.2 0.63

0.011 0.026 17.76

476258 537.5

76

95.8 24269.1

1722.0 1052

2.3 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.3

626.9 0.0 0.0 0.0 0.0 0.0

26822.9 476258

21.9 39.6 1.00

•536.5 17.76

3t.2 0.57

0.012 0.030 17.76

476258 537.5

77

89.4 22646.8

1606.9 98.2 2.2 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.3

585.0 0.0 0.0 o.o 0.0 0.0

25029.9 444422

21.8 39.4 1.00

•500.7 17.76

31.1 0.57

0.012 0.030 17.76

444422 501.6

Simulation Basis: Train 3 - Salecled Oplion • 5% - C2 Mode Rev. 8A Page 3 of 10

Page 50: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhane Recovery Maximization

FLUOR Contract AOWT

Rev.2

LOW CONDENSATE CASE • C2 RECOVERY MODE

StreamNumber 78 79 80 81 89 90 91 92 93 94 95 96 103

Composition (kgmole/h) Nitrogen 89.4 89.4 89.4 6.4 2.5 2.5 0.1 1.0 1.0 1.0 0.8 0.8 0.1 Methane 22646.8 22646.8 22646.8 1622.3 1799.2 1799.2 367.2 1219.0 1219.0 1219.0 804.6 804.6 303.4 Ethane 1606.9 1606.9 1606.9 115.1 836.0 836.0 1363.5 729.2 729.2 729.2 371.6 371.6 1051.3 Propane 98.2 98.2 98.2 7.0 414.9 414.9 706.0 748.2 748.2 748.2 264.8 264.8 812.1 I-Butane 2.2 2.2 22 0.2 54.7 54.7 124.0 277.9 277.9 277.9 66.6 66.6 149.8 n-Butane 1.1 1.1 1-1 0.1 55.2 55.2 148.5 463.5 463.5 463.5 90.7 90.7 181.4 i-Pentane 0.0 0.0 0.0 0.0 3.6 3.6 16.5 116.7 118.7 118.7 12.8 12.8 20.1 n-Pentane 0.0 0.0 0.0 0.0 2.0 2.0 10.6 94.2 94.2 94.2 8.6 8.6 12.9 n-Hexane 0.0 0.0 0.0 0.0 0.2 0.2 2.0 47.8 47.8 47.8 1.8 1.8 2.4 NBP91 0.0 0.0 0.0 0.0 0.0 0.0 0.7 31.2 31.2 31.2 0.6 0.6 0.8 NBP138 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 1.5 1.5 0.0 0.0 0.0 NBP182 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H2S 0.3 0.3 0.3 0.0 0.2 0.2 0.3 0.2 0.2 0.2 0.1 0.1 0.2 C02 585.0 585.0 585.0 41.9 124.3 124.3 88.7 90.6 90.6 90.6 55.3 55.3 53.1 CS2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 M-Mercaptan 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 O.t

E-Mercaptan 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.2 o.o o.o o.i nPMercaptan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 O.S 0.0 0.0 0.0 H20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0

Total Stream Molar Flow (kgmole/h) 25029.9 25029.9 25029.9 1793.0 3292.9 3292.9 2826.2 3823.9 3823.9 3823.9 1678.4 1678.4 2587.8 Mass Flow (kg*) 444422 444422 444422 31836 84658 84658 99984 144676 144676 144676 49133 49133 96570 Temperature CC) 52.9 63.0 53.8 21.8 -60.2 -73.8 -19.2 -38.8 3.4 2.9 -66.7 -28.2 -10.9 Pressure (bara) 39.0 43.4 42.8 39.4 40.6 25.6 29.6 26.5 25.8 25.1 25.8 25.1 24.8 Vapour Fraction 1.00 1.00 1.00 1.00 0.00 0.20 0.00 0.14 0.37 0.38 0.19 0.52 0.00 Heat Flow (Gcal/h) -492.8 -490.6 -492.9 -35.9 -85.9 -85.9 -80.6 -114.4 -109.3 -109.3 -4S.8 -43.7 -73.9 Molecular Weight 17.76 17.76 17.76 17.76 25.71 25.71 35.35 37.83 37.83 37.83 29.27 29.27 37.32

Vapor Phase Density (kg/m3) 27.0 29.0 29.6 31.1 - 34.2 - 30.0 30.4 29.6 32.6 30.0 33.2 Heat Capacity (kcal/kg-C) 0.57 0.58 0.57 0.57 - 0.68 - 0.57 0.52 0.52 0.65 0.55 0.53 Viscosity (cP) 0.013 0.013 0.013 0.012 - 0.009 - 0.010 0.011 0.011 0.009 0.010 0.010 Thermal Conductivity (Kcal/m-hr-C) 0.034 0.035 0.034 0.030 - 0.020 - 0.022 0.024 0.024 0.020 0.022 0.022 Molecular Weight 17.76 17.76 17.76 17.76 -- 17.38 - - 18.78 23.47 23.50 17.51 20.73 24.21 Mass Flow (kg*) 444422 444422 444422 31836 - 11269 - 10362 33494 33997 5441 18140 1 Std Gas Flow (MMSCFD) 501.6 501.6 501.6 35.9 - 13.0 - 11.1 28.6 29.0 6.2 17.5 0.0

Hydrocarbon Liquid Phase Density (kg/mS) - - - - 433.4 492.3 494.4 561.4 538.8 540.6 526.3 531.1 495.8 Heal Capacity (kcal/kg-C) ~ - - ~ 0.71 0.64 0.63 0.57 0.59 0.59 0.60 0.S9 0.63 Viscosity (cP) — - - — ~ 0.073 0.106 0.101 0.166 0.135 0.137 0.135 0.132 0.104 Thermal Conductivity (Kcal/m-hr-C) — - - - 0.084 0.093 0.089 0.093 0.082 0.083 0.094 0.092 0.086 Surtace Tension (dyne/cm) - - - - 6.79 9.35 7.97 11.84 9.36 9.47 10.76 10.20 7.83 Molecular Weight - - - - 25.71 27.75 35.35 41.05 46.39 46.56 31.94 38.58 37.32 Mass Flow (kg*) - - - - - 84658 73389 99964 134314 111182 110679 43692 30992 96570 Actual Volume How (m3*) - - - - - 195.3 149.1 202.2 239.3 206.3 204.7 83.0 58.4 194.8

Water Phase Mass Flow (kg/h)

Simulation Baals: Train 3 - Selected Option + 5% - C2 Mode Rev. 8A PagB4oM0

Page 51: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhane Recovery Maximization

LOW CONDENSATE CASE - C2 RECOVERY MODE

FIUOR Contract AOWT

Rev.2

Stream Numbar Composition (kgmole/h)

Nitrogen Methane Ethane Propane I-Butane n-Butane i-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 HSS C02 CS2 M-Mercaptan

E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (0C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/Vg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Row (kg/h) Std Gas Row (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heal Capacity (kcal/Kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Suriace Tension (dyne/cm) Molecular Weighl Mass Flow (kg/h) Actual Volume Row (m3/h)

Water Phase Mass Flow (kg/h)

104

0.1 303.4

1051.3 812.1 149.8 181.4 20.1 12.9 2.4 0.8 0.0 0.0 0.2

53.1 0.0 0.1 0.1 0.0 0.0

2587.8 96570

8.3 24.8 0.16

-71.9 37.32

36.9 0.54

0.011 0.022 28.05 11956

8.5

480.7 0.65

0.094 0.078

6.31 39.14

84614 176.0

109

0.0 24.9

1105.9 1322.0 392.9 604.6 134.9 104.6 49.7 31.9

1.5 0.0 0.2

40.8 0.0 0.3 0.3 0.5 0.0

3815.1 176993

50.0 24.9 0.00

-115.1 46.39

110

1.1 1561.8 987.1 132.3

9.0 7.4 0.3 0.2 0.0 0.0 0.0 0.0 0.2

138.5 0.0 0.0 0.0 0.0 0.0

2838.0 67697 -18.0 24.7 1.00

-66.9 23.85

33.8 0.54

0.010 0.021 23.85

67697 56.9

467.8 0.68

0.085 0.065 4.73

46.39 176993

378.4

111

4.2 3798.0

831.0 105.9

6.3 4.8 0.2 0.1 0.0 0.0 0.0 0.0 0.2

229.4 0.0 0.0 0.0 0.0 0.0

4980.1 101475

-41.7 24,3 1.00

-113.6 20.38

30.7 0.56

0.010 0.021 20.34

101062 99.6

516.2 0.61

0.117 0.096 9.84

33.96 413 0.8

112

4.2 3798.0

831.0 105.9

6.3 4.8 02 0.1 0.0 0.0 0.0 0.0 0.2

229.4 0.0 0.0 0.0 0.0 0.0

4980.1 101475

•27.0 23.9 1.00

-112.8 • 20.38

27.4 0.53

0.010 0.022 20.38

101475

113

4.2 3798.0 831.0 105.9 6.3 4.8 0.2 0.1 0.0 0.0 0.0 0.0 0.2

229.4 0.0 0.0 0.0 0.0 0.0

4980.1 101475 22.0 23.6 1.00

-110.2 20.38

21.0 0.51 0.012 0.027 20.38

101475

115

4 2 3798,0

831.0 105.9

6.3 4.8 0.2 0.1 0.0 0.0 0.0 0.0 0.2

229.4 0.0 0.0 0.0 0.0 0.0

4980.1 101475

88.8 52.5 1.00

-107.2 20.38

37.8 0.57

0.014 0.037 20.38

101475 99.8

116

1.7 1552.3 339.6 43.3

2.6 2.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1

93.7 0.0 0.0 0.0 0.0 0.0

2035.5 41475

88.8 52.5 1.00

-438 20.38

37.8 0.57

0.014 0.037 20.38

41475 40.8

117

0.4 374.3

81.9 10.4 0.6 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

22.6 0.0 0.0 0.0 0.0 0.0

490.8 10000

88.8 52.5 1.00

-10.6 20.38

37.8 0.57

0.014 0.037 20.38 10000

9.8

118

1.7 1552.3 339.6

43.3 2.6 2.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1

93.7 0.0 0.0 0.0 0.0 0.0

2035.5 41475

5.4 51.9 1.00

•45.8 20.38

55.9 0.62

0.012 0.028 20.38

41475 40.8

119

2.1 1871.4 409.5

52.2 3.1 2.4 0.1 0.0 0.0 0.0 0.0 0.0 0.1

113.0 0.0 0.0 0.0 0.0 0.0

2453.9 50000

88.8 52.5 1.00

-52.8 20.38

37.8 0.57

0.014 0.037 20.38

50000 49.2

120

2.1 1871.4 40S.5

52.2 3.1 2.4 0.1 0.0 0.0 0.0 0.0 0.0 0.1

113.0 0.0 0.0 0.0 0.0 0.0

2453.9 50000

55.0 51.9 1.00

-53.8 20.38

42.7 0.57

0.013 0.033 20.38

50000 49.2

121

4.2 3798.0 831.0 105.9

6.3 4.8 0.2 0.1 0.0 0.0 0.0 0.0 0.2

229.4 0.0 0.0 0.0 0.0 0.0

4980.1 101475

37.5 51.9 1.00

-110.2 20.38

46.4 0.58

0.013 0.031 20.38

101475 99.8

Simulallon Basis: Train 3 - Solaclsd OpUon + 3% • C2 Mode Rev. 8A Pags 5 of 10

Page 52: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhane Recovery Maximization

LOW CONDENSATE CASE - C2 RECOVERY MODE

FLUOR Contract AOWT

Rev.2

Stream Number Composition (kgmole/h)

Nilrogen Methane Ethane Propane i-Butane n-Butane l-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 HZS C02 CS2 M-Mercaptan

E-Mercaptan nPMercaptan H20

Tolal Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Row (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/Vg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Row (kg*) Sld Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosily (cP)

Thermal Conduclivity (Kcal/m-hr-C) Surface Tension (dyne/cm) Molecular Weight Mass Row (kg/h) Actual Volume Flow (m3/h)

Water Phase Mass Flow (kg/h)

122

4.2 3798.0 831.0 105.9

6.3 4.8 0.2 0.1 0.0 0.0 0.0 0.0 0.2

229.4 0.0 0.0 0.0 0.0 0.0

4980.1 101475

37.3 51.5 1.00

-110.2 20.38

46.0 0.58

0.013 0.031 20.38

101475 99.8

123

4.2 3798.0 831.0 105.9

6.3 4.8

.0.2 0.1 0.0 00 0.0 0.0 0.2

229.4 0.0 0.0 0 0 0.0 0.0

4980.1 101475

-22.5 51.2 1.00

-114.0 20.38

69.8 0.76

0.012 0.027 20.38

101475 99.8

124

4.2 3798.0 831.0 105.9

6.3 4.8 0.2 0.1 0.0 0.0 0.0 0.0 0.2

229.4 0.0 0.0 0.0 0.0 0.0

4980.1 101475

•41.5 51.0 0.85

•116.5 20.38

80.0 0.98

0.011 0.027 19.48

82197 84.5

388.8 0.60

0.055 0.082 5.56

25.31 19278

49.6

125

4.2 3798.0 831.0 105.9 6.3 4.8 0.2 0.1 0.0 0.0 0.0 0.0 0.2

229.4 0.0 0.0 0.0 0.0 0.0

4980.1 101475 -41.7 50.7 0.85

-116.5 20.38

79.3 0.97 0.011 0.027 19.48 82105 84.5

390.2 0.80 0.055 0.082 5.59 25.34 19371 49.7

126

4.2 3798.0 831.0 105.9

6.3 4.8 0.2 0.1 0.0 0.0 0.0 0.0 0.2

229.4 0.0 0.0 0.0 0.0 0.0

4980.1 101475

-60.4 50.5 0.28

-120.8 20.38

89.7 1.45

0.011 0.027 17.96

24594 27.5

334.6 1.01

0.041 0.075 4.12

21.29 76881 229.8

127

4.2 3798.0 831.0 105.9

6.3 4.8 0.2 0.1 0.0 0.0 0.0 0.0 0.2

229.4 0.0 0.0 0.0 0.0 0.0

4980.1 101475

-68.3 40.5 0.38

-120.8 . 20.38

64.9 1.04

0.010 0.024 17.61

33429 38.0

384.6 0.64

0.052 0.079 5.17

22.06 68046 176.9

128

0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 o.o 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0

0.0 0

•41.5 51.0 0.85 0.0

20.38

80.0 0.98

0.011 0.027 19.48

388.8 0.80

0.055 0.082 5.56

25.31

129

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o o.o 0.0 o.o 0.0 o.o 0.0 0.0 0.0

0.0 0

-41.5 51.0 0.85

0.0 20.38

80.0 0.98

0.011 0.027 19.48

388.8 0.80

0.055 0.082

5.56 25.31

130

0.0 24.9

1105.9 1322.0 392.9 604.6 134.9 104.6 49.7 31.9

1.5 0.0 0.2

40.8 0.0 0.3 0.3 O.S 0.0

3815.1 176993

45.5 22.0 0.06

-115.1 46.39

40.0 0.56

O.011 0.021 37.29 8138

4.4

480.1 0.67

0.090 0.067

5.24 46.95

16B8S5 351.7

131

0.0 24.9

1105.9 1322.0 392.9 604.6 134.9 104.6 49.7 31.9

1.5 0.0 0.2

40.8 0.0 0.3 0.3 0.5 0.0

3815.1 176993

47.5 20.8 0.16

-113.8 46.39

38.2 0.55

0.011 0.021 38.12

23519 12.4

484.0 0.66

0,093 0.067 5.40

47.99 153474

317.1

132

0.0 24.9

1105.9 1322.0 392.9 604.6 134.9 104.6 49.7 31.9

1.5 0.0 0.2

40.8 0.0 0.3 0.3 0.5 0.0

3815.1 176993

52.8 20.5 0.30

-111.8 46.39

38.2 0.56

0.011 0.021 39.36

44424 22.6

484.0 0.66

0.094 0.066 5.35

49.35 132569

273.9

141

0.0 25.6

1136.4 1358.5 403.6 619.5

82.4 48.1

8.2 2.7 0.0 0.0 0.3

41.9 0.0 0.3 0.3 0.1 0.0

3727.7 166257

71.8 19.5 1.00

-96.7 44.60

39.5 0.57

0.011 0.022 44.60

166253 74.7

478.3 0.66

0.093 0.062 4.68

53.48 4

0.0

142

0.0 25.6

1136.4 1358.5 403.6 619.5

82.4 48.1

8.2 2.7 0.0 0.0 0.3

41.9 0.0 0.3 0.3 0.1 0.0

3727.7 166257

29.5 26.0 0.00

-111.9 44.60

492.3 0.64

0.097 0.070

5.84 44.60

166257 337.7

Simulation Basia: Train 3 - Selected Option + 5*. - C2 Mo<le Rov. 8A Page 6 of 10

Page 53: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhane Recovery Maximization

LOW CONDENSATE CASE - C2 RECOVERY MODE

FLUOR Conlract AOWT

Rev.2

Stream Number Composition (kgmole/h)

Nitrogen Methane Ethane Propane I-Butane n-Butane I-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 CS2 M-Mercaptan

E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Tamperature (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conduclivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg*) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP)

Thermal Conductivity (Kcal/m-hr-C) Suriace Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Row (m3/h)

Water Phase Mass Flow (kg/h)

150

0.0 24.9

1105.9 1322.0 3927 602.9 80.2 46.8

8.0 2.6 0.0 0.0 0.2

40.8 0.0 0.3 0.3 0.1 0.0

3627.7 161797

29.5 26.0 0.00

•108.9 44.60

492.3 0.64

0.097 0.070

5.84 44.60

181797 328.6

151

0.0 0.0 0.0 0.0 0.1 1.7

54.7 57.8 41.7 29.2

1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0

187.3 15196 177.4

19.8 0.00 •7.0

81.11

62.3 0.73

0.012 0.027 77.75

0 0.0

447.3 0.79

0.076 0.041

2.33 81.11 15196

34.0

152

0.0 0.0 0.0 0.0 0.1 1.7

54.7 57.8 41.7 29.2

1.5 0.0 o.o o.o o.o o.o o.o 0.4 0.0

187.3 15193

49.9 19.1 0.00 -8.3

81.11

153

0.0 0.0 0.0 0.0 0.1 1.7

54.7 57.8 41.7 29.2

1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0

187.3 15193

49.9 18.9 0.00 •8.3

81.11

626.4 0.57

0.212 0.086 13.83 81.11 15193

24.3

626.4 0.57

0.212 0.086 13.83 81.11 15193

24.3

501

14.7 3540.0

322.0 104.9 18.2 22.1 2.5 1.6 0.3 0.1 0.0 0.0 0.1

88.3 0.0 0.0 0.0 0.0 0.0

4115.0 78088 -22.0 60.7 1.00

-86.1 18.98

77.1 0.82

0.012 0.029 18.98

78076 82.5

455.8 0.63

0.096 0.080

7.33 34.09

11 0.0

502

14.7 3540.0 322.0 104.9 18.2 22.1 2.5 1.6 0.3 0.1 0.0 0.0 0.1

88.3 0.0 0.0 0.0 0.0 0.0

4115.0 78088 -43.3 60.2 0.91

•88.0 18.98

92.9 1.15

0.012 0.030 18.23

67945 74.7

394.9 0.74

0.064 0.078

5.56 26.17 10143

25.7

503

2.5 1799.2 836.0 414.9 54.7 55.2 3.6 2.0 0.2 0.0 0.0 0.0 0.2

124.3 0.0 0.1 0.0 0.0 0.0

3292.9 84658 -58.2 25.3 0.42

-84.0 25.71

32.1 0.61

0.009 0.021 18.53

25798 27.9

509.1 0.62

0.115 0.097 10.12 30.97

58860 115.6

504

2.2 1201.8

131.3 13.0 0.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

42.7 0.0 0.0 0.0 0.0 0.0

1392.0 25798 -58.2 25.3 1.00

-29.9 18.53

32.1 0.61

0.009 0.021 18.53

25798 27.9

509.1 0.62

0.115 0.097 10.12 30.97

505

0.3 597.4 704.7 401.9 54.2 54.9 3.6 2.0 0.2 0.0 0.0 0.0 0.1

81.6 0.0 0.0 0.0 0.0 0.0

1900.8 58860 -58.2 25.3 0.00

-54.1 30.97

32.1 0.61

0.009 0.021 18.53

509.1 0.62

0.115 0.097 10.12 30.97

58860 115.6

507

0.3 597.4 704.7 401.9 54.2 54.9

3.6 2.0 0.2 0.0 0.0 0.0 0.1

81.6 0.0 0.0 0.0 0.0 0.0

1900.8 58860 -59.1 24.3 0.01

•54.1 30.97

30.8 0.60

0.009 0.020 18.53

491 0.5

512.6 0.62

0.117 0.098 10.33 31.14

58370 113.8

600

1.0 1401.6 1076.1 666.6 120.7 145.6

16.3 10.5 2.0 0.7 0.0 0.0 0.2

136.8 0.0 0.1 0.1 0.0 0.0

3578.3 107964

-46.0 24.3 0.28

-97.7 30.17

30.1 0.57

0.009 0.021 19.58 19297

19.8

523.1 0.60

0.125 0.096 10.41 34.20 88666 169.5

601

43.9 11119.8 1294.4 653.2 180.9 277.3

61.8 47.9 22.8 14.6 0.7 0.0 0.3

305.6 0.0 0.1 0.1 0.2 0.0

14023.5 299000

-17.3 60.9 0.87

-307.6 21.32

75.5 0.79

0.012 0.029 19.20

233775 244.0

470.6 0.63

0.098 0.080

7.40 35.28 65225 138.6

602

2.0 2596.2

699.7 92.9 5.8 4.5 0.2 0.1 0.0 0.0 0.0 0.0 0.1

186.6 0.0 0.0 0.0 0.0 0.0

3588.1 75677 •35.9 24.3 1.00

•83.8 21.09

31.0 0.55

0.010 0.021 21.09 75677

71.9

Simulation Baaia: Train 3 • Selecteo Option * 5% - C2 Mono Rev. SA Page 7 of 10

Page 54: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhane Recovery Maximization

FLUOR Contract AOWT

Rev. 2

LOW CONDENSATE CASE - C2 RECOVERY MODE

Stream Number Compoaition (kgmole/h)

Nitrogen Methane Ethane Propane I-Butane n-Butane i-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 CS2 M-Mercaptan E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg*) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Suriace Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Flow (m3/h)

Water Phase Mass How (kgm)

804

0.1 367.2

1363.5 706.0 124.0 1485

16.5 10.6 2.0 0.7 0.0 0.0 0.3

68.7 0.0 0.1 0.1 0.0 0.0

2828.2 99984 -19.2 28.0 0.00

-80.8 35.35

494.4 0.63

0.101 0.089

7.97 35.35 99984 202.2

605

0.0 25.6

1136.4 1358.5 403.6 619.5 82.4 48.1

8.2 2.7 0.0 0.0 0.3

41.9 0.0 0.3 0.3 0.1 0.0

3727.7 166257

50.5 19.2 0.44

-105.2 44.60

36.5 0.55

0.011 0.021 39.95

65411 32.8

479.5 0.67

0.092 0.067

5.31 48.24

100846 210.3

606

0.0 25.6

1136.4 1358.5 403.6 619.5

82.4 48.1

8.2 2.7 0.0 0.0 0.3

41.8 0.0 0.3 0.3 0.1 0.0

3727.7 166257

26.9 19.0 0.00

-112.0 44.60

491.3 0.65

0.098 0.071

5.91 44.60

166257 338.4

607

0.0 24.9

1105.9 1322.0 392.7 602.9

80.2 46.8

8.0 2.6 0.0 0.0 0.2

40.8 0.0 0.3 0.3 0.1 0.0

3627.7 161797

20.0 25.5 0.00

-109.9 44.60

508.7 0.63

0.108 0.075

6.87 44.60

161797 318.1

Simulallw Basis: Train 3 - Salaclar) OpUon » 5% - C2 Modo Rav. 8A Pags8 of 10

Page 55: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhana Recovery Maximization

LOW CONDENSATE CASE - C2 RECOVERY MODE - REFRIGERATION SYSTEMS

FLUOR Contract AOWT

Rev. 2

Stream Number Composition (kgmole/h)

Ethane Propane i-Butane

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/mS) Heat Capaciiy (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capaciiy (kcal/kg-C) Viscosity (cP) Thermal Conduclivity (Kcal/m-hr-C) Surface Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Row (m3/h)

200

151.9 7367.4

76.0

7595.3 333863

57.4 21.0 0.00

•210.3 43.96

47.7 0.66

0.010 0.021 43.58

432.3 0.77

0.072 0.065

3.28 43.96

333863 772.3

201

151.9 7367.4

76.0

7595.3 333863

49.9 20.3 0.00

-212.1 43.96

449.6 0.72

0.078 0.069

4.05 43.96

333863 742.6

202

151.9 7367.4

76.0

7595.3 333863

20.5 8.8

0.24 •212.1 43.96

18.6 0.48

0.009 0.016 43.59 80960

37.2

499.l" 0.64

0.104 0.083

7.38 44.08

252903 506.7

203

23.0 2688.2

43.2

2754.4 121745

21.1 8.8

0.00 •79.6 44.20

18.7 0.48

0.009 0.016 43.82

498.9 0.64

0.104 0.083

7.35 44.20

121745 244.0

204

23.0 2668.2

43.2

2754.4 121745

-9.2 3.6

0.20 -79.6 44.20

7.8 0.41

0.O07 0.013 43.88

24629 11.3

541.9 0.59

0.141 0.098 11.13 44.28 97116 179.2

205

23.0 2688.3

43.1

2754.4 121744

-8.3 3.6

I. 00 -70.6 44.20

7.8 0.41

0.007 0.013 44.20

121744 55.2

542.6 0.59

0.142 0.098 II. 10 44.68

206

23.0 2688.3

43.1

2754.4 121744

-8.5 3.5

1.00 -70.6 44.20

7.6 0.40

0.007 0.013 44.20

121744 55.2

207

8.1 4182.8

190.3

4381.2 195752

-8.3 3.6

0.00' -131.3 44.68

7.8 0.41

0.007 0.013 44.20

542.6 0.59

0.142 0.098 11.10 44.68

195752 360.8

208

8.1 4182.8

190.3

4381.2 195752

-7.7 3.6

0.50 -122.3 44.68

7.8 0.41

0.007 0.013 44.38 97222

43.9

543.2 0.59

0.143 0.097 11.09 44.98 98530 181.4

210

128.9 4679.2

32.7

4840.8 212116

21.1 8.8

1.00 -121.6 43.82

18.7 0.48

0.009 0.016 43.82

212118 97.0

498.9 0.64

0.104 0.083

7.35 44.20

213

128.9 4679.2

32.7

4840.8 212118

20.5 8.5

1.00 -121.8 43.82

18.1 0.47

0.008 0.016 43.82

212118 97.0

220

151.9 7367.6

75.8

7595.3 333861

71.5 21.7 1.00

-186.6 43.96

45.3 0.61

0.011 0.022 43.96

333861 152.2

701

90.5 4387.3

45.2

4522.9 198814

54.5 19.8 0.00

-125.6 43.96

44.4 0.63

0.010 0.020 43.56

438.4 0.75

0.074 0.066

3.57 43-96

198814 453.5

Simulation Baaia: Train 3 - Selecled Option • 5% • C2 Moda Rev. flA Page 9o l 10

Page 56: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization

LOW CONDENSATE CASE - C2 RECOVERY MODE • REFRIGERATION SYSTEMS

FLUOR Conlracl AOWT

Rev.2

Slream Number Composition (kgmole/h)

Elhane Propane i-Butane

Total Stream Molar Flow (kgmole/h) Mass Flow (kg*) Temperature (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weighl

Vapor Phase Density (kg/m3) Heat Capaciiy (kcal/kg-C) Viscosily (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kca!/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surface Tension (dyne/cm) Molecular Weighl Mass Flow (kg*) Actual Volume Flow (m3/h)

706

43.1 2090.6

21 6

2155.3 94738

18.1 19.2 0.00

-62.2 43,96

505.8 0.63

0.107 0.085 7.62

43.96 94738 187.3

708

5.4 263.9

2.7

272.0 11957

14.5 7.6

0.03 -7.9

43.96

16.1 0.46

0.008 0.015 43.28

332 0.2

507.4 0.63

0.110 0.086

8.06 43.98 11625

22.9

709

5.4 263.9

2.7

272.0 11957

16.0 7.6

1.00 •6.9

43.96

16.2 0.46

O.OOB 0.015 43.96 11957

5.5

711

37.7 1826.7

18.8

1883.2-82781

14.5 7.6

0.03 -54.4 43.96

16.1 0.46

0.008 0.015 43.28 2299

1.1

507.4 0.63

0.110 0.086

8.06 43.98 80482 158.6

712

37.7 1826.7

18.8

18832 B2761

16.0 7.6

l.OO -47.6 43.96

16.2 0.46

0.008 0.015 43.96 62781

37.7

716

70.4 3412.4

35.2

3518.0 154638

15.5 7.4

1.00 •86.9 43.96

15.8 0.46

0.008 0.015 43.96

154638 70.5

470.6 0.63

0.105 0.086

8.06 44.35

718

20.1 974.8

10.0

1005.0 44176

18.1 19.2 0.00

-29.0 43.96

505.8 0.63

0.107 O.OBS

7.62 43.96 44176

87.4

722

15.1 731.1

7.5

753.7 33132 -21.3 18.7 0.00

-22.5 43.96

558.7 0.58

0.158 0.104 12.57 43.96 33132

59.3

723

15.1 731.1

7.5

753.7 33132

-25.0 2.2

0.03 -22.5 43.96

4.8 0.38

0.007 0.012 42.87

833 0.4

560.3 0.58

0.163 0.106 13.07 43.99 32299

57.6

724

15.1 731.1

7.5

753.7 33132 -23.5

2.1 1.00

-19.4 43.96

4.8 0.38

0.007 0.011 43.96 33132

15.1

727

20.1 974.8

10.0

1005.0 44176

-24.1 2.0

1.00 -25.9 43.96

4.5 0.38

0.007 0.011 43.96

44176 20.1

530.1 0.57

0.159 0.105 13.10 44.49

732

90.5 4387.3 45.2

4522.9 198814 75.2 20.3 1.00

-110.4 43.96

40.1 0.58 0.011 0.022 43.96

198814 90.6

Simulallon Basis: Train 3 • SaKctad Option • 5% • C2 Moda Rev. SA Page 10 of 10

Page 57: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Material Balance

Max. Condensate Case - C2 Recovery Mode Rev. 2

GASCO ProjectNo.: 13522102 Doc. No.: 44-00-20013

ETHANE RECOVERY MAXIMIZATION (ERM) PROJECT

Material Balance

Max. Condensate Case

C2 Recovery Mode

Revision 2

Approved

Rev. Date Description By Chk. Disc. Proj. GASCO

13-Feb-04 Approved for Construction m 2> GS-L-FML-046

4-Sep-03 Approved for Design OPM DTS ED

Page 58: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

QASCO Ethane Recovery Maximization

MAX. CONDENSATE CASE - C2 RECOVERY MODE

FLUOR Contract AOWT

Rev.2

Stream Number 1 Composition (kgmole/h)

Nitrogen 104.6 Methane 24757.9 Ethane 3193.1 Propane 1849.2 i-Butane 580.9 n-Butane 952.9 I-Pentane 253.1 n-Pentane 210.1 n-Hexane 148.5 NBP91 129.3 NBP138 16.4 NBP182 1.7 H2S 0.6 C02 607.0 CS2 0.0 M-Mercaptan 0.0 E-Mercaptan 0.0 nPMercaptan 0.6 H20 112.2

Total Stream Molar Row (kgmole/h) 32920.0 Mass Flow (kg/h) 758433 Temperature ("C) 58.0 Pressure (bara) 66.5 Vapour Fraction 1.00 Heat Flow (Gcal/h) -696.3 Molecular Weight 23.04

Vapor Phase Density (kg/m3) 66.2 Heat Capacity (kcal/kg-C) 0.53 Viscosity (cP) 0.014 Thermal Conductivity (Kcal/m-hr-C) 0.034 Molecular Weighl 23.04 Mass Row (kg/h) 758432 Std Gas Flow (MMSCFD) 659.7

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surtace Tension (dyne/cm) Molecular Weight Mass Ftow (kg/h) Aclual Volume Row (m3/h)

Water Phase

Mass Fiow (kg/h) —

104.6 24757.9 3193.1 1849.2 580.9 952.9 253.1 210.1 148.5 129.3

18.4 1.7 0.6

607.0 0.0 0.0 0.0 0.6

112.2

32920.0 758433

45.5 65.8 0.98

-704.0 23.04

67.9 0.64

0.014 0.033 22.53

728403 647.8

516.1 0.61

0.120 0072

7.55 53.68

29122 56.4

907

104.6 24757.9

3193.1 1849.2 580.9 952.9 253.1 210.1 148.5 129.3

18.4 1.7 0.6

607.0 0.0 0.0 0.0 0.6

112.2

32920.0 758433

27.0 65.4 0.94

•716.3 23.04

70.5 0.67

0.014 0.032 21.51

663625 618.3

499.6 0.61

0.112 0.073

7.32 47.11

93202 186.5

1606

103.5 24200.0 2967.1 1562.8 433.5 663.0 137.2 105.3 46.2 26.3

1.2 0.0 0.6

582.2 0.0 0.0 0.0 0.2

22.0

30851.1 663518

27.0 65.3 1.00

-647.3 21.51

70 3 0.67

0.014 0.032 21.51

663518 618.3

499.9 0.61

0.113 0.073 7.32

47.13

103.5 24200.0 2967.1 1562.8 433.5 663.0 137.2 105.3 46.2 26.3

1.2 0.0 0.6

582.2 0.0 0.0 0.0 0.2 0.0

30829.1 663121

27.8 62.8 1.00

-645.1 21.51

66.7 0.65

0.013 0.032 21.51

663121 617.8

1.1 557.9 226.0 286.4 147.4 289.9 116.0 104.8 102.3 103.0

17.3 1.7 0.1

24.7 0.0 0.0 0.0 0.4 1.1

1979.7 93308

27.0 65.3 0.00

-63.0 47.13

70.3 0.67

0.014 0.032 21.51

499.9 0.61

0.113 0.073

7.32 47.13

93308 186.7

1.1 557.9 226.0 286.4 147.4 289.9 116.0 104.8 102.3 103.0

17.3 1.7 0.1

24.7 0.0 0.0 0.0 0.4 1.1

1979.7 93308

17.7 32.1 0.24

-63.0 47.13

33.5 0.55

0.012 0.027 22.17 10320

9.3

566.2 0.58

0.157 0.080 10.13 54.81

82984 146.6

10

0.0

o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0

89.1

89.1 1607 27.0 65.3 O.OO •6.1

18.02

70.3 0.67

0.014 0.032 21.51

499.9 0.61

0.113 0.073

7.32 47.13

1607

11

1.1 557.9 226.0 286.4 147.4 289.9 116.0 104.8 102.3 103.0

17.3 1.7 0.1

24.7 0.0 0.0 0.0 0.4 1.1

1979.7 93308

49.4 31.4 0.36

•60.7 47.13

36.3 0.54

0.013 0.028 26.92 19236

14.3

541.8 0.61

0.130 0.073

6.25 58.55

74072 136.7

20

43.6 10186.2

1248.9 657.8 182.5 279.1 57.7 44.3 19.4 11.1 0.5 0.0 0.2

245.0 0.0 0.0 0.0 0,1 0,0

12976.5 279119

27.6 62.5 1.00

-271.5 21.51

66.4 0.65

0.013 0.032 21.51

279119 260.0

22

43.6 101882

1248.9 657.8 182.5 279.1

57.7 44.3 19.4 11.1 0.5 0.0 0.2

245.0 0.0 0.0 0.0 0.1 0.0

12976.5 279119

-19.5 60.8 0.84

-283.8 21.51

76.3 0.81

0.012 0.029 19.08

207832 218.3

462.4 0.64

0.094 0.080

7.22 34.25

71287 154 2

23

59.9 14013.8 1718.2 905.0 251.0 383.9

79.4 61.0 26.8 15.2 0.7 0.0 0.3

337.1 0.0 0.0 0.0 0.1 0.0

17852.5 364000

27.6 62.5 1.00

-373.5 21.51

66.4 0.65

0.013 0.032 21.51

384000 357.8

24

46.7 10911.8

1337.9 704.7 195.5 298.9

61.9 47.5 20.8 11.9 0.5 0.0 0.3

262.5 0.0 0.0 0.0 0.1 0.0

13900.8 299000

27.5 62.4 1.00

-290.9 21.51

66.3 0.65

0.013 0.032 21.51

299000 278.6

Simulation Basis'. Train 3 • Max Condensata . 5% - C2 Mode Rev. 8B Paget otIO

Page 59: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization

MAX. CONDENSATE CASE • C2 RECOVERY MODE

FLUOR Contract AOWT

Rev.2

Slream Number 25 26 28 29 30 31 32 33 Composition (kgmole/h)

Nitrogen 46.7 13.3 13.3 59.9 103.5 99.8 67.2 67.2 Methane 10911.8 3102.0 3102.0 14013.8 24200.0 22094.2 14889.0 14889.0 Ethane 1337.9 380.3 380.3 1718.2 2967.1 2106.8 1419.7 1419.7 Propane 704.7 200.3 200.3 905.0 1562.8 715.6 482.2 4822 i-Butane 195 5 55.6 55.6 251.0 433.5 124.7 84.0 84.0 n-Butane 298.9 85.0 85.0 383.9 663.0 151.6 102.1 102.1 i-Pentane 61.9 17.6 17.6 79.4 137.2 16.2 10.9 10.9 n-Pentane 47.5 13.5 13.5 61.0 105.3 10.4 7.0 7.0 n-Hexane 20.8 5.9 5.9 26.8 46.2 1.8 1.2 1.2 NBP91 11.9 3.4 3.4 15.2 26.3 0.5 0.4 0.4 NBP138 0.5 0.1 0.1 0.7 1.2 0.0 0.0 0.0 NBP182 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H2S 0.3 0.1 0.1 0.3 0.6 0.4 0.3 0.3 C02 262.5 74.6 74.6 337.1 582.2 482.1 324.9 324.9 CS2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 M-Mercaptan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 E-Mercaptan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 nPMercaptan 0.1 0.0 0.0 0.1 0.2 0.0 0.0 0.0 H20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total Stream Molar Flow (kgmole/h) 13900.8 3951.7 3951.7 17852.5 30829.1 25804.0 17388.9 17388.9 Mass Flow (kg/h) 299000 85000 85000 384000 663121 491577 331266 331266 Temperature (X ) -5.7 27.5 -33.6 -20.3 -20.0 -20.0 -20.0 -39.5 Pressure (bara) 61.3 62.4 60.9 60.8 60.7 60.7 60.7 60.2 Vapour Fraction 0.90 1.00 0.74 0.84 0.84 1.00 1.00 0.92 Heat Flow (Gcal/h) -299.8 -82.7 -87.8 -390.8 -674.6 -534.5 -360.2 -367.3 Molecular WeigM 21 51 21.51 21.51 21.51 21.51 1905 19.05 19.05

Vapor Phase Density (kg/m3) 72.6 66.3 83.5 76.6 76.3 76.4 76.3 88.8 Heat Capacity (kcal/kg-C) 0.74 0.65 0.94 0.81 0.81 0.81 0.81 1.05 Viscosity (cP) 0.013 0.013 0.012 0.012 0.012 0 012 0.012 0.012 Thermal Conductivity (Kcal/m-hr-C) 0.030 0.032 0.029 0.029 0.029 0.029 0.029 0.029 Molecular Weight 19.81 21.51 18.40 19.03 19.05 19.05 19.05 18.33 Mass Flow (kg*) 248867 85000 54086 283775 491550 491577 331213 293157 Sld Gas Row (MMSCFD) 251.8 79.2 58.9 298.8 517.1 517.1 348.4 320.5

Hydrocarbon Liquid Phase Density (kg/m3) 472.7 — 442.4 461.5 462.2 462.1 462.1 406.4 Heat Capacity (kcal/kg-C) 0.63 - 0.66 0.64 0.64 0.64 0.64 0.72 Viscosity (CP) 0.099 - 0.085 0.094 0.094 0.094 0.094 0.059 Thermal Conduclivity (Kcal/m-hr-C) 0.078 - 0.080 0.080 0.080 0.080 0.080 0.079 Surface Tension (dyne/cm) 7.29 - 6.77 7.21 7.22 7.22 7.22 5.87 Molecular Weight 37.53 - 30.55 34.04 34.14 34.14 34.13 27.31 Mass Flow (kg*) 50133 — 30914 100225 171571 - 53 38109 Actual Volume Row (m3*) 106.1 - 69.9 217.2 371.2 - - 0.1 93.8

Water Phase Mass Row (kg*)

34

16.6 3681.8

351.1 119.2 20.8 25.3

2.7 1.7 0.3 0.1 0.0 0.0 0.1

80.3 0.0 0.0 0.0 0.0 0.0

4300.0 81917 -20.0 60.7 1.00

-89.1 19.05

76.3 0.81

0.012 0.029 19.05

81904 86.2

462.1 0.64

0.094 0.080

7.22 34.13

13 0.0

36

16.6 3681.8

351.1 119.2 20.8 25.3

2.7 1.7 0.3 0.1 0.0 0.0 0.1

80.3 0.0 0.0 0.0 0.0 0.0

4300.0 81917 -41.7 60.2 0.90

-91.1 19.05

90.9 1.11

0.012 0.029 18.24

70795 77.8

398.1 0.73

0.066 0.078

5.66 26.56 11122

27.9

37

99.8 22094.2 2106.8

715.6 124.7 151.6 16.2 10.4

1.8 0.5 0.0 0.0 0.4

482.1 0.0 0.0 0.0 0.0 0.0

25804.0 491577

-40.2 60.2 0.91

-545.6 19.05

89.3 1.07

0.012 0.029 18.30

431890 472.9

404.0 0.72

0.068 0.079

5.81 27.08

59687 147.7

38

97.4 20857.3

1693.7 423.7

51.7 52.2

3.1 1.7 0.1 0.0 0.0 0.0 0.3

426.5 0.0 0.0 0.0 0.0 O.O

23607.8 432134

-40.2 60.2 1.00

-489.4 18.30

89.6 1.07

0.012 0.029 18.30

432134 473.1

403.6 0.72

0.068 0 079

5.80 27.07

43

97.4 20657.3

1693.7 423.7

51.7 52.2

3.1 1.7 O.t 0.0 0.0 0.0 0.3

426.5 0.0 0.0 0.0 0.0 0.0

23607.8 432134

-57.5 40.6 0.94

-491.6 18.30

56.4 0.83

0.010 0.024 17.70

390756 442.5

447.8 0.68

0.082 0.085

7.29 27.11

41379 92.4

Simulation Basis: Train 3 - Max Condansata + 5% - C2 Moda Rav. SB Page 2 of 10

Page 60: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

QASCO Elhane Recovery Maximization

MAX. CONDENSATE CASE • C2 RECOVERY MODE

FLUOR Conlracl AOWT

Rev. 2

Slream Number Composition (Kgmole/h)

Nitrogen Methane Ethane Propane I-Butane n-Butane i-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 C S 2

M-Mercaptan

E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperalure (0C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivily (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conduclivity (Kcal/m-hr-C) Surface Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Flow (m3/h)

Water Phase Mass Flow (kg/h)

50

3.7 2105.8

860.3 847.3 308.8 511.4 121.0 94.9 44.4 25.8

1.2 0.0 0.2

100.1 0.0 0.0 0.0 0.2 0.0

5025.1 171545

-20.0 60.7 0.00

-140.1 34.14

76.4 0.81

0.012 0.029 19.05

462.1 0.64

0.094 0.080

7.22 34.14

171545 371.3

52

2.6 843.8

81.2 22.0

3.2 3.6 0.3 0.2 0.0 0.0 0.0 0.0 0.0

19.7 0.0 0.0 0.0 0.0 0.0

976.6 16321 -292 40.7 1.00

-20.2 18.76

47.3 0.66

0.011 0.025 18.76

18321 19.6

519.0 0.60

0.126 0.086

9.52 37.65

53

1.2 1262.0 779.1 825.2 305.6 507 9 120.7 94.7 44.3 25.8

12 0.0 0.2

80.4 0.0 0.0 0.0 0.2 0.0

4048.4 153224

-29.2 40.7 0.00

-119.9 37.85

47.3 0.66

0.011 0.025 18.76

519.0 0.60

0.126 0.086

9.52 37.85

153224 295.2

54

2.4 1236.9 413.1 291.8

73.0 99.4 13.0 8.7 1.7 0.5 0.0 0.0 0.1

55.5 0.0 0.0 0.0 0.0 0.0

2196.2 59442 -40.2 60.2 0.00

-562 27.07

89.6 1.07

0.012 0.029 18.30

403.8 0.72

0.068 0.079 5.80

27.07 59442 147.3

56

1.6 460.7 30.5

5.2 0.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.9 0.0 0.0 0.0 0.0 0.0

508.0 9034 •52.5 40.7 1.00

-10.4 17.78

53.8 0.78

O.OtO 0.024 17.78 9034 10.2

474.8 0.64

0.097 0 086

8.19 29.86

67

0.8 776.2 382.5 286.6

72.5 99.0 13.0 8.7 1.7 0.5 0.0 0.0 0.1

46.6 0.0 0.0 0.0 0.0 0.0

1688.3 50409 -52.5 40.7 0.00

-45.8 29.86

53.8 0.78

0.010 0.024 17.78

474.8 0.64

0.097 0.086

8.19 29.86

50409 106.2

58

4.2 1304.5

111.7 27.3

3.7 4.0 0.3 0.2 0.0

o.o o.o o.o o.o

28.7 0.0 0.0 0.0 0.0 0.0

1484.6 27354 -36.9 40.7 1.00

•30.6 18.43

48.9 0.68

0.010 0.025 18.39

27257 29.7

507.7 0.61

0.119 0.087

9.27 35.28

97 0.2

70

103.5 24158.5

1857.7 132.7

3.1 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3

544.5 0.0 0.0 0.0 0.0 0.0

26802.0 476433

-61.8 40.5 1.00

-556.3 17.78

60.2 0.90

0.010 0.024 17.78

476433 537.1

72

103.5 24158.6

1857.6 132.7

3.1 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3

544.5 0.0 0.0 0.0 0.0 0.0

26801.9 476429

-51.9 40.1 1.00

-552.3 17.78

52.1 0.76

0.010 0.024 17.78

476429 537.1

73

0.0 0.0 o.o o.o 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0

0.0 0

23.1 39.6 1.00 0.0

17.78

31.1 0.57

0.012 0.030 17.78

75

103.5 24158.6

1857.6 132.7

3.1 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3

544.5 0.0 0.0 0.0 0.0 0.0

26B01.9 476429 -24.4 39.8 1.00

-543.4 17.78

40.7 0.62 0.011 0.026 17.78

476429 537.1

76

103.5 24158.6

1857.6 132.7

3.1 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3

544.5 0.0 0.0 0.0 0.0 0.0

26801.9 476429

23.1 39.6 1.00

-530.0 17.78

31.1 0.57

0.012 0.030 17.78

476429 537.1

77

96.6 22542.4

1733.3 123.8

2.9 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.3

508.1 0.0

0.0 0.0 0.0 0.0

25008.9 444557

23.0 39.4 1.00

-494.5 17.78

31.0 0.57

0.012 0.030 17.78

444557 501.2

Simulation Basis: Train 3 - Max Condansala 4 5% - C2 Mode Rev. BB Page 3 of 10

Page 61: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

QASCO Elhane Recovery Maximization

FIUOR Contract AOWT

Rev.2

MAX. CONDENSATE CASE - C2 RECOVERY MODE

StreamNumber 78 79 80 81 89 90 91 92 93 94 95 96 103

Composition (kgrnole/h) Nitrogen 96.6 96.6 96.6 6.9 2.4 2.4 0.1 1.2 1.2 12 0.8 0.6 0.1 Methane 22542.4 22542.4 22542.4 1616.2 1614.5 1614.5 362.0 1262.0 1262.0 1262.0 776.2 776.2 304.8 Ethane 1733.3 1733.3 1733.3 124.3 805.9 805.9 1283.1 779.1 779.1 779.1 382.5 382.5 980.0 Propane 123.8 123.8 123.8 8.9 443.3 443.3 750.2 825.2 825.2 825.2 286.6 286.6 846.9 i-Butane 2.9 2.9 2.9 02 59.9 59.9 134.9 305.6 305.6 305.6 72.5 72.5 160.1 n-Butane 1.4 1.4 1.4 0.1 60.6 60.6 162.0 507.9 507.9 507.9 99.0 99.0 194.3 i-Pentane 0.0 0.0 0.0 0.0 3.6 3.6 16.8 120.7 120.7 120.7 13.0 13.0 20.1 n-Pentane 0.0 0.0 0.0 0.0 2.0 2.0 10.7 94.7 94.7 94.7 8.7 8.7 12.9 n-Hexane 0 0 0.0 0.0 0.0 0.2 0.2 1.9 44.3 44.3 44.3 1.7 1.7 2.2 NBP91 0.0 0.0 0.0 0.0 0.0 0.0 0.6 25.8 25.8 25.8 0.5 0.5 0.6 NBP138 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 1.2 1.2 0.0 0.0 0.0 NBP182 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 H2S 0.3 0.3 0.3 0.0 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.2 C02 508.1 508.1 508.1 36.4 96.9 96.9 67.0 80.4 80.4 80.4 46.6 46.6 43.3 CS2 0.0 0.0 0.0 0.0 O.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 M-Mercaptan 0.0 0.0 O.O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 E-Mercaptan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 nPMercaptan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 02 0.2 0.0 0.0 0.0 H20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

Total Stream Molar Flow (kgmole/h) 25008.9 25008.9 250OB.9 1793.0 3089.5 3089.5 2789.4 4048.4 4048.4 4048.4 1688.3 1688.3 2565.6 Mass Flow (kg*) 444557 444557 444557 31872 81451 81451 99891 153224 153224 153224 50409 50409 96861 Temperature (°C) 53.2 63.5 54.0 23.0 -58.0 -71.3 -17.7 -36.6 2.9 2.3 -64.0 -26.2 -10.0 Pressure (bara) 39.0 43.5 42.9 39.4 40.6 25.6 29.6 26.5 25.8 25.1 25.8 25.1 24.8 Vapour Fraction 1 00 1.00 1.00 1.00 0.00 0.19 0.00 0.14 0.36 0.36 0.18 0.50 0.00 Heat Row (Gcal/h) -486.8 -484.6 -487.0 -35.5 -79.9 -79.9 -78.8 -119.9 -114.8 -114.8 -45.8 -43.7 -73.1 Molecular Weight 17.78 17.78 17.78 17.78 26.36 26.36 35.81 37.85 37.85 37.85 29.86 29.86 37.75

Vapor Phase Density (kg/m3) 27.0 29.1 29.7 31.0 - 33.5 - - 29.7 30.3 29.5 32.1 29.8 Heat Capacity (kcal/kg-C) 0.57 0.58 0.58 0.57 - 0.67 - 0.57 0.53 0.52 0.64 0.55 Viscosity (cP) 0.013 0.013 0.013 0.012 - 0.009 - - 0.010 0.011 0.011 0.009 0.010 Thermal Conductivity (Kcal/m-hr-C) 0.034 0.035 0.034 0.030 - 0.020 - 0.023 0.024 0.024 0.021 0.022 Molecular Weight 17.78 17.78 17.78 17.78 - 17.42 - 18.86 23.33 23.37 17.57 20.80 Mass Flow (kg/h) 444557 444557 444557 31672 - 10448 ~ 10907 33555 34096 5401 17416 Sld Gas Fiow (MMSCFD) 501.2 501.2 501.2 35.9 - 12.0 - 11.6 28.8 29.2 6.2 16.8

Hydrocarbon Uquid Phase Density (kg/mS) - — - - 438.6 496.0 494.1 556.9 535.2 537.1 527.3 528.4 497.0 Heat Capacity (kcal/kg-C) — — — — 0.70 0.64 0.63 0.57 0.59 0.59 0.60 0.59 0.63 Viscosity (CP) — — — — 0.077 0.110 0.103 0.162 0.133 0.135 0.137 0.131 0.105 Thermal Conductivity (Kcal/m-hr-C) - - - - 0.08S 0.094 0.088 0.093 0.082 0.083 0.095 0.091 0.086 Surtace Tension (dyne/cm) - - - - 7.01 9.60 7.99 11.65 928 9.39 10.86 10.05 7.92 Molecular Weight - - - - ~ 26.36 28.52 35.81 41.01 45.85 46.01 32.59 38.78 37.75 Mass Row (kg*) - - - - - 81451 71003 99891 142317 119669 119128 45008 32993 96861 Actual Volume Flow (m3*) - - - - - 185.7 143.1 202.2 255.5 223.6 221.8 85.4 62.4 194.9

Water Phase Mass Flow (kg*) — — — —

Simulation Basis: Tram 3 • Max Ccxittensate • 5% - C2 Moda Rev. 88 Page 40(10

Page 62: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization

MAX. CONDENSATE CASE - C2 RECOVERY MODE

FLUOR Contract AOWT

Rev.2

Stream Number Compoaition (kgmole/h)

Nitrogen Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 CS2 M-Mercaptan E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surtace Tension (dyne/cm) Molecular Weight Mass Row (kg/h) Actual Volume Row (rn3/h)

Water Phase Mass Flow (kg/h)

104

0.1 304.8 980.0 846.9 160.1 194.3 20.1 12.9 2.2 0.6 0.0 O.O 0.2

43.3 0.0 0.0 0.0 0.0 0.0

256S.6 96861

9.8 24.8 0.16

-71.1 37.75

36.5 0.54

0.011 0.022 27.99 11424

8.2

481.1 0.65

0.095 0.078 6.34

39.60 85437 177.6

109

0.0 41.6

1109.5 1430.1 430.4 661.5 137.2 105.3 46.2 26.3

1.2 0.0 0.2

37.7 0.0 0.0 0.0 0.2 0.0

4027.3 186692

50.0 24.9 0.00

-121.1 46.36

110

1.2 1582.8 953.0 145.5 10.2 8.4 0.3 0.2 0.0 0.0 0.0 0.0 02

109.7 0.0 0.0 0.0 0.0 0.0

2811.5 66452 •16.8 24.7 1.00

-64.2 23.64

33.2 0.54

0.010 0.021 23.64

66452 56.3

466.9 0.68

0.085 0.065

4.75 46.36

186692 399.9

111

4.3 3611.1 858.1 125.0

7.7 6.0 02 0.1 0.0 0.0 0.0 0.0 0.2

186.3 0.0 0.0 0.0 0.0 0.0

4799.0 98392 -37.9 24.3 1.00

-107.0 20.50

30.3 0.56

0.010 0.021 20.47 98039

96.0

514.3 0.61

0.118 0.095 9.79

34.65 353 0.7

112

4.3 3611.2 858.2 125.1

7.7 6.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2

186.3 0.0 0.0 0.0 0.0 0.0

4799.1 98396 -23.0 23.9 1.00

-106.2 20.50

27.0 0.53

0.010 0.022 20.50 98396

96.2

113

4.3 3611.2

858.2 125.1

7.7 6.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2

186.3 0.0 0.0 0.0 0.0 0.0

4799.1 98396

22.0 23.6 1.00

-103.9 20.50

21.2 0.52

0.012 0.027 20.50

99396 962

115

4.3 3611.2 858.2 125.1

7.7 6.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2

186.3 0.0 0.0 0.0 0.0 0.0

4799.1 98396

88.2 52.5 1.00

-101.0 20.50

38.2 0.57

0.014 0.037 20.50

98396 962

116

1.9 1555.9 369.8 53.9 3.3 2.6 0.1 0.0 0.0 . 0.0 0.0 0.0 0.1

80.3 0.0 0.0 0.0 0.0 0.0

2067.8 42396

88.2 52.5 1.00

-43.5 20.50

38.2 0.57

0.014 0.037 20.50

42396 41.4

117

0.3 220.2

52.3 7.6 0.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11.4 0.0 0.0 0.0 0.0 0.0

292.6 6000 88.2 52.5 1.00 -6.2

20.50

38.2 0.57

0.014 0.037 20.50 6000

5.9

118

1.9 1555.9 369.8

53.9 3.3 2.6 0.1 0.0 0.0 0.0 0.0 0.0 0.1

80.3 0.0 0.0 0.0 0.0 0.0

2067.8 42396

7.1 51.9 1.00

-45.5 20.50

56.1 0.63

0.012 0.029 20.50

42396 41.4

119

2.2 1835.0 436.1

63.5 3.9 3.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1

94.7 0.0 0.0 0.0 0.0 0.0

2438.7 50000

88.2 52.5 1.00

-51.3 20.50

38.2 0.57

0.014 0.037 20.50

50000 48.9

120

2.2 1835.0 436.1

63.5 3.9 3.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1

94.7 0.0 0.0 0.0 0.0 0.0

2438.7 50000

55.0 51.9 1.00

-52.3 20.50

43.2 0.57

0.013 0.033 20.50

50000 48.9

121

4.3 3611.2

858.2 125.1

7.7 6.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2

186.3 0.0 0.0 0.0 0.0 0.0

4799.1 98396

35.9 51.9 1.00

-104.0 20.50

47.3 0.58

0.013 0.031 20.50

98396 96.2

Simulaiion Baals: Train 3 - Max Condansata • 5% - C2 Moda Rav. 8B PageSol 10

Page 63: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhane Recovery Maximization

MAX. CONDENSATE CASE - C2 RECOVERY MODE

FLUOR Contract AOWT

Rev.2

Slream Number Composition (kgmole/h)

Nitrogen Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 CS2 M-Mercaptan E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmola/h) Mass Row (kg/h) Temperature ("C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Sld Gas Flow (MMSCFD)

Hydrocarbon Uquld Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosily (cP) Thermal Conductivity (Kcal/m-hr-C) Suriace Tension (dyne/cm) Molecular Weight Mass Row (kg/h) Actual Volume Flow (m3/h)

Water Phase Mass Flow (kg/h)

122

4.3 3611.2

858.2 125.1

7.7 6.0 0.2 01 0.0 0.0 0.0 0.0 0.2

186.3 0.0 0.0 0.0 0.0 0.0

4799.1 98396

35.7 51.5 1.00

•104.0 20.50

46.9 0.58

0.013 0.031 20.50

98396 96.2

123

4.3 3611.2

858.2 125.1

7.7 6.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2

186.3 0.0 0.0 0.0 0.0 0.0

4799.1 96396 -19.5 51.2 1.00

-107.4 20.50

69.1 0.75

0.012 0.027 20.50 98396

96.2

124

4.3 3611.2

858.2 125.1

7.7 6.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2

186.3 0.0 0.0 0.0 0.0 0.0

4799.1 98396 -39.5 51.0 0.83

-110.0 20.50

78.2 0.95

0.011 0.027 19.46

77545 79.9

389.1 0.79

0.056 0.082 5.53

25.60 20851

53.8

125

4.3 3611.2 858.2 125.1

7.7 6.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2

186.3 0.0 0.0 0.0 0.0 0.0

4799.1 98396 -39.7 50.7 0.83

•110.0 20.50

77.6 0.94

0.011 0.027 19.45

77474 79.8

390.4 0.79

0.057 0.082 5.57

25.63 20922

53.6

128

4.3 3611.2

858.2 125.1

7.7 6.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2

186.3 0.0 0.0 0.0 0.0 0.0

4799.1 98396 -58.9 50.5 0.30

-114.1 20.50

87.3 1.36

0.011 0.027 17.94

25563 28.6

340.0 0.97

0.043 0.076 4.24

21.59 72833 214.2

127

4.3 3611.2

858.2 125.1

7.7 6.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2

186.3 0.0 0.0 0.0 0.0 0.0

4799.1 96396 -66.8 40.5 0.40

-114.1 20.50

63.6 1.00

0.010 0.024 17.61

33496 38.1

388.0 0.82

0.055 0.080 5.31

22.40 64899 167.2

128

0.0 0.0 0.0 0.0 0.0 o.o o.o o.o o.o o.o o.o o.o 0.0 o.o o.o 0.0 o.o 0.0 0.0

0.0 0

-39.5 51.0 0.83 0.0

20.50

78.2 0.95

0.011 0.027 19.46

389.1 0.79

0.056 0,082 5.53

25.60

129

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0

-39.5 51.0 0.83

0.0 20.50

78.2 0.95

0.011 0.027 19.46

389.1 0.79

0.056 0.082 5.53

25.60

130

0.0 41.6

1109.5 1430.1 430.4 661.5 137.2 105.3 46.2 26.3

1.2 0.0 0.2

37.7 0.0 0.0 0.0 0.2 0.0

4027.3 166692

45.7 22.0 0.06

-121.1 46.36

39.7 0.56

0.011 0.021 37.13 8322

4.5

479.0 0.67

0.090 0.067 5.24

46.90 178370

372.4

131

0.0 41.6

1109.5 1430.1 430.4 661.5 137.2 105.3 46.2 26.3

1.2 0.0 0.2

37.7 0.0 0.0 0.0 0.2 0.0

4027.3 186692

47.3 20.8 0.15

•119.9 46.36

38.0 0.55

0.011 0.021 37.99 22731

12.0

482.5 0.66

0.092 0.067

5.38 47.82

163961 339.8

132

0.0 41.6

1109.5 1430.1 430.4 661.5 137.2 105.3 46.2 26.3 1.2 0.0 0.2

37.7 0.0 0.0 0.0 0.2 0.0

4027.3 186692

52.5 20.5 0.28

-117.9 46.36

38.2 0.56

0.011 0.021 39.26

43487 22.2

482.1 0.67

0.093 0.066 5.32

49.05 143205

297.1

141

0.0 42.7

1136.3 1467.2 441.4 677.0 85.5 49.0

7.6 2.3 0.0 0.0 0.2

38.7 0.0 0.0 0.0 0.0 0.0

3949.9 176937

72.2 19.5 1.00

-102.4 44.80

39.7 0.58

0.011 0.022 44.80

176937 79.2

142

0.0 42.7

1138.3 1467.2 441.4 677.0

85.5 49.0 7.6 2.3 0.0 0.0 0.2

38.7 0.0 0.0 0.0 0.0 0.0

3949.9 176937

29.6 26.0 0.00

-118.6 44.80

493.1 0.64

0.098 0.071 5.95

44.80 176937

358.8

Simulation Basis: Train 3 - Max Conoansats . 5% - CZ Modo Rev. BB Page 6 otIO

Page 64: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhane Recovery Maximization

MAX. CONDENSATE CASE - C2 RECOVERY MODE

FLUOR Contraci AOWT

Rev.2

Stream Number Composition (kgrnole/h)

Nitrogen Methane Ethane Propane I-Butane n-Butane i-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C02 CS2 M-Msrcaptan E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosily (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/mS) Heat Capacity (kcal/kg-C) Viscosity (cP)

Thermal Conductivily (Kcal/m-hr-C) Surface Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Flow (m3/h)

Waler Phase Mass Flow (kg/h)

150

0.0 41.6

1109.5 1430.1 430.2 659.8

83.4 47,8

7.4 2.2 0.0 0.0 0.2

37.7 0.0 0.0 0.0 0.0 0.0

3849.9 172458

29.6 26.0 0.00

-115.6 44.80

151

0.0 0.0 0.0

o.o 0.1 1.6

53.8 57.5 38.8 24.1

1.2 0.0 0.0 0.0 0.0 0.0

o.o 0.1 0.0

177.4 14234 175.7

19.8 0.00 -6.6

80.26

152

0.0 0.0 0.0 0.0 0.1 1.6

53.8 57.6 38.8 24.1

1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0

177.4 14237

49.1 19.1 0.00 -7.8

80.26

153

0.0 0.0 0.0 0.0 0.1 1.6

53.6 57.6 38.8 24.1

1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0

177.4 14237

49.1 18.9 0.00 -7.8

80.26

493.1 0.64

0.098 0.071

5.95 44.80

172458 349.7

446.0 0.79

0.075 0.041 2.30

80.26 14234

31.9

624.3 0.57

0.210 0.086 13.75 80.26 14237

22.8

624.3 0.57

0.210 0.086 13.75 80.26 14237

22.8

501

15.9 3523.4

336.0 114.1

19.9 24.2

2.6 1.7 0.3 0.1 0.0 0.0 0.1

76.9 0.0 0.0 0.0 0.0 0.0

4115.0 78392 -20.0 60.7 1.00

•85.2 19.05

76.3 0.81

0.012 0.029 1905

783B0 82.5

462.1 0.64

0.094 0.080

7.22 34,13

12 O.O

502

15.9 3523.4 336.0 114.1

19.9 24.2

2.6 1.7 0.3 0.1 0.0 0.0 0.1

76.9 0.0 0.0 0.0

o.o 0.0

4115.0 78392 •41.5 60.2 0.90

-87.1 19.05

90.7 1.10

0.012 0.029 18.25

67954 74.6

399.0 0.73

0.066 0.078

5.68 26.64 10438

26.2

503

2.4 1614.5 805.9 443.3

59.9 60.6 3.6 2.0 0.2 0.0 0.0 0.0 0.1

96.9 0.0 0.0 0.0 0.0 0.0

3089.5 81451 •53.8 25.3 0.42

-78.0 26.36

31.5 0.60

0.009 0.021 18.73

24164 25.9

509.4 0.62

0.116 0.097 10.10 31.84

57287 112.5

504

2.1 1096.7

138.4 16.1 0.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

35.7 0.0 0.0 0.0 0.0 0.0

1290.2 24164 •53.8 25.3 1.00

•27.4 18.73

31.5 0.60

0.009 0.021 18.73

24164 25.9

509.4 0.62

0.116 0.097 10.10 31.84

505

0.2 517.7 667.5 427.2

59.3 60.2

3.6 2.0 0.2 0.0 0.0 0.0 0.1

61.2 0.0 0.0 0.0 0.0 0.0

1799.3 57287 -53.8 25.3 0.00

•50.6 31.84

31.5 0.60

0.009 0.021 18.73

509.4 0.62

0.116 0.097 10.10 31.84

57287 112.5

507

0.2 517.7 667.5 427.2

59.3 60.2

3.6 2.0 0.2 0.0 0.0 0.0 0.1

61.2 0.0 0-0 0.0 0.0 0.0

1799.3 57287 •54.6 24.3 0.01

•50.6 31.84

30.2 0.59

0.009 0.021 18.73

454 0.5

512.9 0.61

0.119 0.096 10.31 32.02

56833 110.8

600

1.0 1293.5 1049.8 713.7 131.8 159.1

16.6 10.7

1.9 0.6 0.0 0.0 0.2

107.8 O.O 0.0 0.0 0.0 0.0

3486.6 107666

-42.0 24.3 0.27

-94.3 30.88

29.7 0.56

0.010 0.021 19.76

18284 18.5

521.3 0.60

0.125 0.096 10.27 34.90

89382 171.5

601

46.7 10911.8

1337.9 704.7 195.5 298.9

61.9 47.5 20.8 11.9 0.5 0.0 0.3

262.5 0.0 0.0 0.0 0.1 0.0

13900.8 299000

-16.2 60.9 0.86

-303.0 21.51

75.3 0.79

0.012 0.029 19.24

229110 238.6

465.3 0.63

0.096 0.079

7.26 35.03

69890 150.2

602

2.2 2514.4

719.7 109.0

7.1 5.6 0.2 0.1 0.0 0.0 0.0 0.0 0.1

150.5 0.0 0.0 0.0 0.0 0.0

3508.8 74228 -32.7 24.3 1.00

-79.6 21.15

30.6 0.55

0.010 0.021 21.15 74228

70.3

SlmulaUon Basis: Train 3 • Max condansata + 5% - C2 Mode Rev. 88 Page 7 ol 10

Page 65: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization

FLUOR Contract AOWT

Rev.2

MAX. CONDENSATE CASE • C2 RECOVERY MODE

Stream Number Composition (kgmole/h)

Nitrogen Methane Ethane Propane i-Butane n-Butane i-Pentane n-Pentane n-Hexane NBP91 NBP138 NBP182 H2S C 0 2 CS2 M-Mercaptan E-Mercaptan nPMercaptan H20

Total Stream Molar Flow (kgmola/h) Mass Flow (kg*) Temperature CC) Pressure (bara) Vapour Fraction Heat Row (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosily (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Std Gas Flow (MMSCFD)

Hydrocarbon Uquld Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surtace Tension (dyne/cm) Molecular Weight Mass Row (kg/h) Actual Volume Flow (m3/h)

Waler Phase

Mass Flow (kg*)

604

0.1 362.0

1283.1 750.2 134.9 162.0

16.8 10.7

1.9 0.6 0.0 0.0 0.2

67.0 0.0 0.0 0.0 0.0 0.0

2789.4 99891 -17.7 28.0 0.00

-78.8 35.81

494.1 0.63

0.103 0.088

7.99 35.81 99891 202.2

605

0.0 42.7

1138.3 1467.2 441.4 677.0

65.5 49.0

7.6 2.3 0.0 0.0 0.2

38.7 0.0 0.0 0.0 0.0 0.0

3949.9 176937

50.5 19.2 0.41

•111.8 44.80

36.5 0.55

• 0.011 0.021 39.89

64502 32.4

478.9 0.67

0.092 0.067 5.30

48.19 112438

234.B

0.0 42.7

1138.3 14672 441.4 677.0

85.5 49.0

7.6 2.3 0.0 0.0 0.2

38.7 0.0 0.0 0.0 0.0 0.0

3949.9 176937

28.9 19.0 0.00

-118.7 44.80

492.0 0.65

0.098 0.071

6.02 44.80

176937 359.6

607

0.0 41.6

1109.5 1430.1 430.2 659.B

83.4 47.8

7.4 2.2 0.0 0.0 0.2

37.7 0.0 0.0 0.0 0.0 0.0

3849.9 172458

20.0 25.5 0.00

-116.6 44.80

509.3 0.62

0.109 0.076 6.98

44.80 172458

338.6

Simulaiion Basis: Train 3 - Max Condensate • 5% - C2 Mode hev. 8 Pages ot 10

Page 66: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethana Racovety Maximization

MAX. CONDENSATE CASE - C2 RECOVERY MODE - REFRIGERATION SYSTEMS

FLUOR Contract AOWT

Rev.2

Stream Number Composition (kgmole/h)

Ethana Propane i-Butane

Total Stream Molar Flow (kgmole/h) Mass Row (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosily (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Std Gas How (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Suriace Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Flow (m3/h)

200

181.4 7826.1

80.7

8068.1 354647

57.4 21.0 0.00

-223.4 43.96

47.7 0.66

0.010 0.021 43.58

432.3 0.77

0.072 0.065

328 43.96

354647 820.4

201

181.4 7826.1

80.7

8068.1 354647

48.6 20.3 0.00

•225.7 43.96

452.2 0.72

0.079 0.069

4.18 43.96

354647 784.2

202

161.4 7826.1

80.7

8068.1 354647

19.6 8.6

0.24 -225.7 43.96

18.2 0.47

0.008 0.016 43.58

84287 38.8

500.4 0.64

0.105 0.064 7.49

44.08 270361

540.3

203

22.3 2677.7

44.0

2744.0 121307

20.3 8.6

0.00 -79.4 44.21

18.3 0.47

0.008 0.016 43.83

500.2 0.64

0.105 0.084 7.46

44.21 121307

242.5

204

22.3 2677.7

44.0

2744.0 121307

•10.2 35

0.20 •79.4 44.21

7.5 0.40

0.007 0.013 43.89

24527 11.2

543.2 0.59

0.142 0.099 11.26 44.29 96781 178.2

205

22.4 2677.6

44.1

2744.0 121308

-9.3 3.5

1.00 -70.4 44.21

7.6 0.40

0.007 0.013 44.21

121308 55.0

543.9 0.59

0.143 0.098 11.23 44.70

206

22.4 2677.6

44.1

2744.0 121308

•9.5 3.4

1.00 -70.4 44.21

7.3 0.40

0.007 0.013 44.21

121308 55.0

207

7.8 4161.2

195.8

4364.9 195115

-9.3 3.5

0.00 -131.0 44.70

7.6 0.40

0.007 0.013 44.21

543.9 0.59

0.143 0.098 11.23 44.70

195115 358.7

208

7.8 4161.2

195.8

4364.9 195115

•8.7 3.5

0.50 -122.0 44.70

7.6 0.40

0.007 0.013 44.39 96884

43.7

544.6 0.59

0.145 0.097 11.22 45.01 98231 180.4

210

139.1 5148.4

36.6

5324.1 233340

20.3 8.6

1.00 -134.0 43.83

18.3 0.47

0.008 0.016 43.83

233340 106.7

500.2 0.64

0.105 0.084

7.46 44.21

213

139.1 5148.4

36.6

5324.1 233340

19.9 8.4

1.00 •134.0 43.83

17.9 0.47

0.008 0.016 43.83

233340 106.7

220

161.4 7826.0

80.7

8068.1 354648

71.5 21.7 1.00

-198.2 43.96

45.3 0.61

0.011 0.022 43.96

354648 161.7

701

91.6 4444.7

45.8

4582.0 201400

54.5 19.8 0.00

•127.3 43.96

44.4 0.63

0.010 0.020 43.56

438.4 0.75

0.074 0.066

3.57 43.96

201400 459.4

Simutation Baals: Train 3 - Max ConOonsata + 5% • C2 Mode Rev. BB Page 9ot 10

Page 67: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Elhana Racovery Maximization

MAX. CONDENSATE CASE - C2 RECOVERY MODE - REFRIGERATION SYSTEMS

FLUOR Conlract AOWT

Rsv. 2

Stream Number Composition (kgmole/h)

Ethane Propane I-Butane

Total Stream Molar Flow (kgmole/h) Mass Flow (kg/h) Temperature (°C) Pressure (bara) Vapour Fraction Heat Flow (Gcal/h) Molecular Weight

Vapor Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Molecular Weight Mass Flow (kg/h) Std Gas Flow (MMSCFD)

Hydrocarbon Liquid Phase Density (kg/m3) Heat Capacity (kcal/kg-C) Viscosity (cP) Thermal Conductivity (Kcal/m-hr-C) Surface Tension (dyne/cm) Molecular Weight Mass Flow (kg/h) Actual Volume Flow (m3/h)

706

43.9 2129.6

22.0

2195.0 96510

18.1 19.2 0.00

•63.4 43.96

505.8 0.63

0.107 0.085

7.62 43.96 96510 190.8

708

5.8 281.1

2.9

289.8 12740

14.5 7.6

0.03 -8.4

43.96

16.1 0.46

0.008 0.015 43.28

354 0.2

507.4 0.63

0.110 0.086

8.06 43.98 12380

24.4

709

5.8 281.1

2.9

289.8 12740

16.0 7.6

1.00 -7.3

43.96

16.2 0.46

0.008 0.015 43.96 12740

5.8

711

38.1 1846.5 19.1

1906.0 83770 14.5 7.6 0.03 -55.0 43.96

16.1 0.46 0.008 0.015 43.28 2326 1.1

507.4 0.63 0.110 0.086 8.06 43.98 81440 160.5

712

38.1 1848.5

19.1

1906.0 83770

16.0 7.6

1.00 •48.1 43.96

18.2 0.46

0.008 0.015 43.96

83770 38.2

716

71.5 3469.8

35.8

3577.0 157200

15.5 7.4

1.00 •90.4 43.96

15.8 0.46

0.008 0.015 43.96

157200 71.7

470.6 0.63

0.105 0.086

8.06 44.35

718

20.1 974.8

10.0

1005.0 44180

18.1 19.2 0.00

-29.0 43.96

505.8 0.63

0.107 0.085

7.62 43.96 44180

87.4

722

15.1 731.1

7.5

753.7 33130 -21.3 18.7 0.00

•22.5 43.96

558.7 0.58

0.158 0.104 12.57 43.96

33130 59.3

723

15.1 731.1

7.5

753.7 33130 -25.0

22 0.03

-22.5 43.96

4.8 0.38

0.007 0.012 42.87

833 0.4

560.3 0.58

0.163 0.106 13.07 43.99 32300

57.6

724

15.1 731.1

7.5

753.7 33130 -23.5

2.1 1.00

-19.4 43.96

4.8 0.38

0.007 0.011 43.96

33130 15.1

727

20.1 974.8

10.0

1005.0 44180 -24.1

2.0 1.00

-25.9 43.96

4.5 0.38

0.007 0.011 43.96

44180 20.1

530.1 0.57

0.159 0.105 13.10 44.49

732

91.6 4444.7 45.8

4582.0 201400

75.1 20.3 1.00

-111.9 43.96

40.1 0.58 0.011 0.022 43.96

201400 91.8

Simulation Basis: Train 3 • Max Condensale + 511.-02 Mode Rev. fl Page 10 of 10

Page 68: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

7.0 UTILITY REQUIREMENTS

The impact ofthe ERM Project on the existing utility systems is minor. Because the existing systems have sufficient capacity to support the incremental requirements, the utilities scope of work was limited to electrical modifications and tie-ins to the following systems:

• Instrument Air - required for new control valves and the refrigeration compressor motor pressurization system

• Plant Air - required for the new utility stations

• Nitrogen - required for the refrigeration compressor seal system and equipment purging

• Low Pressure Steam - used for heat tracing only

Electrical power is supplied to the new Refrigeration Package (44ME-201), Propane Condenser (44E-203) and Cold Demethanizer Bottoms Pumps (44P-302 A/B).

CHAPTER 1 10

Page 69: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

8.0 CHEMICALS AND CONSUMABLES

The new chemical requirements associated with the E R M Project are summarized below.

Propane for Refrigeration Package (44-ME-201) Type: 97% propane Initial Fil l : Approx. 60 m3

Supply Method: Transfer from 45-V-502

Lube Oil for Propane Compressor, Gear, and Motor Type: Mineral Oil (ISO Grade 46) Initial Fil l : Approx. 10 m3

Supply Method: Drums

Seal Fluid for Cold Demethanizer Bottoms Pumps (44-P-302 A/B) Type: Methanol Initial Fill : Approx. 0.02 m 3 per seal pot (0.04 m 3 total) Supply Method: Drums

CHAPTER 1 11

Page 70: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

CHAPTER 2

PROCESS DESCRIPTION

CONTENTS

SECTION PAGE

1.0 GENERAL 2

1.1 Integration of the Unit in the Overall Plant 2 1.2 References 2 1.3 Principles of Operation and General Description 2

2.0 DETAILED PROCESS DESCRIPTION 4

2.1 Preparation of the Feed Gas 4 2.2 Gas Dehydration 4 2.3 Recovery Tower and Expander-Recompressor 4 2.4 Demethanizer and Recycle Compressor 8 2.5 Debutanizer 10 2.6 Existing Propane Refrigeration System 12 2.7 E R M Refrigeration System 12 2.8 Unit 44 Isolations 17 2.9 Flare and Blowdown Valves 17

3.0 ELEMENTS OF PROCESS CONTROL PHILOSOPHY 18

3.1 Existing Controls Modified for E R M Operation 18 3.2 New Controls Added for ERM Operation 19

4.0 DCS SCREEN DISPLAYS 22

CHAPTER 2

Page 71: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

1.0 GENERAL

1.1 Integration of the Unit in the Overall Plant

The E R M Project does not impact the interfaces between Unit 44 and the rest of the OGD-I facilities.

1.2 References

This section ofthe manual should be reviewed in conjunction with the following drawings:

Process Flow Diagrams: 44-00-20-001 to 44-00-20-006A. Included in Chapter 1.

Material Balances: 44-00-20-010 to 44-00-20-013. Included in Chapter 1.

Piping & Instrument Diagrams: 44-00-30-018 to 44-00-30-041. Included in Chapter 10.

The new equipment items added in Unit 44 for the E R M Project are:

Tag Number Description

44-V-205 Propane Receiver

44-V-206 High Pressure KO Drum

44.V-207 Low Pressure KO Drum

44-V-308 Cold Demethanizer

44-C-202 Propane Compressor

44-E-203 Propane Condenser

44-E-318 2 n d Feed Chiller

44.E-406 Debutanizer Trim Condenser

44-E-407 NGL Subcooler

44-P-302 A/B Cold Demethanizer Bottoms Pumps

Refer to the Equipment List (NM-AOWT-44-00-06-001) in Chapter 9 for additional information.

1.3 Principles of Operation and General Description

Principles of Operation The operational objective for Unit 44 after implementation of the E R M Project is unchanged from the original design. The unit will produce sweet, dry sales gas and recover NGL and condensate. The only difference is the quantity of ethane contained in the NGL.

CHAPTER 2

Page 72: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. ContractNo. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

In order to increase the ethane recovery, new equipment is added and operating conditions are adjusted. The required modifications are described in detail in Section 2.0 of Chapter 2.

General Description The description of Unit 44 has been divided into the following sub-sections:

Preparation of the Feed Gas

Dehydration

Recovery Tower and Expander-Recompressor

Demethanizer and Recycle Compressor

Debutanizer

Propane Refrigeration

Each of these sections is described below.

CHAPTER 2

Page 73: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. ContractNo. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

A

2.0 DETAILED PROCESS DESCRIPTION

This section describes the new ERM operating mode. The adequacy of the existing equipment for the new ERM conditions has been evaluated in detail during the engineering phase of the project. Refer to the following study reports for more information:

Subject

Relief System

Utility and Offsites Systems

Recycle Gas Compressor

Equipment, Instruments and Piping

Cold Design Temperatures

Document Number

RPT-AOWT-44-06-006

RPT-AOWT-44-06-007

RPT-AOWT-44-06-008

RPT-AOWT-44-06-010

RPT-AOWT-44-06-011

2.1 Preparation of the Feed Gas

This section of the unit was not modified for the E R M Project. Refer to the existing Operating, Maintenance and Safety Manual for a detailed description of the following equipment items:

44-E-309: Wet Feed / Residue Gas Exchanger 44-E-310: Wet Feed Chiller 44-V-101: Gas Dehydration Separator 44-F-101 A/B: Inlet Gas Filters

2.2 Gas Dehydration

The existing gas dehydration system is not impacted by the E R M Project. The existing system produces a dry gas with water dewpoint of-100 o C or lower. This is adequate for the new operating conditions. Refer to the existing Operating, Maintenance and Safety Manual for a detailed description of the following equipment items:

44-V-102/3/4/5: 44-F-102 A/B: 44-F-103: 44-ME-101-HI: 44-E-101: 44-V-102:

Gas Dehydrators Outlet Gas Filters Regeneration Gas Filters Regeneration Gas Heater Regeneration Gas Cooler Regeneration Gas Separator

2.3 Recovery Tower and Expander-Recompressor

The E R M Project does not impact the majority ofthis section. Therefore, only the modifications and key changes to the operation conditions are described below. Refer to the

CHAPTER 2

Page 74: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

A

existing Operating Manual or the Addendum from the C2 Enhancement Project for additional information.

2.3.1 First Stage Dehydrated Feed Gas Chilldown

The dry feed gas from 44-F-102 A/B is split into the following three streams:

• 41% to the 1st Stage X-Exchanger (44-E-301) where heat is exchanged with the residue gas.

• 13% to the 1 st Stage Liquid / Feed Exchanger (44-E-313) where heat is exchanged with the liquid from 44-V-303.

• 46% to the Feed Chiller (44-E-306) where propane refrigerant from the existing refrigeration system is used to chill the feed gas.

The first two flow paths are unchanged. In the third flow path, a new exchanger is added downstream of 44-E-306. This new exchanger, the 2nd Feed Chiller (44-E-318), further cools the feed gas using the low level refrigerant from the new refrigeration system. This enables higher ethane recovery. The feed gas from 44-E-306 enters the tube side of 44-E-318 at about - 7 0 C and is cooled to -17 0C. A temperature indicator (44-TI-5120) is provided for the outlet stream. The liquid level on the shell side of 44-E-318 is maintained with a level control valve (44-LV-2111) located upstream of the exchanger, which expands the refrigerant to 1.0 barg and -26°C. Relief valves (44-PS V-8110 A/B - one operating, one spare) are provided to protect the shell side of 44-E-318 in the event of a tube rupture or fire. The vaporized propane returns to the Low Pressure Knockout Drum (44-V-207) as described in Section 2.7.5 of this Chapter.

The shell side of 44-E-318 is insulated and equipped with the following other instruments:

A

Description Level Gauge

Level Indicator Pressure Gauge

Thermowell

Tag Number LG-2110 LI-2111

PG-4110 TW-5310

The exchanger and level instruments are manually drainable to the CDC. The new relief valves discharge to the Cold Flare.

The chilled feed gas from 44-E-318 is combined with the feed gas from 44-E-301 and 44-E-313 and sent to the 1st Stage KO Drum (44-V-301). After this modification, 44-V-301 will operate at -220C compared to -9 0C in the C2 Enhancement Project.

The temperature of 44-V-301 is controlled as follows:

1. The new refrigeration system is base loaded and the temperature of 44-V-301 is controlled with the existing refrigeration system. In this configuration, the set point for the 44-E-318 level controller remains fixed, and the 44-E-318 tube bundle remains completely submerged. The temperature of 44-V-301 is controlled by adjusting the speed of the 44-C-201. This is similar to the current control approach.

CHAPTER 2

Page 75: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

A

A

A

This control strategy is recommended due to the flexibility of the existing steam turbine driver.

An alternate temperature control mode for V-301 is also available to the operators. In the alternate mode, the existing refrigeration system is base loaded and the temperature of V-301 is controlled with the new refrigeration system. In this configuration, the set point for the 44-C-201 speed controller would remain fixed. The temperature of 44-V-301 would be controlled by adjusting the propane level in 44-E-318 (44-TIC-5056 to LIC-2111 cascade control). A new Hand Switch (44-HS-5056) is provided to allow the operators to select which control strategy will be used. The alternate control mode is recommended only during the initial start-up phase of the ERM refrigeration system and when the existing refrigeration system is not operational.

The vapor from 44-V-301 is sent to the Second Stage Chilldown section. Liquid is sent to the l 5 ' Stage Liquid Flash Drum (44-V-303) on level control via LV-2035. The lower operating temperature of 44-V-301 results in the condensation of more liquid. In order to handle the additional liquid, the capacity of LV-2035 was increased in the E R M Project by replacing the disk stack.

The temperature of the 44-V-303 should be monitored closely in conjunction with the temperature of 44-V-301. 44-V-303 is constructed of LTCS and has a cold design temperature of-450C. The expected temperature in C2 recovery mode is -31°C. NOTE: This temperature should be maintained above -35°C to ensure that the temperature at the outlet ofthe 44- V-303 level control valve (44-L V-2040) does not fall below -450C. A new temperature indicator (44-TI-5131) with a low temperature alarm has been provided at the outlet of 44-LV-2040 to alert the Operators of low temperatures. A new ESD valve (44-XV-9080) has also been provided downstream of 44-LV-2040 to protect the downstream piping and 44-E-313 from low temperatures. The low-low temperature trip (44-TALL-5130) will also shut-off the supply of refrigerant to 44-E-318 by closing 44-LV-2 111. This will cause 44-V-301 and 44-V-303 to warm-up. The new ESD valve can be manually reset once the temperature of 44-V-301 increases to at least -15°C.

The existing feed gas bypass line around the First Stage Chilldown section is re-routed to between 44-E-306 and 44-E-318. High pressure drops across E-306 have been experienced in the past. Ifthe pressure drop on the feed gas side of 44-E-306 is much higher than the design valve, this will limit the flow through 44-E-306. The relocated bypass ensures that the new feed chiller can always be fully loaded by mixing warm feed gas from dehydration section with the outlet from 44-E-306. Manual valve 44-M-052 can be used to adjust the flow if required. The other existing flow control schemes used upstream of 44-V-301 will not be modified.

2.3.2 Second Stage Dehydrated Feed Gas Chilldown

The vapor from 44-V-301 is also split into three streams. There are no process flow changes to this section of Unit 44. The existing control scheme is also unchanged. The 2nd Stage Feed KO Drum (44-V-302) will operate at -420C compared to - 3 r C in the C2 Enhancement Project.

Liquid from 44-V-302 is sent to the 2 n d Stage Liquid Flash Drum (44-V-304) on level control. The liquid from 44-V-304 is used to chill the feed gas in hairpin exchanger 44-E-314. 44-V-304, the piping to 44-E-314, and 44-E-314 have cold design temperatures of-100 oC and are

CHAPTER 2

Page 76: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

constructed of stainless steel. The outlet piping from 44-E-314 has a cold design temperature of -450C and LTCS metallurgy. In normal operation, the shell side inlet temperature will be -67 0C and the outlet temperature will be -280C. In the event that the flow of gas on the hot side of 44-E-314 is reduced or stops, the shell side outlet temperature will decrease. The original design configuration depended on the feed gas to heat the cold side fluid to a safe temperature which allowed the change in metallurgy (SS to LTCS). However, in the event of a loss of flow on the hot side of E-314 due to a malfunction of the associated controller (TIC/TV-5067) or an inadvertent closure of a block valve, the shell side outlet piping can be exposed to temperatures below its cold design temperature. This condition could then lead to a potential brittle fracture.

To remedy this existing problem, new protection features are being added as a part of the E R M Project. The existing DCS temperature indicator (TI-5068) is being converted to a controller. A new minimum select is also being added to the V-304 level control loop. Ifthe shell side outlet temperature of E-314 begins to fall and approach system limits, the temperature controller will begin to throttle back the flow of cold liquid from V-304. This control configuration is similar to what was used previously for a similar low temperature problem area (V-306 overhead temperature) during the C2 Enhancement Project.

An extra level of protection above and beyond the approach used during the C2 Enhancement Project is also provided for 44-E-314. As shown in the attached diagram, a vent solenoid (44-LY-2044C) is being added to move the 44-V-304 level control (LV-2044) to its safe position (closed) in the event of low-low temperature at the outlet of the shell side of E-314. 44-TALL-5126 activates the shutdown ifthe temperature falls to -43 0 C . In order to ensure reliability of the shutdown action, the signal comes from the ESD system, not the DCS. In addition, the LV-2044 bypass valve will be locked closed to ensure that the shutdown action cannot be circumvented.

NOTE: Ifthe LV-2044 bypass valve will be operated manually, the temperature downstream of 44-E-314 must be monitored carefully and continuously via 44-TI-S068. If the low temperature alarm set point is reached (-35C) the bypass valve should be closed immediately.

2.3.3 Turbo-expander / Recompressor

This section of the unit was not modified for the ERM Project. Refer to the existing Operating, Maintenance and Safety Manual for a detailed description of the following equipment items:

44-EC-301: Expander Recompressor 44-E-311: Residue Gas Aftercooler

Vapor from 44-V-302 is sent to the Turbo-expander (44-EC-301). Due to the increased feed chilling, the expander outlet temperature is reduced from -520C in the C2 Enhancement design to -60oC.

2.3.4 Joule Thomson Operation

JT operation is not significantly impact by the ERM Project. Because additional chilling is available from the new refrigeration package, higher product recoveries will be possible.

CHAPTER 2

Page 77: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

2.3.5 Recovery Tower

Aside from the colder operating temperatures, there are no changes to the Recovery Tower (44-V-305) portion of Unit 44. The existing process flow configuration and control schemes are unchanged.

The new operating conditions for 44-V-305 are expected to be:

Pressure, barg

Temperature, °C

Top

39.5 barg

-640C

Bottom

39.6 barg

-60oC

As in current operation, the Recovery Tower reboiler is not in operation.

The Recovery Tower should be operated at the lowest possible pressure to maximize ethane and propane recovery. The position of the pressure control valve in the residue gas outlet line (PV-3046A) should be monitored closely. The valve should be operated nearly wide open with minimum AP. It is not efficient to waste pressure drop across the control valve. Ifthe pressure drop across the control valve is excessive, the set point of PIC-3046 should be lowered. This will lower the operating pressure of the Recovery Tower and improve product recoveries.

A

2.4 Demethanizer and Recycle Compressor

2.4.1 Demethanizer

The metallurgy ofthe existing Demethanizer (44-V-306) currently limits ethane recovery. This constraint was eliminated in the E R M Project by adding a small, new stainless steel Cold Demethanizer (44-V-308) to the unit. This new tower acts as an extension of 44-V-306 and allows colder temperatures in the important sections of the unit.

The Cold Demethanizer has 8 trays and a demister. The feed to the top tray consists ofthe cold stream from the Recovery Tower Bottoms Flash Drum (44-V-307) and the cold stream from the 2 n d Stage Liquid / Feed Exchanger (44-E-314). The bottom feed is the overhead vapor from the existing Demethanizer. The expected operating conditions for 44-V-308 are:

Pressure, barg

Temperature, 0 C

Top

23.3 barg

-360C

Bottom

23.5 barg

-20oC

44-V-308 is insulated and provided with the following instrumentation:

Description Level Gauge

Level Indicator Low-Low Level Shutdown

Tag Number LG-2125

LI-2126 LALL-2127

CHAPTER 2

Page 78: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

A

A

Description Pressure Gauge

Pressure Indicator Pressure Differential

Temperature Indicator

Thermowells

Tag Number PG-4115 (Below Tray 1) PI-3081 (Above Tray 8)

PDI-3082 TI-5125 (Bottom Liquid) TW-5316 (Tray 8 Liquid) TW-5317 (Tray 5 Liquid)

The column and level instruments are manually drainable to the OD/CDC networks.

The new tower will be in service during all modes of operation and cannot be isolated from the upstream reliefvalves at 44-V-306 (44-PSV-8029A/B/C) and the downstream relief valves at the core exchangers (44-PSV-8023A/B). Both sets of relief valves are set at 28 barg.

The liquid from the bottom of 44-V-308 is returned to the top of 44-V-306 by the new Cold Demethanizer Bottoms Pumps (44-P-302 A/B) on level control (44-LV-2126). One pump is normally operating. A minimum flow bypass control loop (44-FV-1070) is provided for pump protection. Pressure gauges are provided in the suction (44-PG-4111 A/B) and discharge (44-PG-4112 A/B) of each pump. A DCS pressure indicator is provided in the common discharge line upstream of the level control valve. FI-1070 measures the flow in the common discharge line.

The pumps are equipped with Hand/Off/Auto switches and remote Start/Stop buttons. A continuous vent line equipped with an orifice (FO-1071 A/B) allows proper degassing ofthe stand-by pump so that the pump can be started quickly in the event ofa failure ofthe main pump. The pump seal system (API Plan 53B) includes pressure gauges (PG-4117 A/B) and indicators (PI-3084 A/B). In the event of low-low seal pressure, the associated pump is tripped. Low-low level in 44-V-308 will also initiate a shutdown ofthe pumps. A unit or zone shutdown will also trip the pumps.

The deluge system covering 44-V-306 is extended to cover 44-V-308 and 44-P-302 A/B. Two new flammable gas detectors (GA-6025 and GA-6026) are provided in the seal area of the new Cold Demethanizer Bottoms Pumps.

The suction line of the Cold Demethanizer Bottoms Pumps is equipped with an ESD valve. If the new gas detectors located near the pumps indicate the presence of hydrocarbon due to seal failure or some other problem, the DCS operator will activate XS-9081 A/B. This will close XV-9081 and trip both pumps.

The overhead vapor from the Cold Demethanizer will be mixed with the vapor from 44-V-307 and recycled to the Recovery Tower (44-V-305). This modification will change the molecular weight and flow rate ofthe recycle gas stream. The overhead pressure of 44-V-308 will be controlled by adjusting the speed ofthe Recycle Gas Compressor (44-C-301). This approach is identical to the existing control scheme.

The heat input to the existing Demethanizer (44-V-306) will be reduced in order to hold the additional ethane. The T' Stage liquid from 44-E-313 will not be further pre-heated in 44-E-315. The duty ofthe Bottom Reboiler (44-E-308) will also be decreased from 7.0 Gcal/h in

CHAPTER 2

Page 79: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

the C2 Enhancement Project to 6.2 Gcal/h. As in the C2 Enhancement configuration, the condensation pressure for the steam side of 44-E-308 may be as low as 1 bara. The draw-off pumps added during the C2 Enhancement Project will continue to be required. In addition, in order to maintain the proper temperature at the bottom of the tower, it will be necessary to increase the steam condensate level in 44-E-308 to further reduce heat transfer.

2.4.2 Recycle Compressor

As discussed above, the recycle gas from 44-C-301 will be bypassed around 44-E-315 to / l \ reduce the heat input to the Demethanizer (44-V-306). As in the C2 Enhancement

configuration, the flow rate through the Recycle Trim Cooler (44-E-316) will be maintained at its design value. The flow of recycle gas through 44-E-307 will be varied to maintain the proper temperature profile in the Demethanizer (44-V-306).

As mentioned above, the Recovery Tower Reboiler (44-E-303) is not used in C2 recovery mode. In order to reduce the pressure drop in the recycle loop, a new bypass is added for 44-E-303. This new bypass is located close to 44-E-302/4.

The flow in the recycle loop will increase as a result ofthe E R M Project. To allow proper controllability, the capacity of PV-3058 was increased.

Aside from the two new bypasses and control valve modification, the remaining flow, temperature, and pressure controls in the recycle loop will remain unchanged. Refer to the existing Operating, Maintenance and Safety Manual for addition information.

2.5 Debutanizer

The E R M Project does not impact the majority ofthe Debutanizer section. Therefore, only the modifications and key changes operation conditions are described below. Refer to the existing Operating Manual or the Addendum from the C2 Enhancement Project for additional information.

The N G L from the Demethanizer is sent to the NGL Fractionation section of Unit 44. The NGL is pre-heated in a feed/bottoms exchanger (44-E-401) and a steam heated exchanger (44-E-405). The partially vaporized feed enters the Debutanizer (44-V-401) above tray 23. The expected operating conditions for 44-V-401 are:

Pressure, barg

Temperature, 0 C

Top

18.5 barg

720C

Bottom

18.8 barg

1770C

The existing air-cooled condenser (44-E-402) cannot totally condense the ethane rich overhead product. A new trim condenser is required. This new exchanger, the Debutanizer Trim Condenser (44-E-406), condenses the overhead stream using the high level refrigerant from the new refrigeration system. The partially condensed stream from 44-E-402 enters the tube side of 44-E-406 at about 510C and is cooled to 29 0C. The liquid level on the shell side of 44-E-406 is maintained with a level control valve (44-L V-2116) located upstream of the exchanger, which expands the refrigerant to 6.4 barg and 160C. The temperature of the NGL

CHAPTER 2 10

Page 80: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

leaving 44-E-406 is monitored with TI-5127 and can be controlled by adjusting the set point of the level controller.

The shell side of 44-E-406 is insulated and equipped with the following other instruments:

Description Tag Number Level Gauge LG-2115

Level Indicator LI-2116

Pressure Gauge PG-4116

Thermowell TW-5312

The exchanger and level instruments are manually drainable to the CDC.

44-E-406 is located at grade. In this configuration, the pressure at the exchanger will be higher than the pressure in the Overhead Accumulator (44-V-402). Therefore, the NGL leaving 44-E-406 must be subcooled to prevent vaporization in the drum.

The Debutanizer pressure control scheme must be modified. Tower pressure will be controlled using the hot vapor bypass instead ofthe valve in the air cooler outlet line. The new control scheme works as follows:

• If the tower pressure falls, the hot vapor bypass will open. The hot vapor will warm-up the surface of the liquid in the accumulator, increasing the vapor pressure in the drum. This will cause liquid to accumulate in the trim condenser. Once enough surface area has been flooded with liquid, the system will reach a new equilibrium and the bypass will close.

• If the tower pressure is too high, the bypass will close. The pressure in the accumulator will fall and liquid will move out of the exchanger into the drum. This will expose more surface area and the tower pressure will reduce.

The liquid from the accumulator is sent to the Debutanizer Overhead Pumps (44-P-401 A/B). A portion of the overhead product is returned to the tower on flow control as reflux. The required reflux rate is less than the C2 Enhancement design case.

The remaining product liquid is sent to a new shell & tube exchanger. This new exchanger, the N G L Subcooler (44-E-407), cools the NGL product stream using the high level refrigerant from the new refrigeration system. The stream from 44-P-401 A/B enters the tube side of 44-E-407 at about 29 0C and is cooled to 20 oC. The liquid level on the shell side of 44-E-407 is maintained with a level control valve (LV-2121) located upstream ofthe exchanger, which expands the refrigerant to 6.4 barg and 160C. Temperature indication for the outlet NGL stream is provided (TI-5121). The flow controller downstream of 44-E-407 is reset by the accumulator level controller.

The shell side of 44-E-407 is insulated and equipped with the following other instruments:

Description Tag Number Level Gauge LG-2120

Level Indicator LI-2121

CHAPTER 2 11

Page 81: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Description Tag Number Thermowell TW-5320

The exchanger and level instruments are manually drainable to the CDC.

A common set of relief valves (44-PS V-8112 A/B - one operating, one spare) is provided to protect the shell sides of 44-E-406 and 44-E-407 in the event of a fire. The new relief valves discharge to the Cold Flare. The vaporized propane from these exchangers returns to the High Pressure Knockout Drum (44-V-206) as described in Section 2.7.4 of this Chapter.

2.6 Existing Propane Refrigeration System

A Other than the control modification described in Section 2.3.1, the ERM Project does not impact the equipment in the existing propane refrigeration system. Refer to the existing Operating Manual for a process description of the following existing equipment items:

44-V-201 44-V-202 44-V-203 44-V-204 44-E-201 44-E-202 44-C-201

Refrigerant Surge Drum Refrigerant Flash Drum First Stage Suction Drum Second Stage Suction Drum Refrigerant Condenser Refrigerant Subcooler C3 Refrigeration Compressor

2.7 ERM Refrigeration System

A new closed-loop propane refrigeration system is installed as a part ofthe E R M Project. The new system provides the following two levels of refrigerant to the process:

• Low level at about -26 0C and 1.0 barg to 44-E-318 for chilling the feed gas

• High level at about 160C and 6.4 barg to 44-E-406/7 for condensing and subcooling the N G L product

The system has been designed for 110% ofthe normal requirements. The system includes a propane surge drum, knockout drums for each pressure level, subcooling exchangers for each pressure level, an air-cooled condenser, and centrifugal compressor.

2.7.1 Propane Receiver, 44-V-205

The Propane Receiver, 44-V-205, has a storage capacity of 53 m 3 or about 110% ofthe liquid inventory in the system. Propane supply and make-up are provided from the existing Propane Storage Drum and Transfer Pumps in Unit 45. The Propane Receiver is filled manually using a globe valve.

The expected operating conditions are 550C and 18.5 barg. The pressure ofthe drum is controlled by PIC-3410A acting on the hot vapor bypass (PV-341 OA) around the Propane Condenser (44-E-203). A pressure controlled vent to flare (PV-341 OB) is also provided at the

CHAPTER 2 12

Page 82: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

drum. Light components in the receiver can be purged to the flare as required using PIC-3410B.

The Propane Receiver is provided with the following instrumentation:

Description Level Gauge

Level Indicator Pressure Gauge

Pressure Indicator

Pressure Safety Valves

Tag Number LG-2413 LI-2403 PG-4403 PI-3410

PSV-8403 A/B (fire case)

The vessel and level instruments are manually drainable to the CDC/OD networks. The new relief valves discharge to the Cold Flare.

The deluge system protecting 44-V-201 is extended to cover 44-V-205.

2.7.2 High Temperature Subcooler, 44-E-204

The liquid from 44-V-205 is routed to the High Temperature Subcooler (44-E-204). A slipstream of the liquid is letdown in pressure across a level control valve (LV-2404) and sent to the shell side of 44-E-204 at 6.4 barg and 160C to provide cooling for the remaining refrigerant liquid from the receiver that is sent to the tube side of 44-E-204. The refrigerant liquid on the tube side is cooled from 550C to 180C. The majority of the subcooled refrigerant leaving 44-E-204 is then sent to the Debutanizer Trim Condenser (44-E-406) and NGL Subcooler (44-E-407) for process cooling. Subcooling the refrigerant ensures that there is no vaporization of the liquid upstream of the level control valves at the remote evaporators. The level on the shell side of 44-E-204 is controlled via LIC-2404 to maintain the tube bundle submerged.

44-E-204 is insulated and provided with the following instrumentation:

Tube Side Inlet Thermowell 44-TW-5332

A

Tube Side Outlet Thermowell Temperature Indicator Pressure Indicator Flow Indicator

Shell Side Level Indicator

44.TW-5333 44-TI-5411 44-PI-3411 44-FI-1411 (Flow to 44-E-406/7)

44-LIC-2404

Poor exchanger performance or wanner than expected temperatures may be signs of accumulation of heavy hydrocarbons in the exchanger. 44-E-204 has a low point drain that can be used to remove heavy hydrocarbons from the system. This drain is connected to the cold closed drain system.

CHAPTER 2 13

Page 83: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

2.7.3 Low Temperature Subcooler, 44-E-205

The remaining portion ofthe subcooled refrigerant from 44-E-204 is sent to the Low Temperature Subcooler (44-E-205). A slipstream ofthe subcooled liquid is letdown in pressure across a level control valve (LV-2405) and sent to the shell side of 44-E-205 at 1.0 barg and -260C to provide cooling for the remaining liquid refrigerant from the High Temperature Subcooler that is sent to the tube side of 44-E-205. The refrigerant liquid on the tube side is cooled from 180C to -240C. The subcooled refrigerant is then sent to 44-E-318 for process cooling. The level on the shell side of 44-E-205 is controlled via LIC-2405 to maintain the tube bundle submerged.

44-E-205 is insulated and provided with the following instrumentation:

Tube Side Inlet

Thermowell 44-TW-5330

Tube Side Outlet Thermowell 44-TW-5331 Temperature Indicator 44-TI-5412 Pressure Indicator 44-PI-3412 Flow Indicator 44-FI-1412 (Flow to 44-E-318) Shell Side Level Indicator 44-LIC-2405

A Poor exchanger performance or warmer than expected temperatures may be signs of accumulation of heavy hydrocarbons in the exchanger. 44-E-205 has a low point drain that can be used to remove heavy hydrocarbons from the system. This drain is connected to the cold closed drain system.

2.7.4 High Pressure Knockout Drum, 44-V-206

The vaporized propane from process exchangers 44-E-406/7 is sent to the High Pressure Knockout Drum (44-V-206). The pressure and temperature of this returning stream are measured using 44-PI-3413 and 44-TI-5413 respectively. An automated isolation valve (XV-7401) is provided in this line to allow separation of the process exchangers from the refrigeration system.

44-V-206 is mounted directly above the High Temperature Subcooler. Vapor from the shell side of 44-E-204 flows to 44-V-206 and mixes with the vapor from 44-E-406/7. The High Pressure Knockout Drum operates at about 6.4 barg and 160C. The combined vapor stream exits the drum and flows to side load connection of the Propane Compressor (44-C-202).

Any liquid entrained from the remote evaporators (44-E-406/7) or from excess quenching will end up in the knockout drum. This liquid will fall into the High Temperature Subcooler and be vaporized. This configuration eliminates the need to have a vaporization coil in the High Pressure Knockout Drum or a drain pump. There is normally no liquid level in 44-V-206.

The High Pressure Knockout Drum is insulated and provided with the following instrumentation:

CHAPTER 2 14

Page 84: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Description Level Gauge

High Level Alarm Pressure Safety Valves

Tag Number LG-2414

LAHH-2401 PSV-8401 A/B (fire case)

The vessel and level instruments are manually drainable to the CDC/OD networks. The new relief valves discharge to the Cold Flare.

2.7.5 Low Pressure Knockout Drum, 44-V-207

The vaporized propane from process exchanger 44-E-318 is sent to the Low Pressure Knockout Drum (44-V-207). The pressure and temperature of this returning stream are measured using 44-PI-3414 and 44-TI-5414 respectively. An automated isolation valve (XV-7402) is provided in this line to allow separation of the process exchangers from the refrigeration system.

44-V-207 is mounted directly above the Low Temperature Subcooler. Vapor from the shell side of 44-E-205 flows to 44-V-207 and mixes with the vapor from 44-E-318. The Low Pressure Knockout Drum operates at about 1.0 barg and -260C. The combined vapor stream exits the drum and flows to the Propane Compressor (44-C-202).

Any liquid entrained from the remote evaporator (44-E-318) or from excess quenching will end up in the knockout drum. This liquid will fall into the Low Temperature Subcooler and be vaporized. This configuration eliminates the need to have a vaporization coil in the High Pressure Knockout Drum or a drain pump. There is normally no liquid level in 44-V-207.

The Low Pressure Knockout Dmm is insulated and provided with the following instrumentation:

Description Level Gauge

High Level Alarm

Pressure Safety Valves

Tag Number LG-2415

LAHH-2402

PSV-8402 A/B (fire case)

The vessel and level instruments are manually drainable to the CDC/OD networks. The new relief valves discharge to the Cold Flare.

2.7.6 Propane Compressor, 44-C-202

The Propane Compressor (44-C-202) is a two-suction machine driven by a fixed speed, 5.8 M W motor.

Each compressor suction line is provided with the following instrumentation:

Description 1st Stage Suction Side Load Low Pressure Alarm (with trip) PALL-3405 PALL-3404

Pressure Indicator PI-3403 PI-3402 Pressure Gauge PG-4405 PG-4406

CHAPTER 2 15

Page 85: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO Project Nol: 13522102 Doc. No.: PP-AOWT-44-00-001

A

Pressure Control Valve

Differential Pressure Gauge

Temperature Indicator

Temperature Gauge Flow Indicator

PV-3402B PDG-4400

Tl-5403 TI-5405 TG-6405 FI-1403

PV-3402A PDG-4401

TI-5402 TI-5404 TG-6406 FI-1402

Pressure control valves in each suction line are provided to ensure that the load on the compressor does not increase above the capacity ofthe motor. The valves are also used during hot start-up. The performance controller PIC-3402 modulates these valves. The performance controller is a part of the anti-surge system. Refer to the information from the anti-surge vendor (CCC) for a more detailed description.

The compressor discharge conditions are approximately 750C and 19.5 barg. The discharge line contains the following instrumentation:

Description High Pressure Alarm (with trip)

Pressure Indicator Pressure Gauge

High Temperature Alarm (with trip) Temperature Indicator

Flow Indicator Pressure Safety Valves

Tag Number PAHH-3400

PI-3401 PG-4402

TAHH-5400 TI-5401 FI-1400

PSV-8400 A/B (blocked discharge)

An automated isolation valve (XV-7400) is provided in the discharge line of the compressor. This valve, in conjunction with XV-7401 and XV-7402, allow the compressor system to be isolated from the remaining equipment. A depressurization valve (XV-7405) located upstream of XV-7400 is provided to allow the isolated system to be safely depressurized to the cold flare system.

The deluge system protecting 44-C-201 is extended to cover 44-C-202. Two new flammable gas detectors (GA-6023 and GA-6024) are located in the seal area of the new compressor.

The compressor is supplied with dedicated seal gas, buffer gas, and lube oil systems. In addition, since the compressor motor is operating in a classified area, it is provided with an air purge and pressurization system. Refer to the vendor manual for a description of these systems.

2.7.7 Anti-Surge Protection

Each compression stage is protected with a recycle (anti-surge) line and control valve to prevent surge. The recycle valves can send a portion of the compressor discharge vapor back to the suction of each stage (FV-1403 and FV-1402 for the first and second stage respectively). The subcooled refrigerant from 44-E-205 is used to remove the heat of compression. The addition of quench liquid is temperature controlled at each suction drum (TV-5404 for 44-V-206 and TV-5405 for 44-V-207). A high level override is provided to

CHAPTER 2 16

Page 86: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

prevent the temperature controllers from continuing to add quench liquid if the levels in the knockout drums are high.

2.7.8 Propane Condenser, 44-E-203

The compressed propane vapor is condensed in an air-cooled exchanger. The propane liquid leaving the Propane Condenser (44-E-203) free drains to the Propane Receiver (44-V-205). Non-condensables can be vented to the cold flare from the high points of Propane Condenser via a HIC and control valve (HIC-9092 and HV-9092). The vent valve has been specified as Tight Shut Off to minimize propane losses to the flare. The condenser has been designed for an air temperature of 46 0C. Manually operated louvers (HIC-9091) are provided to reduce airflow on cold days.

As discussed in Section 2.7.1, the pressure in 44-V-205 is maintained using a condenser bypass. If the pressure starts to fall in the receiver, the bypass opens. This increases the pressure in the receiver and causes the liquid to accumulate in the condenser. Once enough air cooler surface has been flooded with liquid, the system will reach a new equilibrium and the bypass will close.

The performance of 44-E-203 can be monitored using:

Description

Temperature Indicator

Temperature Gauge

Tag Number TI-5400 (inlet) TI-5410 (outlet) TG-6400 (outlet)

2.8 Unit 44 Isolations

The E R M Project does not impact the battery limit isolation valves in Unit 44.

2.9 Flare and Blowdown Valves

A brief summary of the new valves is provided in the table below.

VALVE NUMBER

P&ID NUMBER

OUTLET INLET USE

XV-7405 22717-104 Cold Flare 44-C-202 Discharge Depressurization of 44-C-202

PV-341 OB 22717-101 Cold Flare 44-V-205 Pressure control of 44-V-205

HV-9092 44-00-30-041 Cold Flare Inlet line to 44-E-203 Depressurization of 44-E-203

CHAPTER 2 17

Page 87: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

3.0 ELEMENTS OF PROCESS CONTROL PHILOSOPHY

Unit 44 can be operated in either C2 recovery mode or C2 rejection mode. As the objective ofthe E R M Project is to recover additional C2, the design case is the C2 recovery mode of operation. However, the design of the new equipment will allow the unit to be switched back to C2 rejection mode of operation without demerits to existing performance. The plant has also been designed with the flexibility to operate at any point between the maximum C2 recovery case and the C2 rejection case. The Chapters below define the controller set points and actions required to adjust the ethane recovery level to the desired level.

3.1 Existing Controls Modified for ERM Operation

44-LV-2035: Due to the additional chilling, the amount of liquid condensed in 44-V-301 will increase. The capacity of the existing level control valve (44-LV-2035) is not adequate for the new conditions. The disk stack of the valve is modified to increase the capacity ofthe valve (larger Cv).

44-PV-3058: The new operating conditions will change the molecular weight and flow characteristics ofthe recycle gas. The capacity of the existing Recovery Tower reflux valve (44-PV-3058) is not adequate for the new conditions. The valve trim is modified to increase the capacity of the valve (larger Cv).

44-XV-9080: In some of off-design and failure cases, the temperature downstream of 44-V-303 level control valve (44-LV-2040) may fall below the temperature rating (-45°C) of the downstream piping and heat exchanger (44-E-313). A new ESD valve is provided to protect the shell side of E-313 from exposure to low temperatures. TALL-5130 will close this valve if the temperature approaches the limits.

44-PIC-3064: The Debutanizer pressure control scheme is modified to work with the new Debutanizer Trim Condenser (44-E-406). The new scheme works as follows:

• Ifthe tower pressure falls, PV-3064 will open. The hot vapor will warm-up the surface of the liquid in 44-V-402, increasing the vapor pressure in the drum. This will cause liquid to accumulate in 44-E-406. Once enough surface area has been flooded with liquid, the system will reach a new equilibrium and the bypass will close.

• If the tower pressure is too high, the bypass will close. The pressure in 44-V-402 will fall and liquid will move out of 44-E-406 into the drum. This will expose more surface area and the tower pressure will reduce.

TIC-5056/44-HS-5056: A new hand switch is added which allows the operator to select which refrigeration system will be used to control the temperature of 44-V-301. There are two options for the hand selector:

1. The signal from 44-TIC-5056 is cascaded to the performance controller (44-PIC-3630) of the existing refrigeration compressor 44-C-201. In this mode, the temperature of 44-V-301 is controlled by varying the speed of 44-C-201 which adjusts the heat transfer in the existing Feed Chiller (44-E-306). The new 2 n d Feed Chiller (44-E-318) operates in a base loaded condition with a fixed level setpoint.

CHAPTER 2

Page 88: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

2. The signal from 44-TIC-5056 is cascaded to the level controller (44-LIC-2111) of the 2 n d

Feed Chiller. In this mode, the temperature of 44-V-301 is controlled by varying the level of propane on the shell side of 44-E-318. This adjusts the heat transfer/duty of 44-E-318. The cooling duty provided by the existing Feed Chiller (44-E-306) is constant as the Refrigeration Compressor (44-C-201) will have a fixed speed setpoint.

44-TIC-5068/44-LY-2044A: The existing DCS temperature indicator (TI-5068) is being converted to a controller. A new minimum select (44-LY-2044A) is also being added to the V-304 level control loop. If the shell side outlet temperature of E-314 begins to fall and approach the system limits, the temperature controller will begin to throttle back the flow of cold liquid from V-304.

44-LY-2044C: In some failure scenarios, the shell side outlet temperature of 44-E-314 will fall below its design temperature. A new vent solenoid is added in the LIC-2044 control loop to close LV-2044 if the temperature approaches the limits. The new TALL-5126 imitates the trip. The trip signal comes from the new Triconex.

44-FIC-1048: The NGL product from 44-P-401 A/B is further cooled in the new NGL Subcooler (44-E-407). Due to this, the existing temperature indicator (44-TI-5105) used by the existing flow controller (44-FIC-1048) no longer reports the temperature of the NGL sent to storage. A new temperature indicator (44-TI-5121) located downstream of 44-E-407 will be used as a correction for the existing flow controller.

3.2 New Controls Added for ERM Operation

3.2.1 Cold Demethanizer System

44-LIC-2126: This new controller is used to maintain the level in the Cold Demethanizer. The controller modulates a valve (44-LV-2126) in the discharge line from the Cold Demethanizer Bottoms Pumps.

44-FIC-1070: This controller provides minimum flow protection for the Cold Demethanizer Bottoms Pumps. If the flow from the pumps decreases below the minimum flow setpoint, the controller will open FV-1070 and liquid will be recycled back to the Cold Demethanizer.

44-LALL-2127: This trip function shuts down the Cold Demethanizer Bottoms Pumps if the level in the Cold Demethanizer falls to the low-low setpoint.

44-PALL-3084A/B: This trip function shuts down the Cold Demethanizer Bottoms Pumps if the level in the pressure in the pump seal pot falls to the low-low setpoint.

44-XS-9081: This push button closes the ESD valve in the liquid outlet line from the Cold Demethanizer. The trip action also stops the Cold Demethanizer Bottoms Pumps. The ESD valve is intended to prevent the large liquid inventory in the bottom ofthe Cold Demethanizer from being released in the event of a seal failure or fire. Gas detectors located by the pumps would alert the operator of such a hazardous condition.

CHAPTER 2 19

Page 89: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

3.2.2 New Process Chillers

44-LIC-2111: This controller is used to maintain the level of propane in the 2 n d Feed Chiller (44-E-318). The controller can operate in cascade mode with the 44-V-301 temperature controller (44-TIC-5056). The controller modulates a valve (44-LV-2111) in the propane supply line.

44-LIC-2116: This controller is used to maintain the level of propane in the Debutanizer Trim Condenser (44-E-406). The controller can operate in cascade mode with the 44-V-402 temperature controller (44-TIC-5127). The controller modulates a valve (44-LV-2116) in the propane supply line.

44-LIC-2121: This controller is used to maintain the level of propane in the NGL Subcooler (44-E-407). The controller modulates a valve (44-LV-2121) in the propane supply line.

3.2.3 E R M Refrigeration System

A brief description of the new ERM Refrigeration controls is provided in this section. Refer to the attached vendor narrative for more information. The controls for the compressor auxiliary systems (lube oil, seal gas, motor cooling and purging) are described in the vendor narrative.

44-PIC-3410A: This controller is used to maintain the pressure in the Propane Receiver (44-V-205). The controller modulates the 44-E-203 hot vapor bypass valve (44-PV-3410A). The hot vapor from the discharge of the Propane Compressor (44-C-202) warms the surface of the liquid and raises the pressure in 44-V-205.

44-PIC-3410B: This controller provides high pressure protection for 44-V-205. The controller will open 44-PV-3410B before the reliefvalves lift.

44-LIC-2404: This controller is used to maintain the level of propane in the High Temperature Subcooler (44-E-204). The controller modulates a valve (44-LV-2404) in the propane supply line.

44-LIC-2405: This controller is used to maintain the level of propane in the Low Temperature Subcooler (44-E-205). The controller modulates a valve (44-LV-2405) in the propane supply line.

44-TIC-5404: This controller is used to maintain the Propane Compressor side load suction temperature. The controller modulates a quench valve (44-TV-5404) in the propane supply line. Subcooled propane from 44-E-205 is used for quenching. The TIC-5404 control loop includes a minimum select block (44-TY-5404A). Ifthe level in the High Pressure Knockout Drum (44-V-206) is high, the signal from 44-LIC-2404 will be selected and the flow of quench will be reduced. This will prevent the compressor from tripping on high-high level in 44-V-206.

44-TIC-5405: This controller is used to maintain the Propane Compressor 1st stage suction temperature. The controller modulates a quench valve (44-TV-5405) in the propane supply line. Subcooled propane from 44-E-205 is used for quenching. The TIC-5405 control loop includes a minimum select block (44-TY-5405A). Ifthe level in the Low Pressure Knockout Drum (44-V-207) is high, the signal from 44-LIC-2405 will be selected and the flow of

CHAPTER 2 20

Page 90: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

quench will be reduced. This will prevent the compressor from tripping on high-high level in 44-V-207.

44-FIC-1402: This controller is part of the CCC anti-surge control package. The controller opens the recycle valve to keep the compressor operating a safe distance from the surge.

44-FIC-1403: This controller is part of the CCC anti-surge control package. The controller opens the recycle valve to keep the compressor operating a safe distance from the surge.

44-PIC-3402A/B: These controllers are also part of the CCC anti-surge control package. The controllers modulate the valves in the 1st stage suction and side load suction lines. The valves are used during hot start-up to prevent the motor from tripping on over-current. The controllers are also active during normal operation. If the load on the compressor approaches the power limit of the motor, the valves begin to close. This will increase the pressure and the evaporation temperature in the chillers. The increased temperature will result in reduced heat transfer in the chillers. This will then decrease the load on the compressor.

44-HIC-9091: This controller adjusts the louvers on the Propane Condenser (44-E-203). During very cool ambient conditions, it may be necessary to partially close the louvers to reduce the cooling duty of the exchanger. NOTE: Ifthe hot vapor bypass (44-PV-3410A) is completely open and the pressure of the Propane Receiver falls to the low alarm point, the hand controller should be used to partially close the louvers.

44-HIC-9092: This controller is used to open the high point vent on the Propane Condenser (44-E-203). High compressor discharge pressure or poor aircooler performance may be a sign of a build up of non-condensables in the system. The hand controller is used to vent the non-condensables to the Cold Flare system.

CHAPTER 2

Page 91: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

4.0 DCS SCREEN DISPLAYS

The new and modified DCS graphics are included in this section.

("AS-BUILT" GRAPHICS TO BE INSERTED WHEN AVAILABLE)

CHAPTER 2 22

Page 92: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project-Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

CHAPTER 3

INITIAL START-UP

CONTENTS

SECTION PAGE

1.0 GENERAL.

1.1 Phase 1: Initial Start-up after the Scheduled Shutdown of the Existing Unit 3

1.2 Phase 2: Initial Start-up ofthe New Extension 3

2.0 PREPARATION PRIOR TO INITIAL PHASE 1 OPERATION 5

2.1 Preparation of the 2 n d Feed Chiller 5 2.2 Preparation of the HP Recycle Gas Circuit 5 2.3 Preparation of the Cold Demethanizer 6 2.4 Preparation of the Debutanizer Trim Condenser and NGL Subcooler 7 2.5 Preparation of the Cold Demethanizer Bottoms Pumps 8 2.6 Preparation of the ERM Refrigeration Package 8

3.0 PHASE 1 PURGING 9

3.1 2 n d Feed Chiller 9 3.2 HP Recycle Gas Circuit 9 3.3 Cold Demethanizer 9 3.4 Debutanizer Trim Condenser and NGL Subcooler 9

4.0 PHASE 1 COMMISSIONING OF UTILITY SYSTEMS 10

4.1 Instrument Air 10 4.2 Plant Air 11 4.3 Nitrogen 11 4.4 Saturated Low Pressure Steam 12 4.5 Utility Water 12 4.6 Fire Deluge 12 4.7 Cold Flare and Acid Gas Flare 13 4.8 Closed Drain Cryogenic 13

5.0 FINAL PREPARATION IN PHASE 1 PRIOR TO FEED-IN 14

5.1 Dehydration Section 14 5.2 N G L Recovery Section 14 5.3 Refrigeration Section 14

6.0 PHASE 1 START-UP 15

7.0 PREPARATION PRIOR TO INITIAL PHASE 2 OPERATION 17

7.1 Preparation of the E R M Refrigeration System 17 7.2 Preparation of the Cold Demethanizer Bottoms Pumps 18

CHAPTER 3

Page 93: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

8.0 PHASE 2 PURGING 20

8.1 E R M Refrigeration System 20

8.2 Cold Demethanizer Bottoms Pumps 21

9.0 FINAL PREPARATION IN PHASE 2 PRIOR TO START-UP 22

9.1 Pressurization of the E R M Refrigeration Section 22 9.2 Filling 44-V-205 24 9.3 Pressurization of Cold Demethanizer Bottoms Pumps 24 9.4 Liquid Fill the Cold Demethanizer and the Bottoms Pumps 44-P-302A/B 24

10.0 PHASE 2 START-UP 26

10.1 Cold Demethanizer Bottoms Pumps Start-up 26 10.2 Propane Compressor Start-up 27 10.3 Transition to ERM Mode 30

CHAPTER 3

Page 94: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

1.0 GENERAL

The new E R M equipment, piping and instruments will be started-up in two phases. The first phase will occur during scheduled shutdown of OGD-I Train 3. During the shutdown, all the E R M tie-ins will be made in Unit 44. At the end ofthe shutdown period, the existing unit will be restarted. At this time, a portion of the E R M related piping and equipment must be completely commissioned. This equipment and piping will be fully integrated with the existing system and will be "live" after the restart.

In Phase 2, the remaining elements (ERM Refrigeration Package and the Cold Demethanizer Bottoms Pumps) will be commissioned and phased into the existing unit to achieve the required ethane production rate.

Prior to the initial start-up of both phases, all pre-commissioning activities must have been completed. Pre-commissioning covers those activities required to bring the new systems to a "ready for start-up" condition from original construction. In general, it consists of inspection, checking and testing operations required to ensure that all components of the project are properly installed and mechanically complete.

Pre-commissioning will be performed by the construction team in close coordination with the operations and commissioning teams. Check lists will be used document the completion of the pre-commissioning activities. It is not in the scope of this document to provide full details of the pre-commissioning activities. These activities are described and defined in the. Mechanical Completion, Pre-Commissioning and Commissioning Manuals.

1.1 Phase 1: Initial Start-up after the Scheduled Shutdown of the Existing Unit

In order to make the tie-ins to connect the new E R M expansion to the existing plant, the existing unit must be shutdown, blinded off and purged to make safe tie-ins possible. After all tie-ins and connecting piping work is completed, the existing unit can be restarted.

Major parts ofthe new ERM extension will also be purged and commissioned with the restart of the existing unit. The modifications implemented in Phase 1 do not change the operation of the existing unit. Since the new refrigeration system is not commissioned at this stage, the new E R M equipment and lines will be part ofthe process flow, but will not have any impact on the process. In other words, the unit will not be operated in high ethane recovery mode after the Phase 1 start-up.

Blinds need to be in place as per the marked P&ID's in the Pre-commissioning Manual. These blinds ensure a separation between the part that is live at the restart and the part not yet ready for commissioning. These blinds are so called "red tag" blinds and can only be removed with a proper permit signed by Fluor's Commissioning Manager.

1.2 Phase 2: Initial Start-up of the New Extension

The start up of the remaining part of the new ERM extension will take place after all the remaining pre-commissioning work on the Propane Compressor and the Cold Demethanizer Bottoms Pumps is completed. Purging of these parts has to take place according to the procedure in Sections 7.0 and 8.0 of this Chapter and as described in the Pre-commissioning

CHAPTER 3

Page 95: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Manual. Once the ERM systems have been properly purged, they can be commissioned and Unit 44 can be transitioned to the ERM mode of operation.

CHAPTER 3

Page 96: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

2.0 PREPARATION PRIOR TO INITIAL PHASE 1 OPERATION

The following procedures outline a suggested method for air purging the new sections and commissioning the relevant utility systems. There are other suitable options. The procedures given here should be used only as a guide and subject to further development at site.

2.1 Preparation of the 2nd Feed Chiller

This section includes 44-E-318. Check and ensure that the following essential equipment is in the correct position/status:

• A l l vents, drains, and purging connections are closed

• A l l instruments and bridle block valves are open

• The relevant valves have been locked open or closed according to their nonnal positions shown on the P&ID's

• The relevant manual valves are open or closed. See Table 2.1.1.

• A l l bypasses of control valves and safety valves are closed.

• A l l control valves are in manual mode. See Table 2.1.2 for the conect position of the valves

• A l l on-off shutdown valves are closed

Table 2.1.1 A l l manual valves are in their normal operating position except for the following:

VALVE NO. FUNCTION LINE NUMBER P&ID NUMBER POSITION 44-LV-2111

upstream 44-2007-RF-4"-

31170-C 44-00-30019-2 Closed

Table 2.1.2 The positions ofthe control valves are as follows:

VALVE NO. FUNCTION LINE NUMBER P&ID NUMBER POSITION 44-LV-2111 44-E-318 Level 44-2007-RF-4"-

31170-C 44-00-30019-2 Closed

2.2 Preparation ofthe HP Recycle Gas Circuit

New bypasses have been added in the HP recycle gas loop around 44-E-303 and 44-E-315. The positions of the valves are as follows:

VALVE NO. FUNCTION LINE NUMBER P&ID NUMBER POSITION 44.M-4405 44-E-315 Bypass 44-2020-HC-10"-

61010-C 44-00-30024 Closed

44-M-4406 44-E-315 Inlet 44-2020-HC-10"- 44-00-30024 Open

CHAPTER 3

Page 97: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

VALVE NO. FUNCTION LINE NUMBER P&ID NUMBER POSITION 61010-C

44-E-303 Bypass 44-2002-HC-10"-63030-C

44-00-30023-4 Closed

2.3 Preparation ofthe Cold Demethanizer

This section includes 44-V-308. Check and ensure that the following essential equipment is in the correct position/status:

• A l l vents, drains, and purging connections are closed

• A l l instruments and bridle block valves are open

• The relevant valves have been locked open or closed according to their normal positions shown on the P&ID's. Refer to Table 2.3.1.

• The relevant manual valves are open or closed. See Table 2.3.2.

• A l l bypasses of control valves and safety valves are closed.

• A l l control valves are in manual mode. See Table 2.3.3 for the correct position of the valves.

• A l l on-off shutdown valves are closed

Table 2.3.1 A l l locked valves are in their nonnal operating position except for the following:

VALVE NO. FUNCTION LINE NUMBER P&ID NUMBER POSITION M-4401 44-E-314 Shell

Side Outlet 44-2012-HC-6':

31170-C 44-00-30020 Open

M-4402 44-E-314 Shell Side Outlet

44-2012-HC-6"-31170-C

44-00-30020 Closed

M-4403 44-FV-1204 downstream

44-2013-HC-8"-33450-C

44-00-30023-1 Open

M-4404 44-E-314 Outlet 44-2013-HC-8"-33450-C

44-00-30023-1 Closed

Table 2.3.2 A l l manual valves are in their normal operating position except for the following:

VALVE NO. FUNCTION LINE NUMBER P&ID NUMBER POSITION 44-P-302A

suction 44-2014-HC-12"

33450-C 44-00-30023-4 Closed

44-P-302B suction

44-2014-HC-3"-33450-C

44-00-30023-4 Closed

44-P-302A/B vent 44-2015-HC-2':

33450-C 44-00-30023-4 Closed

44-LV-2126 44-2015-HC-8"- 44-00-30023-4 Closed

CHAPTER 3

Page 98: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

VALVE NO. FUNCTION LINE NUMBER P&ID NUMBER POSITION downstream 33450-C 44-FV-1070 downstream

44-2016-HC-4"-33450-C

44-00-30023-4 Closed

Table 2.3.3 The positions of the control valves are as follows:

VALVE NO. FUNCTION LINE NUMBER P&ID NUMBER POSITION 44-LV-2126 44-V-308 Level 44-2015-HC-8"-

31170-C 44-00-30023-4 Closed

44-FV-1070 P-302A/B Min Flow Bypass

44-2016-HC-4"-33450-C

44-00-30023-4 Open

2.4 Preparation ofthe Debutanizer Trim Condenser and NGL Subcooler

This section includes 44-E-406 and 44-E-407. Check and ensure that the following essential equipment is in the correct position/status:

• A l l vents, drains, and purging connections are closed

• A l l instruments and bridle block valves are open

• The relevant valves have been locked open or closed according to their normal positions shown on the P&ID's

• The relevant manual valves are open or closed. See Table 2.4.1.

• A l l bypasses of control valves and safety valves are closed.

• A l l control valves are in manual mode. See Table 2.4.2 for the correct position ofthe valves.

« A l l on-off shutdown valves are closed

Table 2.4.1 A l l manual valves are in their normal operating position except for the following:

VALVE NO. FUNCTION LINE NUMBER P&ID NUMBER POSITION 44-LV-2116

upstream 44-2024-RF-6':

31170-C 44-00-30028-1 Closed

44-LV-2121 upstream

44-2034-RF-3' 31170-C

44-00-30028-3 Closed

Table 2.4.2 The positions of the control valves are as follows:

VALVE NO. FUNCTION LINE NUMBER P&ID NUMBER POSITION 44-LV-2116 44-E-406 Level 44-2024-RF-6"- 44-00-30028-1 Closed

CHAPTER 3

Page 99: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. ContractNo. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

VALVE NO. FUNCTION LINE NUMBER P&ID NUMBER POSITION 31170-C

44-LV-2121 44-E-407 Level 44-2034-RF-3"-31170-C

44-00-30028-3 Closed

2.5 Preparation of the Cold Demethanizer Bottoms Pumps

44-P-302 A/B will not be used in the Phase 1 start-up. The pumps should be completely and positively isolated from the sections of the unit that will be live after the re-start of Unit 44.

2.6 Preparation of the ERM Refrigeration Package

This section includes 44-V-405,44-V-206, 44-V-207, 44-E-203, 44-E-204, 44-E-205 and 44-C-202. This equipment will not be used in the Phase 1 start-up. The E R M Refrigeration Package should be completely and positively isolated from the sections of the unit that will be live after the re-start of Unit 44.

CHAPTER 3

Page 100: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

3.0 PHASE 1 PURGING

The procedure defined in Chapter 3, Section 3.0 of the existing Operating, Maintenance and Safety Manual should be followed for purging the new E R M equipment. The existing procedures should be augmented by the procedures by contained in the E R M Pre-Commissioning and Commissioning Manual.

3.1 2nd Feed Chiller

The tube side of 44-E-318 is purged with the section including the 1st Stage and 2 n d Stage Feed KO Drums. Refer Chapter 3, Section 3.4 of the existing manual for a description ofthe procedure and isolation points.

The shell side of 44-E-318 is pressurized using the 2" utility connection on the exchanger. Depressurization is performed using the 2" vent on 44-E-318.

3.2 HP Recycle Gas Circuit

The new bypass lines in the HP Recycle Gas circuit are purged with the section including the 44-E-303 and 44-E-315. Refer Chapter 3, Section 3.5 of the existing manual for a description of the procedure and isolation points.

3,3 Cold Demethanizer

44-V-308 is purged with the Demethanizer section. Refer Chapter 3, Section 3.7 ofthe existing manual for a description of the procedure and isolation points.

44.V-308 is isolated by 44-XV-9081,44-FV-1070, 44-LV-2126, M-4402 and the valve in the 44-P-302A/B vent line.

44-V-308 can be pressurized using the 2" utility connection and depressurized using the 3" vent valve and the 1" drain valves located downstream of 44-FV-1070 and downstream of 44-LV-2126.

3.4 Debutanizer Trim Condenser and NGL Subcooler

The tube sides of 44-E-406 and 44-E-407 are purged with the Debutanizer section. Refer Chapter 3, Section 3.8 of the existing manual for a description of the procedure and isolation points.

The shell sides of 44-E-406 and 44-E-407 are pressurized using the 2" utility connection on the exchangers. Depressurization is performed using the 2" vents on 44-E-406 and 44-E-407.

CHAPTER 3

Page 101: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

4.0 PHASE 1 COMMISSIONING OF UTILITY SYSTEMS

There are several utility systems that were extended to serve the new equipment. The following utilities will be started up prior to the restart of the existing plant.

• Instrument air

• Plant air

• Nitrogen

• Saturated Low Pressure Steam

• Utility Water

o Fire Deluge

• Cold Flare and Acid Flare

• Cold Drain Cryogenic

The open drain system is connected to the existing open drain system. This is underground piping and will be completed in an early stage. The open drain system needs to be available at the restart of the existing unit, it may be necessary to cover the open funnels to avoid hydrocarbons in areas still under construction or pre-commissioning.

Below is a description of the different utilities that need to be live at the restart of the existing unit

4.1 Instrument Air

Instrument air is required early to facilitate the instrumentation loop checking and stroking of the new or modified control valves. It is important to notify GASCO Operations about the intended commissioning of the instrument air system.

The instrument air system is cleaned using instrument air as per the procedure in the Pre-Commissioning Manual.

After the shutdown, the existing instrument air system will be commissioned according to the procedure given in Chapter 3 of the existing Operating, Maintenance and Safety Manual.

Once the existing network has been pressurized, the following steps are required to commission the ERM extension:

• At tie-in point T44-125, remove the blind (if installed).

• Ensure all users of instrument air in the new section are closed off.

• Notify GASCO Operations that the new systems are ready to be commissioned.

• Slowly open the valve at the tie-in point.

• Pressurize the new instrument air header.

CHAPTER 3

Page 102: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Slowly open the users one by one and check with Operations to ensure the pressure in the main header does not drop.

If the instrument air header remains at its original pressure, then the instrument air system is in service.

4.2 Plant Air

Plant air is used at the new utility stations. The plant air system is normally pressurized so it can be used when required.

The plant air system is blown clean with plant air.

After the shutdown, the new plant air system will be commissioned along with the existing system. The following steps are required:

• Check that the BL valve is closed and associated blind swung closed.

• Ensure that all drains, vents, and connections to atmosphere are closed.

• Ensure that the block valves at the new utility stations are closed.

• At tie-in points T44-126 and T44-148, remove the blinds (if installed).

• Notify GASCO Operations that the new system is ready to be commissioned.

• Slowly open the BL valve until the pressure comes up to header pressure, then fully open the B L valve.

• The new plant air system is in service.

4.3 Nitrogen

The nitrogen system is required for the new utility stations and the nitrogen supply to the dry gas seal system of the new Propane Compressor, 44-C-202.

The nitrogen for the utility stations will be in service at the restart of the existing plant. The part that feeds the Propane Compressor seal system will be blinded off and when the compressor is ready for start up this blind will be removed. NOTE: The nitrogen buffer system for the compressor must be put into operation before the lube oil pumps can be started.

After the shutdown, the existing nitrogen system will be commissioned according to the procedure given in Chapter 3 of the existing Operating, Maintenance and Safety Manual.

Once the existing network has been pressurized, the following steps are required to commission the E R M extension:

• Remove the blind at tie-in point T44-124.

CHAPTER 3 11

Page 103: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Ensure that the valves at the four new utility stations are closed (US-201, 202, 203 and 204)

Notify GASCO Operations that the new system is ready to be commissioned.

Pressurize the new nitrogen extension by slowly opening the valve in line 44-2051-N2-2"-13091.

Close the main valve and depressurize the new system to approximately 0.1 barg using the utility stations.

Repressurize the system following the above instructions.

Repeat these steps until the header contains less than 0.1 vol% oxygen. The new nitrogen system is now in service.

4.4 Saturated Low Pressure Steam

Saturated low pressure steam is used at the new utility stations and as heat tracing for the seal gas lines to the new Propane Compressor. The tracing steam for the seal gas piping of the Propane Compressor is required at the start up of that compressor.

After the shutdown, the low pressure steam system will be commissioned along with the existing system according to the procedure provide in the existing Operating, Maintenance and Safety Manual. The following additional steps are required:

• Ensure that the block valves at the new utility stations are closed.

• Ensure that all steam trap block valves are open and bypasses closed.

• At tie-in points T44-137 and T44-138, remove the blinds (if installed).

• Notify GASCO Operations that the new system is ready to be commissioned.

• The steam lines to the utility stations will be heated up and blown them clean.

• Close the valves at the utility stations and keep the system pressurized.

• The new saturated low pressure steam line is then considered in service.

4.5 Utility Water

There is one service station in the extension of the compressor building that has a utility water connection. The connection will be made during the shutdown. When the connection is completed the new line will be flushed and put into service.

4.6 Fire Deluge

The existing fire deluge system is extended to include new spray systems for the Cold Demethanizer Bottoms Pumps (44-P-302A/B), the Propane Compressor (44-C-202), the Cold Demethanizer Column (44-V-308) and the Propane Receiver (44-V-205).

CHAPTER 3 12

Page 104: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-00!

The fire deluge system will be flushed before it is put into service. The existing system is live at the time the new connections are made.

A spray test is conducted to demonstrate that the system is ready for operation. Each new spray system activated by manually opening the following valves:

Equipment Protected 44-C-202 44-V-205

44-P-302A/B & 44-V-308

Deluge Valve DV-7401 DV-7402 DV-7403

Before opening DV-7401, ensure that the new orifice 44-FO-1411ERM has been properly installed in line 34-8002-FD-6".

After the line cleaning and the demonstration spray test, the new system is considered in service.

4.7 Cold Flare and Acid Gas Flare

The new flare lines must be in service after the planned shutdown. The tie-ins must be completed and blinds installed as per the marked up P&ID's included in the Pre-Commissioning and Commissioning Manual.

The new lines in both flare systems will be nitrogen purged together with the existing flare headers according to the procedure provided in Section 3.10.3 of Chapter 3 in the existing Operating, Maintenance and Safety Manual. The new piping shall be purged to an oxygen concentration of less than 1 vol%.

After the nitrogen purge, the flare lines are commissioned according to the procedure provided in the existing manual (Section 4.1.1 of Chapter 3).

4.8 Closed Drain Cryogenic

The new CDC lines must be in service after the planned shutdown. The tie-ins must be completed and blinds installed as per the marked up P&ID's included in the Pre-Commissioning and Commissioning Manual.

The new CDC lines will be purged together with the existing CDC headers according to the procedure provided in Section 3.10.3 of the existing Operating, Maintenance and Safety Manual. The new piping shall be purged to an oxygen concentration of less than 1 vol%.

After the nitrogen purge, the flare lines are commissioned according to the procedure provided in the existing manual (Section 4.1.2 of Chapter 3).

CHAPTER 3 13

Page 105: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

5.0 FINAL PREPARATION IN PHASE 1 PRIOR TO FEED-IN

Once the E R M tie-ins are complete, Unit 44 will be re-started. The majority ofthe start-up procedure outlined in Chapter 3 of the existing Operating, Maintenance and Safety Manual is valid for the Phase 1 start-up. The minor changes are described in this section.

5.1 Dehydration Section

Pressurization of Gas Dehydration Section No changes. Refer to Chapter 3, Section 5.2.1 ofthe existing manual.

Pressurization of Gas Cooling and Filtration Section No changes. Refer to Chapter 3, Section 5.2.2 of the existing manual.

Feed Gas Dehydrators Initial Regeneration No changes. Refer to Chapter 3, Section 5.2.3 ofthe existing manual.

5.2 NGL Recovery Section

The new E R M equipment will be dried out and pressurized with the existing unit as described below.

2 n d Feed Chiller (44-E-318): The tube side ofthe exchanger is dried and pressurized with 44-E-306 in Step b ofthe procedure provided in Chapter 3, Section 5.2.5.2 of the existing manual.

Cold Demethanizer (44-V-308): The column is dried and pressurized with 44-V-306 in Step d ofthe procedure provided in Chapter 3, Section 5.2.5.2 of the existing manual.

Debutanizer Trim Condenser (44-E-406) and NGL Subcooler (44-E-407): The tube side of the exchanger is dried and pressurized with Debutanizer system in Step i of the procedure provided in Chapter 3, Section 5.2.5.2 of the existing manual.

5.3 Refrigeration Section

There are no changes to the start-up procedure for the existing refrigeration system.

The E R M Refrigeration is not started-up in Phase 1.

CHAPTER 3 14

Page 106: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

6.0 PHASE 1 START-UP

The modifications implemented in Phase 1 do not change the start-up sequence defined in the existing manual in Section 6.0 of Chapter 3. Unit 44 will start-up in C3 mode operation. Once the unit is stabilized, the operating parameters are adjusted to increase ethane recovery using the procedures provided in Chapter 11 of the existing manual.

The new E R M equipment commissioned in Phase 1 will operate as follows:

2 n d Feed Chiller (44-E-318): Feed gas flows through the tube side ofthe exchanger. No cooling is achieved because the ERM refrigeration system is not in service.

Cold Demethanizer (44-V-308): The overhead vapor from V-306 passes through V-308. No mass transfer occurs because there is no flow of liquid to the top of the column.

No liquid is sent to the tower in Phase 1. A small amount of liquid entrainment from V-306 to V-308 is expected. However, the vapor velocity at the top of V-306 is significantly below the allowable velocity required for good vapor/liquid separation. V-306 also has a demister pad. The demister will coalesce any liquid entrained with the vapor and prevent it from being carried over to the new column.

The new Cold Demethanizer has also been designed with a large liquid holdup volume in the bottom of the tower. Based on the large available volume and the very small expected liquid particle size, it would take many, many months before the liquid would build up to the level of the vapor inlet nozzle. Since the new Cold Demethanizer will only operate in Phase 1 without the bottoms pumps for approximately 2 months, this is not a valid concern.

Even in the very unlikely event that liquid does accumulate in 44-V-308, the column could be intermittently drained to the CDC system during the Phase 1 operating mode. The CDC is open to the Cold Flare System. There are two locked open valves in the main CDC header to the flare. As long as these valves are not closed when the column is drained, there is no way the CDC system can be over pressurized. If the new column had to be drained, procedures would be in place to ensure that the CDC header valves were open and that the 3" V-308 drain valve was only slowly cracked open. The 3" valve is a globe valve, so it is possible to throttle and control the flow. Because the column can be drained very slowly, the built-up back pressure in the CDC system will not come near to the 7.0 barg design pressure.

The drain valve would be closed during normal operation and only used if the liquid level built up to the high level. The liquid level in V-308 can be monitored in Phase 1 using L G -2125 and LI-2126.

Debutanizer Trim Condenser (44-E-406): Liquid from 44-E-402 flows through the tube side ofthe exchanger. No cooling is achieved because the E R M refrigeration system is not in service.

N G L Subcooler (44-E-407): Liquid from 44-P-401A/B flows through the tube side ofthe exchanger. No cooling is achieved because the ERM refrigeration system is not in service.

The new controls and instruments will operate as follows:

CHAPTER 3 15

Page 107: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

44-LV-2035: The disk stack of the existing valve is modified to increase the capacity of the valve (larger Cv). The valve will operate at a lower percentage open.

44-PV-3058: The valve trim is modified to increase the capacity ofthe valve (larger Cv). The valve will operate at a lower percentage open.

44-XV-9080: The new ESD valve will be forced open. The new Triconex system is not activated in Phase 1. Low temperatures are not a concern during the Phase 1 operation because the new refrigeration system is not started up.

44-PIC-3064: The new Debutanizer pressure control scheme works as follows:

• If the tower pressure falls, PV-3064 will open. The hot vapor will warm-up the surface of the liquid in 44-V-402, increasing the vapor pressure in the drum. This will cause liquid to accumulate in 44-E-402. Once enough surface area has been flooded with liquid, the system will reach a new equilibrium and the bypass will close.

• If the tower pressure is too high, the bypass will close. The pressure in 44-V-402 will fall and liquid will move out of 44-E-402 into the drum. This will expose more surface area and the tower pressure will reduce.

At low ambient temperatures, the pressure in the Debutanizer will tend to decrease as the condensation temperature decreases. NOTE: Ifthe hot vapor bypass valve goes fully open and the pressure continues to fall , the louvers on 44-E-402 should be partially closed. 44-HIC-9092 can be used for this purpose. The louvers should be closed slowly until the Debutanizer pressure stabilizes.

44-HS-5056: The new refrigeration system will not be commissioned in Phase 1. Therefore, the new hand switch will pass the signal from TIC-5056 through to PIC-3630 so that the temperature of 44-V-301 can be controlled.

44-TIC-5068/44-LY-2044A: The existing DCS temperature indicator (TI-5068) is being converted to a controller. A new minimum select is also being added to the V-304 level control loop. If the shell side outlet temperature of E-314 begins to fall and approach the system limits, the temperature controller will begin to throttle back the flow of cold liquid from V-304. This new functionality will be active during Phase 1.

44-LY-2044C: The new vent solenoid added in the LIC-2044 control loop cannot be used because the Triconex is not activated in Phase 1. There will be no impact on the operation of LV-2044.

44-FIC-1048: A new temperature correction will be used by the existing flow controller. TI-5121 will be used instead of TI-5105. In the Phase 1 operation, the process temperature at TI-5121 will be identical to TI-5105 so there is no impact on control.

CHAPTER 3 16

Page 108: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

7.0 PREPARATION PRIOR TO INITIAL PHASE 2 OPERATION

The following procedures outline a suggested method for air purging the new sections prior to the Phase 2 start-up. There are other suitable options. The procedures given here should be used only as a guide and subject to further development at site.

7.1 Preparation of the ERM Refrigeration System

This section includes 44-V-205, 44-V-206, 44-V-207, 44-E-203,44-E-204, 44-E-205, 44-E-318, 44-E-406, 44-E-407 and 44-C-202.

Check and ensure that the following essential equipment is in the correct position/status:

• A l l vents, drains, and purging connections are closed

• A l l instruments and bridle block valves are open

• The relevant valves have been locked open or. closed according to their normal positions shown on the P&ID's

• The relevant manual valves are open or closed. See Table 7.1.1.

« A l l bypasses of control valves and safety valves are closed.

• A l l control valves are in manual mode. See Table 7.1.2 for the correct position of the valves

o The ESD systems are functional. A l l on-off shutdown valves are closed.

Table 7.1.1 A l l manual valves are in their normal operating positions except for the following:

VALVE NO. FUNCTION LINE NUMBER P&ID NUMBER POSITION C3 make-up 2"-P-FILL 22717-104 Closed

Table 7.1.2 The positions ofthe control valves are as follows:

VALVE NO. FUNCTION 2 n d Stage

Anti-surge

LINE NUMBER P&ID NUMBER POSITION 44-FV-1402 10"-P-44C202-2 22717-103 Open

44-FV-1403 I s t Stage Anti-surge

8"-P-44C202-2 22717-102 Open

44-HV-9092 E-203 Vent 44-2037-RF-2v

31170 44-00-30-041 Closed

44-LV-2111 44-E-318 Level 44-2007-RF-4';

31170 44-00-30-019-2 Closed

44-LV-2116 44-E-406 Level 44-2024-RF-6v

31170 44-00-30-028-1 Closed

44-LV-2121 44-E-407 Level 44-2034-RF-3"- 44-00-30-028-3 Closed

CHAPTER 3 17

Page 109: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

V A L V E NO. FUNCTION LINE N U M B E R P&ID N U M B E R POSITION 31170

44-LV-2404 44-E-204 Level 6"-P-44V205-l 22717-103 Closed

44-LV-2405 44-E-205 Level 3"-P-44E204-l 22717-102 Closed

44-PV-3402A 44-V-206 18"-P-44V206-1 22717-103 Open

44-PV-3402B 44-V-207 18"-P-44V207-1 22717-102 Open

44-PV-3410A 44-E-203 Hot Vapor Bypass

4"_P-44C202-3 22717-104 Closed

44-PV-3410B 44-V-205 vent to flare

44-2065-RF-2"-31170

22717-104 Closed

44-TV-5404 2^ Stage Quench 3"-P-44E205-2 22717-103 Closed

44-TV-5405 151 Stage Quench 3".p-44205-3 22717-102 Closed

7.2 Preparation of the Cold Demethanizer Bottoms Pumps

This section includes 44-P-302A/B. Check and ensure that the following essential equipment is in the correct position/status:

• A l l vents, drains, and purging connections are closed

• Al l instruments are open

• The relevant manual valves are open or closed. See Table 7.2.1.

• A l l bypasses of control valves are closed.

• A l l control valves are in manual mode. See Table 7.2.2 for the correct position ofthe valves

• The ESD systems are functional. A l l on-off shutdown valves are closed.

Table 7.2.1 A l l manual valves are in their normal operating positions except for the following:

V A L V E NO. FUNCTION LINE N U M B E R P&ID N U M B E R POSITION 44-P-302A

suction 44-2014-HC-12"

33450-C 44-00-30023-4 Closed

44-P-302B suction

44-2014-HC-3" 33450-C

44-00-30023-4 Closed

44-P-302A/B vent 44-2015-HC-2' 33450-C

44-00-30023-4 Closed

44-LV-2126 downstream

44-2015-HC-8':

33450-C 44-00-30023-4 Closed

44-FV-1070 upstream

44-2016-HC-4V

33450-C 44-00-30023-4 Closed

CHAPTER 3

Page 110: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Table 7.2.2 The positions of the control valves are as follows:

VALVE NO. FUNCTION LINE NUMBER P&ID NUMBER POSITION 44-LV-2126 44.v-3 08 Level 44-2015-HC-8v

31170-C 44-00-30023-4 Closed

44-FV-1070 P-302A/B Min Flow Bypass

44-2016-HC-4" 33450-C

44-00-30023-4 Open

CHAPTER 3 19

Page 111: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. ContractNo. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

8.0 PHASE 2 PURGING

The procedure defined in.Chapter 3, Section 3.0 ofthe existing Operating, Maintenance and Safety Manual should be followed for purging the new E R M equipment. The existing procedures should be augmented the procedures by contained in the E R M Pre-Commissioning and Commissioning Manual.

8.1 ERM Refrigeration System

Subsystem 1: Purging of propane make-up line 44-2001-RF-3"-31170

Subsystem 2: Purging of 44-V-205, 44-E-203, 44-E-204 (tube side), 44-E-205 (tube side), and associated piping.

Subsystem 3: Purging of 44-V-203, 44-V-204,44-E-204 (shell side), 44-E-205 (shell side), 44-C-202 and associated piping.

Note: To increase the nitrogen circulation in each subsystem, it is possible to purge through additional dedicated vent valves other than those identified in the procedures below. In such a case, the oxygen content should be monitored at every vent point in the system.

8.1.1 Subsystem 1

Equipment Status: Refer to Section 7.1 of this Chapter.

The subsystem is isolated by 44-033 (BL isolation valve), M-070 in line 44-0513-RF-3"-ClR, and the propane fill valve in line 2"-P-FILL-L31.

The subsystem is pressurized by using the %" utility connection in line 44-0513-RF-3"-ClR. Depressurization is performed by opening the new fill valve and venting through the 3" vent on 44-V-205.

8.1.2 Subsystem 2

Equipment Status: Refer to Section 7.1 of this Chapter.

The subsystem is isolated by the propane fill valve in line 2"-P-FILL-L31, 44-LV-2111, 44-LV-2116, 44-LV-2121,44-LV-2404, 44-LV-2405, 44-TV-5404, 44-TV-5405,44-PV-3410B and 44-XV-7400.

The subsystem is pressurized by using the 2" utility connection on 44-V-205. Depressurization is performed using the 3" vent on 44-V-205 and the 2" vent connections on 44-E-203.

8.1.3 Subsystems

Equipment Status: Referto Section 7.1 ofthis Chapter.

The subsystem is isolated by 44-LV-2404, 44-LV-2405, 44-TV-5404, 44-TV-5405, 44-XV-7400, 44-XV-7401, 44-XV-7402 and 44-XV-7405.

CHAPTER 3 20

Page 112: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

The subsystem is pressurized by using the 2" utility connections on 44-E-204 and 44-E-205. Depressurization is performed using the 3" vents on 44-V-206 and 44-V-207 and opening 44-XV-7405.

8.2 Cold Demethanizer Bottoms Pumps

The procedure below applies to the Phase 2 start-up only. For subsequent start-ups, 44-P-302A/B will be purged with the Demethanizer system.

Equipment Status: Refer to Section 7.2 of this Chapter.

The system is isolated by the 44-P-302 A/B suction isolation valves, 44-FV-1070, 44-LV-2126 and the valve in line 44-2015-HC-3/4"-33450.

The system is pressurized by using the V " utility connection in line 44-2015-HC-3/4"-33450. The system is depressurized using the 1" vent valves upstream of 44-LV-2126 and 44-FV-1070.

CHAPTER 3 21

Page 113: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operation of V-308 Bottoms Pumps, P-302A/B

Rev. 0 - May 20, 2005

GASCO Project No.: 13522102

OPERATION OF V-308 BOTTOMS PUMPS P-302 A/B

Rev. 0 - May 20, 2005

The loss of one V-308 Bottoms Pump, P-302, when in ERM mode, will force the Unit 44

operations to return to the 50% C2 Recovery Mode as a precaution against the potential

loss of the spare operating pump. The liquid holding time in V-308 is only about 7 to 8

minutes. This means that the failure of the second pump would require the quick

removal ofthe liquid feed streams from V-308. Rerouting the E-314 liquid feed stream

to V-306 from V-308 can be done while operating in any mode. Removing V-307

bottoms from V-308 and routing it to E-305 cannot be done immediately in the ERM

mode because the temperature of V-307 bottoms is too cold. In other lower recovery

modes, the liquid from V-307 can be diverted the instant all pumping capacity is lost.

The following procedure covers the potential scenarios for P-302 A/B operations.

ERM MODE OF OPERATION

I. Loss of One P-302 Pump while in ERM Mode

1. Place the spare P-302 pump in service.

2. Transition from the ERM Mode to the 50% C2 recovery mode.

3. V-307 bottoms will continue to be sent to the Cold Demethanizer, V-308.

4. Reroute E-314 outlet stream from V-308 to V-306 by opening valve M-4401 and

closing valve M-4402.

II. Loss ofthe Second P-302 Pump (with the first one still unavailable)

If the spare Cold Demethanizer Bottoms Pump fails to start on demand, it will no

longer be possible to move liquid out of the Cold Demethanizer, V-308. Since the

liquid in V-307 is cold, it cannot be immediately diverted to V-306. In order to the

warm-up the system and allow continued operation the following actions are

required:

Page 114: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project

Operation of V-308 Bottoms Pumps, P-302A/B

Rev. 0 - May 20, 2005

GASCO Project No.: 13522102

1. Unit Operator: Reroute E-314 outlet stream from V-308 to V-306 by opening

valve M-4401 and closing valve M-4402.

2. Unit Operator: Open valve to E-315 and close E-315 bypass valve.

3. D C S Operator: Reduce flow from V-307 to a minimum to build level in V-307 and

V-308.

4. D C S Operator: Offload C-2o2 compressor I5' stage by closing 44-LV-2111 to E-

318.

5. D C S Operator: Open EC-301 JT valves to warm-up the Recovery Tower.

6. D C S Operator: Open FV-1203 to 100% to warm-up V-307.

7. D C S Operator: When the level in V-308 reaches 100% close FV-1204.

8. D C S Operator: When the level in V-307 reaches the High High alarm point,

close FV-1041.

9. DCS Operator: Closely monitor the Demethanizer pressure and Recycle

Compressor load to ensure that they do not increase out of design limits. Adjust

the flow of steam to E-308 to maintain the stability of the system.

10. By this time, the temperature in V-307 should be above -50 o C crack open M-

4403 and close M-4404 to divert the stream to E-305. Open FV-1204. C lose ly

moni tor the overhead temperature of the Demethanizer (TIC-5081) and (TI-

5086) to ensure that they do not fall below - 4 0 o C . If the temperatures are

within limits, slowly open M-4403 to increase the flow to V-306.

11. When all of the excess liquid in V-307 and V-305 has been processed and the

liquid levels are normal, close the EC-301 JT valves and transition the unit to C2

Enhancement mode.

12. Drain V-308 level to C D C , if necessary.

OTHER MODES OF OPERATION:

In other operating modes, the outlet stream from E-314 is sent to V-306, not V-308.

I. Loss of One P-302 Pump

1. Place the spare P-302 pump in service.

2. V-307 bottoms will continue to be sent to the Cold Demethanizer, V-308.

Page 115: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operation of V-308 Bottoms Pumps, P-302A/B

Rev. 0 - May 20, 2005

GASCO Project No.: 13522102

II. Loss of the Second P-302 Pump (with the first one still unavailable)

If the spare Cold Demethanizer Bottoms Pump fails to start on demand or is

otherwise unavailable, it will no longer be possible to move liquid out of the Cold

Demethanizer, V-308. The liquid from V-307 should be diverted to E-305. Diverting

the flow of liquid from V-308 to E-305 will cause the Demethanizer (44-V-306)

overhead temperature to fall. However, since the unit will be operating at a lower C2

recovery level, there is no risk of the temperature approaching the normal minimum

recommended value of -35 0C and the switch over can be performed immediately.

1. Open M-4403. This action will re-direct the liquid from V-307 to the existing

Demethanizer Reflux Condenser (44-E-305).

2. Close M-4404. This action will stop the flow of liquid to the Cold Demethanizer.

RETURNING PUMPS TO SERVICE

1. When both pumps are available to be placed in service, start one pump on

minimum flow recycle and place the second pump in standby mode.

2. Divert V-307 bottoms from V-306 (E-305) to V-308 (refer to the Switching

procedure).

3. Return the unit to the ERM mode of operation.

PUMPS P-302A/B Seal Pressure Settings

• The seal chamber pressure is estimated to be at 25.5 barg (Flowserve estimate).

• Recommended seal system pressurization is 29.5 barg (with nitrogen to 26.5

barg and with methanol to 29.5 barg).

• Seal Low Pressure Alarm set at 27.5 barg

• Seal low Low Pressure Pump Shutdown at 26.5 barg.

Page 116: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

9.0 FINAL PREPARATION IN PHASE 2 PRIOR TO START-UP

9.1 Pressurization of the ERM Refrigeration Section

The E R M Refrigeration system is pressurized using propane from Unit 45. The propane is used to displace the nitrogen in the system prior to filling 44-V-205 and starting 44-C-202.

The refrigeration system is divided into two sections:

Section 1: 44-V-205, 44-E-203, 44-E-204 (tube side), 44-E-205 (tube side), E-318, 44-E-406, and 44-E-407

Section 2: 44-V-206, 44-V-207, 44-E-204 (shell side), 44-E-205 (shell side), 44-C-202

The sections are separated by 44-XV-7400, 44-XV-7401, 44-XV-7402, 44-LV-2404, 44-LV-2405, 44-TV-5404 and 44-TV-5405.

9.1.1 Pressurization of Section 1

Line up section 1 as follows:

« Open all inlet and outlet valves on 44-E-203

• Open bypass of 44-LV-2111 so that 44-E-318 can be pressurized

• Open bypass of 44-LV-2116 so that 44-E-406 can be pressurized

• Open bypass of 44-LV-2121 so that 44-E-407 can be pressurized

» Open upstream/downstream valves of 44-PV-3410B and close bypass

• Open upstream/downstream valves of 44-HV-9092 and close bypass

• Check that the nitrogen pressure is not greater than 0.1 barg in the system

• Check that the propane fill globe valve in line 2"-P-FILL is closed

The material of construction for the refrigeration system lines and equipment is Low Temperature Carbon Steel. The system has a cold design temperature of-45 0C. During the pressurization/filling operation, flashing liquid propane could lead to a temperature very close to the design temperature. Therefore, the propane loading steps should be performed in such a way as to minimize the liquid propane flashing. Care should also be taken to avoid placing any undue stress on the equipment and piping while at the cold temperatures.

Open blind B-033 and slowly open manual battery limit valve 44-033. Crack open the 2" globe valve and pressurize the system to 3 barg. The pressure can be monitored using 44-PIC-3410, 44-PI-3411 and 44-PI-3412. The propane transfer pumps (45-P-503A/B) do not need to be started for this initial pressurization. Monitor the level in 44-V-205 using 44-LG-2413 and 44-LI-2403 to ensure that the vessel is not overfilled.

When 3 barg is reached, close the 2" fill valve and allow the system to warm-up to ambient temperature.

Vent the system the following all high points to purge the nitrogen:

CHAPTER 3 22

Page 117: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

• 44-HV-9092 • bypass valve of 44-PS V-8403 A/B on 44-V-205 • bypass valve of 44-PS V-8410 A/B on 44-E-318 • bypass valve of 44-PS V-8412 A/B on 44-E-406/7

Depressurize the section down to 0.1 barg. Repeat the pressurization/depressurization steps 4 times.

Once the section has been completely purged of nitrogen, pressurize again and allow the section to maximum pressure. The maximum pressure will depend on the ambient temperature. Monitor the pressure using 44-PIC-3410.

Once the pressure is stable, close the bypass valve around 44-LV-2111, 44-LV-2116 and 44-LV-2121.

Transfer liquid propane from Unit 45 by starting pump 45-P-503 A or B. Open the 2" globe valve and fi l l 44-V-205 to 30% level on 44-LI-2403. The level can monitored locally using 44-LG-2413.

9.1.2 Pressurization of Section 2

Before pressurizing the compressor section, first check that the buffer and seal gas systems are commissioned.

« Ensure that seal gas flows (nitrogen) to the compressor is established with the following readings:

44-FIC-1431 = 1.7 m3/h 44-FG-1436= 1.7 m3/h

• Ensure that the buffer gas flow (nitrogen) to the compressor is established with the following reading:

44-PI-3433 = 1.4 barg 44-FI-1437 = 3.4 m3/h 44-FI-143 8= 1.7 m3/h 44-FI-1439= 1.7m3/h

Ensure that 44-XV-7405 is closed.

Crack open the bypass valve around 44-LV-2405 to pressurize the section to 3.0 barg. The pressure can be monitored using 44-PG-4402, 44-PG-4405 and 44-PG-4406.

When 3 barg is reached, close the bypass valve and allow the system to warm-up to ambient temperature.

Vent the system the following all high points to purge the nitrogen:

• bypass valve of 44-PS V-8400 A/B on 44-C-202 discharge • bypass valve of 44-PSV-8401 A/B on 44-V-206

CHAPTER 3 23

Page 118: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

• bypass valve of 44-PS V-8402 A/B on 44-V-207

Depressurize the section down to 0.1 barg. Repeat the pressurization/depressurization steps 4 times.

Once the section has been completely purged of nitrogen, pressurize again to about 5.0 barg.

9.2 Filling 44-V-205

• Open the 2" globe valve in the propane filling line.

• Start the transfer pump 45-P-503 A or B and fill 44-V-205 to 90% level on 44-LI-2403.

• Stop the pump and close the fill valve

At this stage, the refrigerant loop is ready for start-up.

9.3 Pressurization of Cold Demethanizer Bottoms Pumps

The new flammable gas detectors at the pumps should now be checked and working properly.

With the Cold Demethanizer (44-V-308) pressurized and in operation, the blinds that were installed for the Phase 1 separation must be removed. Be aware valves do leak and extreme care must be taken when removing these blinds.

• Check ifthe purging and tightness testing of the pump circuits was completed and the fine mesh suction strainers are installed.

• A l l drain and vent valves are closed, the seal system is charged.

• A tightness test shall be done after the removal of the spades to ensure that the flanges that are opened are tight. This tightness test will be done using nitrogen to save time. The oxygen content in the newly commissioned part shall be checked, since there will be ingress of oxygen during the removal ofthe blinds.

• If the oxygen content in the whole system is less then 0.5% oxygen the circuits are safe to receive hydrocarbons.

• NOTE: The pumps will be started up at low temperatures so the system must also be very dry to avoid hydrate formation during start-up.

To pressurize the pumps, slowly open the 2" ball valve in the pump vent line (44-2015-HC-2"-33450). Check the pressure using 44-PG-4111 A/B and 44-PG-4112A/B and check for leaks using a soap solution or portable gas detector. If no leaks are found, open the suction valves ofthe pumps. 44-XV-9081 and 44-LV-2126 should still be closed at this time.

9.4 Liquid Fill the Cold Demethanizer and the Bottoms Pumps 44-P-302A/B

In order to establish a liquid level in the Cold Demethanizer 44-V-308, the feed line to the column will be commissioned.

CHAPTER 3 24

Page 119: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. ContractNo. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Redirect slowly a portion ofthe feed flow 44-V-307 from the Demethanizer Column 44-V-306 to the Cold Demethanizer Column 44-V-308 by slowly opening manual valve M -4404 (See P&ID 44 00 30023/1). The operation of the Demethanizer Column shall not be disturbed. Level controller 44-LIC-1204 will maintain the level in 44-V-307. Slowly fill up the Cold Demethanizer.

Open 44-XV-9081. Leave the suction valves to the two Cold Demethanizer pumps open in order to fill them at the same time the column is filled. Also ensure that the W equalizing lines from the pump discharge lines to the column are open.

Monitor the level in the Cold Demethanizer using 44-LG-2125 and in the control room by 44-LT-2126. Check the local level reading with the DCS reading and adjust the DCS reading if required.

When the level in 44-V-308 reaches 50%, close manual valve M-4404.

The pumps are filled and gas free. The discharge valves are still closed.

CHAPTER 3 25

Page 120: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

10.0 PHASE 2 START-UP

Once the above Phase 2 pre-startup steps have been completed, the ERM systems are ready to be commissioned.

10.1 Cold Demethanizer Bottoms Pumps Start-up

The first activity will be the test running of the Cold Demethanizer Bottom Pumps 44TP-302A/B by circulating bottom product back to the Cold Demethanizer. Each pump will be run for two hours and the temperatures, pressures, flows and integrity of the seals will be checked.

The procedure outlined below should be followed in conjunction with recommendations contained the pump vendor's Installation, Operation and Maintenance Manual (document no OHH OPN 0402).

• Check the level in the Cold Demethanizer. The level should be at least 50%.

• Open the minimum flow control valve 44-FV-1070, set the flow controller at 260 m3/hr.

• Get the electrical department to energize the pump. Refer also the rotating equipment testing procedure in the Pre-commissioning and Commissioning manuals.

• Start the pump and check the rotation direction, check the discharge pressure with the discharge valve still almost closed. When the discharge pressure is established, slowly open the discharge valve. The pump's amp meter must be monitored. As soon as the amp meter drops below the red indication, the discharge valve can be fully opened.

• Run the pump with the-flow-controller-44-Fie-1070-at-260-m3/hr-for-two-hours-and-take— readings every 30 minutes as per the agreed log sheet.

• In case of any abnormal noise or out of the ordinary readings, stop the pump immediately and inform Fluor's mechanical engineer for further action.

• Perform this test run for both pumps and leave one pump in operation.

Once the pump is operating normally, the following steps are required to integrate the new pump into the Unit 44 operation:

• Reduce the set point of 44-FIC-1070 to 80 m3/hr.

• Open manual valve M-4404 and close manual valve M-4403.

• Place the Cold Demethanizer level controller (44-LIC-2126) in auto.

The integration of the pump will not have a significant impact on operating conditions of the rest of Unit 44. The main change will be the increased overhead temperature of the Demethanizer (44-V-306). Product recoveries in Unit 44 will not be affected.

CHAPTER 3 26

Page 121: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

10.2 Propane Compressor Start-up

10.2.1 General Infonnation

The procedures presented in this section are intended to be a guideline for the start-up of 44-C-202. For more detailed information about the compressor and its auxiliary systems, refer to the vendor installation, operation and maintenance manuals.

Overall Refrigeration System: Toromont Process Systems Compressor: GE Oil and Gas (AC Compressor) Electric Motor: GE Anti-surge & Performance Controls: CCC

The functional test of the overall control and protection instrumentation must be successfully completed before the start up of the compressor can be initiated. The vendor representatives of all these suppliers will be present during the functional test as well as for the initial start up. The following vendor representatives will be on site:

a) General Electric

b) Toromont

c) CCC

d) A B B Automation

The start-up sequence will be performed in the following sequence:

• Buffer and Seal Gas System Commissioning

• Lube Oil System Commissioning

• Motor Purging and Cooling

• Compressor Start-up

10.2.2 Buffer and Seal Gas Systems

• Ensure that seal gas flows (nitrogen) to the compressor is established with the following readings:

44-FIC-1431 = 1.7 m3/h 44-FG-1436= 1.7m3/h

• Ensure that the buffer gas flow (nitrogen) to the compressor is established with the following reading:

44-PI-3433 = 1.4 barg 44-FI-1437 = 3.4 m3/h 44-FI-1438 = 1.7m3/h 44-FI-1439 = 1.7m3/h

CHAPTER 3 27

Page 122: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

10.2.3 Lube Oil System

Once the seal gas systems have been properly commissioned and the lube oil system has been properly flushed, the lube oil systems can be commissioned. Refer to the lube oil flushing procedure for details.

• Place the local selectors in the following positions:

44-C-202 PIMA: HAND 44-C-202 P1MB: OFF

• Check the lube oil tank level (44-LG-2430), oil temperature (44-TG-6432) and setting for the lube oil tank nitrogen blanketing.

• Check that the lube oil system's valves are in their correct open or closed positions.

• Check the line up to 44-C-202 E l and start the aircooler fans.

• Start 44-C-202-P1A locally.

• Check the pressure profde in the system.

• Fill the overhead rundown tank (44-C-202-TK2) using the check valve bypass valve. Verify TK2 is overflowing using the local sight glass (44-FG-1425).

• Verify annunciator 44-XL-9478A is lit.

• Switch 44-C-202 P1 MB to AUTO.

10.2.4 Motor Purging and Cooling

The main compressor drive motor includes a purge system to enable the motor to operate in the classified area. Prior to energizing the main motor start relay, the motor must go through a purge cycle to evacuate any explosive gas from the intemals of the motor. Instrument air is used as the purge medium.

The local "Main Purge Switch" is manually closed to start the purge cycle. The purge controller automatically runs through the purge cycle, which lasts about 25 minutes. After completion ofthe start-up purge, the controller keeps the motor pressurized.

The "Motor Ready to Start" contact XS-9560 is used in the compressor start-up permissive logic. The status ofthe purge can be monitored using the following:

• XL-9460A: Purge Complete

• XL-9460B: Purge in Progress

• XL-9460: Motor Ready to Start

The motor is cooled using an Air to Air cooling arrangement. Three 50% blowers are provided.

CHAPTER 3 28

Page 123: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

• Place the local selectors in the following positions:

44-C-202 BL1MA: HAND 44-C-202 BL1MB: HAND 44-C-202 BL1MC: OFF

• Start 44-C-202-BL1A and B locally.

• Check that air pressure has been established using 44-PDI-3425.

• Switch 44-C-202 BL1MC into AUTO.

2 out of 3 blowers must be operating in order for the main motor to start.

10.2.5 Compressor Start-up

The following permissives must be satisfied before the compressor can be started:

• Air motor purge complete (XS-9460)

• Lube oil pressure not low (PAL-3421 not active)

• Lube oil rundown tank level high (LAH-2420 active)

• Lube oil supply temperature not low (TAL-5416 not active)

• Lube oil fans running (XS-9476A/B/C, 2 out of 3)

• Motor blowers running (XS-9477A/B/C, 2 out of 3)

• Compressor discharge ESD valve open (XZSO-7400)

• Compressor side load ESD valve open (XZSO-7401)

• Compressor suction ESD valve open (XZSO-7402)

• 1st section anti-surge valve open (FZSO-1403)

• 2 n d section anti-surge valve open (FZSO-1402)

• Depressuring valve closed (XZSC-7405)

• Reset HSR-9455 in DCS

• Activate HS-9452 in DCS. This will authorize the start of the compressor motor locally.

a. Prior to starting the compressor, ensure that the compressor casing and suction lines have been drained to the CDC to ensure that any liquid condensed is removed.

b. When XV-7400, XV-7402 and XV-7403 are opened, the compressor section will be fully pressurized. Low-low shutdowns PALL-3404 and PALL-3405 should not be active.

c. Check that the anti-surge and performance controllers are in AUTO.

d. Check that the Propane Condenser (44-E-203) fans have been started.

CHAPTER 3 29

Page 124: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

e. Give notice to the proper GASCO department(s) and start the motor using the local push button. Check the rotation.

f. The compressor will operate in full recycle (no process load). The level controllers at the new process exchangers (44-E-318, 44-E-406 and 44-E-407) will remain closed.

g. Take readings of all the flows, pressures, temperatures as recommended by the vendor. Check the circuit for leaks; check the seal flows and the correct functioning of the lube oil system.

h. After the flows, pressures and temperatures have stabilized, run at least for another two hours to ensure that the circuit is stable and sufficient data is collected to evaluate the compressor's performance.

10.3 Transition to ERM Mode

This procedure assumes that Unit 44 is miming in C2 Enhancement Mode (20% C2 recovery) at steady state conditions. It also assumes that the new refrigeration package (44ME-201) is started-up and running in recycle at no process load.

General Overview The operating conditions of the Debutanizer will be changed first to ensure that the overhead product is totally condensed and to avoid venting of light ends from the accumulator. The operating conditions of the Demethanizer will be adjusted before changing the temperature profile around the cold boxes to avoid overloading the recycle compressor loop.

Stepwise Instmctions • Ensure that the Debutanizer is fed above tray 23. Gradually increase the column pressure

to 18.5 barg (PIC-3068), simultaneously increase the set point of TIC-5099 to 1560C, and start to reduce the reflux flow rate. The target is around 10 m3/h. Do not proceed further until the column is stabilized. Closely monitor the C5+ content ofthe NGL to ensure it stays on specification. The C5+ constraint may limit the reduction of the reflux flow rate.

• Start to reduce the heat input to the Demethanizer by throttling TV-5088B at 44E-307 outlet. Decrease slowly the set point of TIC-5082. The temperature should be lowered from about 550C to 280C. Closely monitor the level on the steam condensate side ofthe Demethanizer Reboiler (44E-308). If the level rises too high, decrease the set point on TIC-5088 (side reboiler retum) and/or reduce the steam pressure with PIC-3076.

• The C2 content of the NGL should begin to increase. Monitor flow from the Demethanizer via FIC-1042 and NGL composition using AI-7094A. Begin raising the level of propane refrigerant in the Debutanizer Trim Condenser (44E-406). 44-LIC-2116 should be in manual. Monitor the position of PV-3068 (vent to flare) to ensure the level is high enough to totally condense the overhead product.

• Begin introducing propane refrigerant into the NGL Subcooler. Place 44-LIC-2121 in manual and slowly open 44-LV-2121. Once the level reaches normal, place the controller in auto.

CHAPTER 3 30

Page 125: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Open the new recycle gas bypass around 44-E-315 (manual valve M-4405) and close the inlet isolation valve M-4406. Open the new recycle gas bypass around 44E-303.

Once the temperature/pressure profiles in the Demethanizer system has stabilized, gradually reduce the temperature in 44V-301 from -9 0 C to -22 0 C. This is achieved by increasing the level in E-318 using LIC-2 111. Keep the existing refrigeration package in a base loaded condition (speed is fixed using HIC-7201/HS-5056). The temperature of the 44-V-303 should be monitored closely in conjunction with the temperature of 44-V-301. 44-V-303 is constructed of LTCS and has a cold design temperature of -45 0C. The expected temperature in C2 recovery mode is -310C. NOTE: This temperature should be maintained above -35°C to ensure that the temperature at the outlet of the 44-V-303 level control valve (44-L V-2040) does not f a l l below -45°C. A new temperature indicator (44-TI-5131) with a low temperature alarm has been provided at the outlet of 44-LV-2040 to alert the Operators of low temperatures.

Reduce the operating temperature in 44-V-302 from -31 0 C to -420C. This is achieved by adjusting the set point of TIC-5058.

Reduce the set point of TIC-5207 (44-V-307 overhead) from -51 0 C to -58 0 C.

Reduce the set point of TIC-5080 (44-V-305 bottoms) from -58 0 C to -60 o C. Keep the isolation valve on the liquid line to 44-E-303 closed.

Reduce the set point of TIC-5054 (residue gas from 44-E-301) to 22 0C.

When the ethane recovery level increases to about 30%, re-route the stream from 44E-314 to the new Cold Demethanizer (44-V-308) by opening manual valve M-4402. Close manual valve M-4401 in the line to 44-V-306. Change the set point of TIC-5212 to 530C. This will begin steam flow to the Debutanizer Feed Preheater (44-E-405).

Once all the controllers have reached the set points listed above, the unit should stabilize at the following conditions:

_> 44-V-301 at -22°C

44-V-302 at -420C

44-V-305 bottom temperature at -60oC

-» 44-V-306 top / bottom temperatures are -180C and 50oC

44.V-401 top / bottom temperatures are 72 0C and 1770C

_> 44-V-402 at 29 0C

Once the system has stabilized, HS-5056 should be positioned such that temperature of 44-V-301 is maintained by adjusting the load of existing refrigeration system via TIC-5056. The new refrigeration package should be based loaded (fixed level set point for 44-LIC-2111).

CHAPTER 3

Page 126: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Once the system has stabilized, the anti-surge valves for the new Propane Compressor should be closed (44-FV-1402 and 44-FV-1403 at 44-C-202). If not, the following steps are recommended:

a. ) Increase the load on 44-E-406 by decreasing the duty of the upstream aircooler (44-E-402).

b. ) Increase the load on 44-E-318 by decreasing the duty ofthe upstream exchanger (44-E-306) or by slightly opening the warm feed gas bypass valve M-052.

CHAPTER 3 32

Page 127: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

CHAPTER 4

NORMAL START-UP

CONTENTS

S E C T I O N P A G E

1.0 GENERAL 2

1.1 Stepl 2 1.2 Step 2 3 1.3 Step 3 3

2.0 CONTROLLER SETPOINT, A L A R M AND TRIP SETTINGS 4

2.1 Existing Controls Modified for ERM Operation 4 2.2 New Controls Added for ERM Operation 2

CHAPTER 4

Page 128: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

1.0 GENERAL

The unit will be started up using the normal start up procedures described in the following:

• Chapter 4 of the existing Operating, Maintenance and Safety Manual

• Section 6 of Chapter 11 of the existing Operating, Maintenance and Safety Manual (C2 Enhancement Addendum)

• Chapter 3 of the ERM Operating, Maintenance and Safety Manual

Using the above referenced procedures, Unit 44 will normally be started up in the following sequence:

• Step 1: C3 mode + ERM Phase 1

• Step 2: Transition to C2 Enhancement mode

• Step 3: Transition to ERM mode (ERM Phase 2)

1.1 Step 1

In a normal start-up (i.e. all start-ups after the initial start-up), the E R M Phase 1 equipment will be prepared, purged, dried, pressurized and started up along with the existing systems.

2 n d Feed Chiller (44-E-318): The tube side ofthe exchanger is dried and pressurized with 44-E-306 in Step b ofthe procedure provided in Chapter 3, Section 5.2.5.2 ofthe existing manual.

Cold Demethanizer (44-V-308): The column is dried and pressurized with 44-V-306 in Step d of the procedure provided in Chapter 3, Section 5.2.5.2 of the existing manual.

Debutanizer Trim Condenser (44-E-406) and NGL Subcooler (44-E-407): The tube side of the exchanger is dried and pressurized with Debutanizer system in Step i of the procedure provided in Chapter 3, Section 5.2.5.2 ofthe existing manual.

The Cold Demethanizer Bottoms Pumps should also be prepared, purged, pressurized and dried along with the Cold Demethanizer as a part of Step 1. The pumps will not be started until Step 3.

Refer to Chapter 3 of this manual for more information.

For a normal start-up, separation blinds will not be required to isolate the Phase 2 systems from the rest of the plant.

CHAPTER 4

Page 129: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

A

A

1.2 Step 2

Using the procedure contained in the C2 Enhancement Addendum, the unit is transitioned to C2 Enhancement mode.

1.3 Step 3

Once the unit is operating stably in C2 Enhancement mode, the Cold Demethanizer Bottoms Pumps can be started. Refer to the procedure in Section 10.1 of Chapter 3 for more information.

The E R M refngeration system is prepared, purged, pressurized and start-up according to the procedures contained in Chapter 4 of this manual. This procedure can also be selective applied for re-starts of the E R M refrigeration system after trips.

Once the E R M refrigeration system is operating smoothly in recycle, the unit can be transitioned to the E R M operating mode using the procedure in Section 10.3 of Chapter 3.

CHAPTER 4

Page 130: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

2.0 CONTROLLER SETPOINT, ALARM AND TRIP SETTINGS

2.1 Existing Controls Modified for ERM Operation

2.1.1 Setpoints and Alarms

The E R M Project does not impact the existing Dehydration System or the existing Refrigeration System. Therefore, there are no changes to the controller set points or alarms shown in the following P&ID's:

44-00-30001 44-00-30008 44-00-30002 44-00-30009 44-00-30003 44-00-30014 44-00-30004 44-00-30015 44-00-30005 44-00-30016 44-00-30007 44-00-30017

The changes to the existing controller set points and alarms for the P&ID's listed below are summarized in Table 2.1.

44-00-30018 44-00-30019- 1 of 2 44-00-30019-2 of 2 44-00-30020 44-00-30021 44-00-30022 44-00-30023 - 1 of4 44-00-30023-2 of 4 44-00-30023-3 of 4 44-00-30023-4 of 4 44-00-30024 44-00-30025 44-00-30026 44-00-30027 44-00-30028- 1 of 3 44-00-30028- I of 3 44-00-30028- 1 of 3

2.1.2 Trips

No changes to existing trip settings are required.

CHAPTER4

Page 131: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization Project 5221

TABLE 2.1 - UNIT 44 CONTROLLER AND ALARM SET POINTS (EXISTING)

FLUOR Conlract AOWT

Rev. 0. 23-Sept-04

Operating Mode Alarms

Description Tag

Number P&ID

ERM Case

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejection

High Low Comments

TEMPERATURE

Residue Gas to E-309 TIC-5054 018 23 18 30 New control setpoint.

LP Recycle Gas from E-301 018 22 22 22

V-301 Temperalure TIC-5056 New conlrol selpoinl. New TAL selpoinl. Currenl TAL = -19.

Feed Gas from E-301 TI-5057 018 -23 -20

V-302 Temperature -17 New control setpoint. New TAL setpoint. Current TAL = -37.

Feed Gas from E-302 TI-5059 018 -38 -35 -36

HP Recycle Gas from E-302 TI-5060 -42 -32

HP Recycle Gas from E-304 TI-5075 018 -60 -58 -55 -56

HP Recycle Gas from E-303 TI-5118 018 -42 -38 -32 -31

Feed Gas from E-313 019 -35 -28 -40 New control setpoint. New TAL setpoint. Current TAL = -30.

1st Stage Liquid from E-313 TI-5062 019

Feed Gas from E-306 TI-5063 019

V-304 Temperature TI-5065 020 -55

2nd Stage Liquid lo E-314 TI-5066 020 -62 -57 -53 -54

Feed Gas from E-314 TIC-5067 020 -34 -15 New conlrol setpoint.

2nd Stage Liquid from E-314 TI-5068 020 -28 -24 -18 -35 New TAL setpoint.

EC-301(Expander) Outlei TI-5070 021 -60 -56 -53 -50 -51 -36 -65 New TAL selpoinl. Currenl TAL = -58.

EC-301 (Compressor) Inlet 53 52 62 42

EC-301 (Compressor) Outlet TI-5113 021 63 64 64 64 64

Page 132: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization Project 5221

TABLE 2.1 - UNIT 44 CONTROLLER AND ALARM SET POINTS (EXISTING)

FLUOR Contract AOWT

Rev. 0, 23-Sept-O'f

Operating Mode Alarms

Description Tag

Number P&ID Units

ERM Case

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejection High Comments

Residue Gas from E-311 TI-5073 021 •C 54 54 54 54 54 65

V-30S Overhead TI-5076 022 •C -61 60

Reboiler Retum 022 •C -60 55 -53 -12

HP Recycle Gas fram E-303 TI-5078 022 •c -42 -38 •35 -32 -31

V-305 Tray 11 TI-5079 60

V-305 Bottoms TIC-5080 022 •c New conlrol selpoinl. New TAL setpoinL Current TAL = -56

V-306 Overhead TIC-5081 023 1/3 New conlrol setpoint. New TAH setpoinL Curren TAH = 1.

V-306 Tray 2 TIC-5082 023 1/3 •C 42 48 New control setpoint. New TAL setpoint. Current TAL = 67.

V-306 Reboiler Draw TI-5083 023 1/3 35 69

V-306 Reboiler Return TI-5084 023 1/3 70

V-306 Overhead lo E-305 TI-5085 023 1/3

V-306 Top Feed from E-305 -19 -12

V-305 Bottoms from E-317 TI-5205 023 3/3

Feed Gas from E-317 TI-5206 023 3/3 -43 -38 -30 New TAL setpoint. Current TAL = -37

V-307 Ovhd Temperature TIC-5207 023 3/3 -53 -45 New control setpoint. New TAL setpoint. Current TAL = -53.

V-306 Side Reboiler Outlet TIC-5088 024 15 22 32 33 64 New conlrol setpoint. New TAL setpoinL Currenl TAL = 24.

Recycle Gas from E-307 TI-5089 024

Recycle Gas to E-315 TI-5090 024 38 40 38 65

Recycle Gas from E-315 TI-5092 024 37 40 37 22 27

C-301 Suction TI-5740 22 22 22 22 22

Page 133: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization Project 5221

TABLE 2.1 • UNIT 44 CONTROLLER AND ALARM SET POINTS (EXISTING)

FLUOR Contract AOWT

Rev. 0, 23-Sept-04

Operating Mode Alarms

Description Tag

Number PSID Units

ERM Case

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejection

High Comments

C-301 Discharge •C 89 87 120 New TAL setpoint. Current TAL = 84

V-401 Feed Temperature TIC-5212 026 •C 53 63 71 76 New control setpoint. New TAH setpoint. Curren TAH = 73

V-306 Bolloms from E-101 58 75

C5+ form E-401 TI-5096 026 50 62 82

C5+ to Storage 55 55 65

V-306 Bottoms to E-401 TI-5107

V-401 Overhead TI-5098 027 72 74 77 73 75

V-401 Tray 7 TIC-5099 •C 156 145 160 110

V-401 Reboiler Retum TI-5102 027 177 177 165 161

V-401 Tray 26 TI-5294 73 80

V-401 Reflux/NGL Product TI-5105 028 °C 29 40 48 59

PRESSURE

EC-301 (Expander) Inlet PIC-3501 barg 59.3 59.3 59.3 59.3 59.3 68.0

EC-301 (Expander) Outlet PI-3044 021 barg 39.6 39.6 39.1 38.6

Residue Gas from E-311 PIC-3046 021 barg 41.8 42.1 42.0 42.2 44.2 39.2

Residue Gas from E-311 PI-3047 021 barg 42.1 42.0 42.2 41.8

EC-301 (Compressor) Outlet PI-3515 021 barg 42.4 42.7 42.6 42.4 46.2 40.4

EC-301 (Compressor) Inlet PI-3516 021 barg 38.0 37.1 37.1 37.0

V-305 Overhead PI-3049 022 barg 39.5 39.5 39.0 39.0 38.5

V-305 Pressure Drop PDI-3050 022 bar 0.2 0.2 0.2 0.2 0.2 0.5

Page 134: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization Project 5221

TABLE 2.1 - UNIT 44 CONTROLLER AND ALARM SET POINTS (EXISTING)

FLUOR Contract AOWT

Rev. 0,23-Sept^4

Operating Mode Alarms

Description Tag Number

P&ID Units ERM Case

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejection

High

HP Recycle from E-315 PIC-3058 barg 50.5 50.5 50.5 50.5 New control setpoint.

V-306 Overhead PIC-3051 023 1/3 barg 23.0 23.0 23.0 22.7 New control setpoint. New PAH setpoint. Cunen PAH = 23.3

V-306 Overhead to E-305 PI-3052 023 1/3 barg 23.0 23.0 23.0 22.7

V-306 Pressure Drop PDI-3054 023 1/3 0.2 0.2 0.2

V-306 Tray 17 PI-3055 023 1/3 barg 23.0 23.0 23.0 23.0 22.7

V-306 Tray 10 barg

PIC-3202 023 3/3 barg 23.6 23.6 23.6 23.6 23.6 20.0 New PAH setpoint. Currenl PAH = 24.5

C-301 Suction PIC-3060 025 barg 21.7 21.7 21.7 21.4 19.6 New PAH selpoinl. Current PAH = 22.6

C-301 Discharge PIC-3201 025 barg 51.5 51.5 51.5 51.5 59.5

C-301 Suction PI-3730 025 barg 21.7 21.7 21.4 17.9

C-301 Discharge PI-3731 barg 51.5 51.5 51.5 51.5 59.0 50.5 New PAL setpoint. Currenl PAL = 51.6

PIC-3064 027 barg 18.5 18.5 15.0 15.0 New PAH setpoint. Current PAH = 18.5

V-401 Pressure Drop PDI-3065 027 0.2 0.2 0.2 0.2 0.5

PIC-3068 028 barg 17.5 17.5 14.5 14.5 13.9 New PAH selpoinl. Current PAH = 18.0

FLOW

Feed Gas to E-301 FIC-1034 Nm3/h 283000 283000 283000 283000 283000 240000 Cascade from TIC-5054

Feed Gas to E-313 FIC-1035 019 Nm3/h 89400 89400 89400 89400 89400 Cascade from TIC-5061

EC-301 (Compressor) Inlet FI-1501 021 561000 568420 574800 581500 586300 642000 270400

Liquid from V-305 FIC-1041 m3/h 195 213 257 253 Cascade from LIC-2046

Liquid from V-306 FIC-1042 023 1/3 m3/h 378 365 351 336 323' 420 275 New control setpoint. Current FAH = 380. Cascade from LIC-2047

Page 135: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization Project 5221

TABLE 2.1 - UNIT 44 CONTROLLER AND ALARM SET POINTS (EXISTING)

FLUOR Contract AOWT

Rev. 0, 23-Sept-M

Operating Mode Alarms

Description Tag

Number ERM Case

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejection

High

Feed Gas to E-317 FIC-1203 023 3/3 92200 92200 92200 92200 110000 87000 Cascade from TIC-5207

Liquid from V-307 FIC-1204 023 3/3 m3/h 153 183 200 New FAH setpoint. Current FAH = 136. Cascade from LIC-2204

Flow from E-316 FIC-1201 024 55000 52400 50700 60000 13000 New controi setpoint. New FAH setpoint. Curren FAH = 39000

C-301 Suclion FI-1730 111600 113600 117100 121800 120000 61700 New FAH selpoinl. Current FAH = 109500

FIC-1046 58 91 60 New control setpoint. Current FAL = 60. Cascade from FIC-1048

NGL to Storage 350 200 New FAL and FAH setpoints. Currenl FAH = 280 Cunent FAL = 250. Cascade from LIC-2059

LEVEL

V-301 Level 795 1190 400 No impact.

V-302 Level LIC-2038 018 550 740 350 No impact.

V-303 Level LIC-2040 1675 2900 450 No impact.

LIC-2042 019 680 250 No impact.

V-304 Level LIC-2044 020 1400 2480 320 No impact.

V-305 Level LIC-2046 1050 250 No impact.

LIC-2047 023 1/3 70% 3000 300 No impact.

E-308 Level LIC-2050 023 1/3 250 No impact.

E-403 Level LIC-2052 026 80% 1020 500 No impact.

LIC-2204 023 3/3 20% 5250 300 No impact.

Page 136: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

2.2 New Controls Added for ERM Operation

2.2.1 Setpoints and Alarms

The setpoints for the new controllers and alarms added for the E R M Project are described in Table 2.2a.

2.2.2 Trips

The new trip functions and the associated trip settings that have been added for the E R M Project are described in Table 2.2b.

The following Cause and Effect Diagrams are also provided:

Drawing Number Description

CEC 44-00-25-001 Unit 44 Process Cause and Effect Chart

04305 CET E R M Refrigeration Package Cause and Effect

2.2.3 Manual Valves

Table 2.2c provides a summary of the position (open or closed) for the manual valves added for the E R M Project based on the target ethane recovery level.

NOTE: When changing the positions of a set of valves, it is critical that the closed valve be opened before the open valve is closed. This will prevent the system from being blocked-in. For example, when transitioning from C2 Enhancement mode to E R M mode, manual valve M-4402 is opened before M-4401 is closed.

CHAPTER4

Page 137: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

G A S C O Ethane Recovery Maximization Project 5221

TABLE 2.2a - UNIT 44 CONTROLLER AND ALARM SET POINTS (NEW)

FLUOR Conlract AOWT

Rev. 0, 23-Sept-04

Operating Mode Alarms

Description Tag

Number P&ID Units ERM Case

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejection

High Low Comments

TEMPERATURE

E-313 Shell Side Inlet TI-5131 019-1 -39 -37 -36 -32 -27 -41

V-401 Overtiead from E-402 TI-5124 028-1 51 51 51 59 55 40

E-406 Tube Side Outlet TI-5127 028-1 20 30 35 35 35 40 20

E-407 Tube Side Outlet TI-5121 028-3 20 35 35 35 35 40

E-203 Outlet TI-5410 22717-104 55 55 55 55 55 58 Set TAL at 0.1 oC above the vapor dew point at suction pressure read by PT-3405. Set TAH at I O X above the vapor dew point at suclion pressure read by PT-3405.

C-202 Low Stage Inlet TIC-5405 22717-102 -24 -24 -24 -24 -24

Set TAL al 0.1 "C above the vapor dew point at suction pressure read by PT-3404. Set TAH al 10°C above the vapor dew point al suction pressure read by PT-3404.

C-202 Side Load Inlet TIC-5404 22717-103 16 16 16 16 16 25 15

C-202 Discharge TI-5401 22717-101 75 75 75 75 75 85

Lube Oil Supply TI-5416 10512S 60 71

Lube Oil Reservoir TI-5417 10512S 75 50 C-202 Motor Bearing TI-5420AB GE 127 70 80 High-high alarm at 90°C

C-202 Motor Bearing TI-5421AB GE 127 70 80 High-high alarm at 90°C

C-202 Motor Stator TI-5422AB GE 127 120 130 High-high alarm a l l 40°C

C-202 Molor Slator TI-5423AB GE 127 120 130 High-high alarm at MO 'C

C-202 Motor Stator TI-5424AB GE 127 120 130 High-high alarm at MO 'C

C-202 Gear High Speed Bearings TI-5430AB GE127 97 107

C-202 Gear High Speed Bearings TI-5431AB GE 127 97 107

C-202 Gear Low Speed Bearings TI-5432AB GE 127 97 107

C-202 Gear Low Speed Bearings TI-5433AB GE 127 97 107

C-202 Gear Inboard Thrust Bearings TI-5434A-C GE 127 97 107

C-202 Gear Outboard Thrust Bearings TI-5435A-C GE 127 97 107

C-202 Bearings TI-5440AB GE 127 89 99

C-202 Bearings TI-5441AB GE127 89 99

C-202 Bearings TI-5442AB GE 127 89 99 C-202 Bearings TI-5443A8 GE 127 89 99

Page 138: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

G A S C O Ethane Recovery Maximization Project 5221

FLUOR Contract AOWT

Rev. 0, 23-Sep(-04

TABLE 2.2a • UNIT 44 CONTROLLER AND ALARM SET POINTS (NEW

Operating Mode Alarms

Description Tag

Number P&ID Units ERM Case

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejeclion

High Low Comments

C-202 Bearings TI-5444AB GE 127 89 99 C-202 Bearings TI-5445AB GE 127 89 99 C-202 Bearings TI-5446AB GE 127 89 99

C-202 Bearings TI-5447AB GE 127 89 99

CM-202 Inlet Air TI-5425A GE411 ^ f - r - „ ^ . 80

CM-202 Inlet Air TI-5425B GE411

P R E S S U R E

V-308 Tray 8 PI-3081 023-4 barg 23.3 23.3 23.3 23.3 22.3

V-308 AP PDI-3082 023-4 bar 0.2 0.2 0.2 0.2 0.2 0.5

P-302 Discharge PI-3083 0 2 3 ^ barg 26.0 23.0

P-302A Seal Pot PI-3084A 023^1 barg 28.0 27.0

P-302B Seal Pot PI-3084B 023-4 28.0 27.0

V-205 PIC-3410A 22717-104 barg 18.8 18.8 18.8 18.8 19.7 17.0

C-202 Low Stage Inlet PI-3403 22717-102 barg 1.0 1.0 1.0 1.0 1.0 0.2

C-202 Side Load Inlet PI-3402 22717-103 barg 6.4 6.4 6.4 6.4 6.4 7.3 5.3

C-202 Discharge PI-3401 22717-103 barg 19.3 19.3 19.3 19.3 19.3 20.2 17.5

V-206 PI-3413 22717-103 barg 6.4 6.4 6.4 6.4 6.4 8.6

V-207 PI-3414 22717-102 barg 1.0 1.0 1.0 1.0 1.0 2.8

Seal Gas Filler AP (Process Gas) PDI-3430 GE561 mmH20 1000 2540

Seal Gas Filler AP (N2) PDI-3431 GE 561 mmH20 1000 2540

Balance Chamber AP PDI-3432 GE 561 mmH20 1000 1270

Buffer Gas PI-3433 GE561 barg 1.4 0.7

C-202 Lube Oil PI-3421 GE 529 barg 1.4

Lube Oil Pump A Discharge PI-3415A 10512S barg 5.2 4.5

Lube Oil Pump A Discharge PI-3415B 10512S barg 5.2 4.5

Lube Oil Filter AP PDI-3416 10512S _bar g_ 0.3 1.0

Lube Oil Supply PI-3417 10512S b a r 9 - 1.4 1.0

CM-202 Air Intake PDI-3425 GE411 mmH20 20.0

Page 139: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

G A S C O Ethane Recovery Maxtmization Project 5221

TABLE 2.2a • UNIT 44 CONTROLLER AND ALARM SET POINTS (NEW)

FLUOR Contract AOWT

Rev. 0, 23-Sept-04

Operating Mode Alarms

Description Tag

Number P&ID Units ERM Case

30% C2 Recovery

20% C2 Recovery

10% C2 C2 Recovery Rejection

High Low Comments

FLOW

P-302 Discharge FIC-1070 023^1 m3/h 202 236 201 241 239 265 60 Cascade from LIC-2126

C-202 Low Stage Inlet 22717-102 Nm3/h 22500 26000 18000 Alarm settings to be confirmed by vendor.

C-202 Side Load Inlei FI-1402 22717-103 Nm3/h 78400 90000 63000 Alarm sellings lo be conlirmed by vendor.

C-202 Discharge FI-1400 22717-103 Nm3/h 100900 116000 81000 Alarm sellings to be confirmed by vendor.

C-202 Discharge to Seal System FIC-1430 GE 561 Nm3/h 1.7 2.9 1.2

^ 2 to C-202 Seal System FIC-1431 GE 561 Nm3/h 1.7 1.2 Primary Vent Gas to Flare (Suction) FI-1432D GE 561 Nm3/h 3.4

Primary Vent Gas to Flare (Discharge) FI-1433D GE 561 NmS/h 3.4 6.8 2.4

LEVEL

E-318 Level LIC-2111 019-2 1390 1590 500 V-308 Level LIC-2126 023^1 4100 5000 2000

E-406 Level LIC-2116 028-1 1240 1440 500 E-407 Level LIC-2121 028-3 810 960 500 V-205 Level LI-2403 22717-104 888 -1194 Measured from centerline of V-205

V-206 Level LIC-2404 22717-103 533 -381 Measured from centerline of E-204

V-207 Level LIC-2405 22717-102 305 -229 Measured from centerline of E-205

C-202 Lube Oil Rundown Tank LI-2420 GE529 100% 92% 77%

C-202 Lube Oil Reservoir LI-2431 10512S 830

MISCELLANEOUS

E-203 Vibration Bay 1 VAH-9050 041

E-203 Vibration Bay 2 VAH-9051 041

E-203 Vibration Bay 3 VAH-9052 041 ^ * f - ' V

E-203 Vibralion Bay 4 VAH-9060 041

E-203 Vibration Bay 5 VAH-9061 041

E-203 Vibration Bay 6

E-203 Vibration Bay 7

E-203 Vibration Bay 8

E-203 Vibration Bay 9

VAH-9062 041

VAH-9070 041

VAH-9071 041 mm ass VAH-9072 041 ^ d''J.-1~--- .... *

Page 140: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

G A S C O Elhane Recovery Maximization Project 5221

FLUOR Contract AOWT

Rev. 0, 23-Sept-04

TABLE 2.2a - UNIT 44 CONTROLLER AND ALARM SET POINTS (NEW)

Operating Mode Alarms

Description Tag

Number P&ID Units ERM Case

30% C2 Recovery

20% C2 Recovery

10% C2 C2 Recovery Rejection

High Low Comments

C-202 Motor - Vibration X VXI-9410 GE 127 72 85 High-high Alarm at 99 um

C-202 Motor - Vibration Y VYI-9410 GE 127 72 85 High-high Alarm al 99 um

C-202 Motor - Vibration X VXI-9411 GE 127 72 85 High-high Alarm at 99 um

C-202 Motor - Vibration Y VYI-9411 GE 127 72 85 High-high Alarm at 99 um

C-202-E1A Vibration VAH-9415A 10512S

C-202-E1B Vibration VAH-9415B 10512S

C-202-E1C Vibralion VAH-9415C 10512S

C-202 Gear High Speed - Vibration X VXI-9420 GE 127

iC-202 Gear High Speed - Vibration Y VYI-9420 GE 127 32 45

C-202 Gear Low Speed - Vibralion X VXI-9421 GE 127 64

C-202 Gear Low Speed - Vibration Y VYI-9421 GE 127 51 64

C-202 Gear Low Speed - Vibration X VXI-9422 GE 127 51 64

C-202 Gear Low Speed - Vibration ' VYI-9422 GE 127 51 64

C-202 Gear High Speed - Vibralion X VXI-9423 GE 127 32 45

C-202 Gear High Speed - Vibration Y VYI-9423 G E 127 32 45

C-202 Compressor - Vibration X VXI-9430 GE 127 32 45

C-202 Compressor - Vibralion Y VYI-9430 GE 127 32 45

C-202 Compressor - Vibration X VXI-9431 GE 127 32 45

C-202 Compressor - Vibration Y VYI-9431 GE 127 32 45

C-202 Gear Low Speed - Axial Posilion VZI-9424AB GE 127 0.13

C-202 Compressor - Axial Position VZ1-9432AB GE 127 0.13

C-202 Gear High Speed - Acceleration VI-9441 GE 127 m/s2 39

C-202 Gear Low Speed - Acceleration VI-9440 GE 127 m/s2 39

C-202 Compressor - Acceleration VI-9450 GE 127 m/s2 39 High-High Alarm at 50 m/s2

C-202 Compressor - Acceleration VI-9451 GE 127 m/s2 39 High-High Alarm at 50 m/s2

Page 141: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization Project 5221

TABLE 2.2b - UNIT 44 SETTINGS FOR NEW TRIPS

FLUOR Contract AOWT

Rev. 0, 23-Sept-04

Description Tag Number P&ID Units Trip Action Comments

TEMPERATURE

E-314 Shell Side Outlet TALL-5126 020 -43 Closes LV-2044

E-313 Shell Side Inlet TALL-5130 019-1 -43 Closes XV-9080 and LV-2111

C-202 Discharge TAHH-5400 22717-101 90 C-202 shutdown

Lube Oil Reservoir TI-5417 10512S 32 Heater on

Lube Oil Reservoir TI-5417 10512S 50 Heater off

C-202-E2A TI-5418A 10512S 75 Heater off

C-202-E2B TI-5418B 10512S 75 Heater off

C-202 Gear High Speed Bearings TAHH-5430 GE 127 115 C-202 shutdown

C-202 Gear High Speed Bearings TAHH-5431 GE 127 115 C-202 shutdown

C-202 Gear Low Speed Bearings TAHH-5432 GE 127 115 C-202 shutdown

C-202 Gear Low Speed Bearings TAHH-5433 GE 127 115 C-202 shutdown

C-202 Gear Inboard Thrust Bearings TI-5434A-C GE 127 115 C-202 shutdown

C-202 Gear Outboard Thrust Bearings TI-5435A-C G E 1 2 7 115 C-202 shutdown

C-202 Suction End Bearings TAHH-5440 GE 127 115 C-202 shutdown

C-202 Suction End Bearings TAHH-5441 GE 127 115 C-202 shutdown

C-202 Discharge End Bearings TAHH-5442 GE 127 115 C-202 shutdown

C-202 Discharge End Bearings TAHH-5443 GE127 115 C-202 shutdown

C-202 Active Thrust Bearings TAHH-5444 GE 127 115 C-202 shutdown

C-202 Active Thrust Bearings TAHH-5445 GE 127 115 C-202 shutdown

C-202 Inactive Thrust Bearings TAHH-5446 GE 127 115 C-202 shutdown

C-202 Inactive Thrust Bearings TAHH-5447 G E 127 115 C-202 shutdown

PRESSURE

P-302A Seal Pressure PALL-3084A 023-1 barg 26.5 P-302A Trip

P-302B Seal Pressure PALL-3084B 023-1 barg 26.5 P-302B Trip

Page 142: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization Project 5221

TABLE 2.2b - UNIT 44 SETTINGS FOR NEW TRIPS

FLUOR Contract AOWT

Rev. 0, 23-Sept-04

Description Tag Number P&ID Units Trip Action Comments

C-202 Discharge PAHH-3400 22717-101 barg 21.0 C-202 shutdown

C-202 Side Load PALL-3404 22717-103 barg 3.6 C-202 shutdown

C-202 Suction PALL-3405 22717-102 barg 0.0 C-202 shutdown

C-202-P1A Discharge PAL-3415A 10512S barg 4.5 Start B pump

C-202-P1B Discharge PAL-3415B 10512S barg 4.5 Start A pump

C-202 Lube Oil PALL-3420 GE 529 barg 0.35 C-202 shutdown 2 out of 3 voting

FLOW

Primary Vent Gas to Flare (Suction) FAHH-1432 GE561 Nm3/h 9.5 C-202 shutdown 2 out of 3 voting

Primary Vent Gas to Flare (Discharge) FAHH-1433 GE 561 Nm3/h 9.5 C-202 shutdown 2 out of 3 voting

LEVEL

V-308 Level LALL-2127 023-4 300 P-302 A/B shutdown

V-206 Level LAHH-2401 22717-103 -991 C-202 shutdown Trip setting is measured from V-206 centerline.

V-207 Level LAHH-2402 22717-102 -686 C-202 shutdown Trip setting is measured from V-207 centerline.

MISCELLANEOUS

E-203 Vibration Bay 1 VSH-9050AB 041 Fan motor shutdown Activated from DCS

E-203 Vibration Bay 2 VSH-9051AB 041 Fan motor shutdown Activated from DCS

E-203 Vibration Bay 3 VSH-9052AB 041 Fan motor shutdown Activated from DCS

E-203 Vibration Bay 4 VSH-9060AB 041 Fan motor shutdown Activated from DCS

E-203 Vibration Bay 5 VSH-9061AB 041 Fan motor shutdown Activated from DCS

E-203 Vibration Bay 6 VSH-9062AB 041 Fan motor shutdown Activated from DCS

E-203 Vibration Bay 7 VSH-9070AB 041 Fan motor shutdown Activated from DCS

E-203 Vibration Bay 8 VSH-9071AB 041 Fan motor shutdown Activated from DCS

Page 143: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization Project 5221

TABLE 2.2b - UNIT 44 SETTINGS FOR NEW TRIPS

FLUOR Contract AOWT

Rev. 0, 23-Sept-04

Description Tag Number P&ID Units Trip Action Comments

E-203 Vibration Bay 9 VSH-9072AB 041 ->4 Fan motor shutdown Activated from DCS

C-202 Gear High Speed - Vibration X VXAHH-9420 GE 127 64 C-202 shutdown

C-202 Gear High Speed - Vibration Y VYAHH-9420 GE 127 64 C-202 shutdown

C-202 Gear Low Speed - Vibration X VXAHH-9421 GE 127 102 C-202 shutdown

C-202 Gear Low Speed - Vibration Y VYAHH-9421 GE 127 102 C-202 shutdown

C-202 Gear Low Speed - Vibration X VXAHH-9422 GE 127 102 C-202 shutdown

C-202 Gear Low Speed - Vibration Y VYAHH-9422 GE 127 102 C-202 shutdown

C-202 Gear High Speed - Vibration X VXAHH-9423 GE 127 64 C-202 shutdown

C-202 Gear High Speed - Vibration Y VYAHH-9423 GE 127 64 C-202 shutdown

C-202 Compressor - Vibration X VXAHH-9430 GE 127 57 C-202 shutdown

C-202 Compressor - Vibration Y VYAHH-9430 GE 127 57 C-202 shutdown

C-202 Compressor - Vibration X VXAHH-9431 GE 127 57 C-202 shutdown

C-202 Compressor - Vibration Y VYAHH-9431 GE 127 57 C-202 shutdown 2 out of 2 voting

C-202 Gear Low Speed - Axial Position VZAHH-9424AB GE 127 0.25 C-202 shutdown 2 out of 2 voting

C-202 Compressor - Axial Position VZAHH-9432AB GE 127 mm 0.25 C-202 shutdown

C-202 Gear High Speed - Acceleration VAHH-9440 GE 127 m/s2 50 C-202 shutdown

C-202 Gear Low Speed - Acceleration VAHH-9441 GE 127 m/s2 50 C-202 shutdown

Page 144: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

GASCO Ethane Recovery Maximization Project 5221

FLUOR Contract AOWT

Rev. 0, 23-Sept-04

TABLE 2.2c - UNIT 44 MANUAL VALVES

Operating Mode

Valve Tag Description P&ID E R M

Phase 1 E R M Mode

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejection

Comments

E-303 Bypass (HP Recycle) 018 Closed Open Open Open Open Closed New valve

M-4401 E-314 Outlet to V-306 020 Open Closed Closed Open Open Open New valve. Works together with M-4402.

M-4402 E-314 Outlet to V-308 023-1 Closed Open Open Closed Closed Closed New valve. Works together with M-4401.

E-303 Isolation (V-305 Bottoms) 022 Closed Closed Closed Closed Closed Open Existing valve

M-4403 V-SO/ Liquid to V-306 023-1 Open Closed Closed Closed Closed Closed New valve. Works together with M-4404.

M-4404 V-307 Liquid to V-308 023-1 Closed Open Open Open Open Open New valve. Works together with M-4403.

M-4405 E-315 Bypass (HP Recycle) 024 Closed Open Open Open Closed Closed New valve. Works together with M-4406.

M-4406 E-315 Isolation (HP Recycle) 024 Open Closed Closed Closed Open Open New valve. Works together with M-4405.

Page 145: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

TITLE

UNIT 44

ONSHORE GAS DEVELOPMENT PROJECT N" 545

ADNOC - HABSHAN

PROCESS CAUSE AND EFFECT CHART

Rev-

Page

4 i 5

x ': x I x 1 X X I X : X i

Rev.

Page

Page

| 6 | 7 8 i 9

! r

1 Bis ! X j X ' X j X

2 Bis

X I X | X X

2 Ter . X

. -5

X

X X

X

FLUOR Project 5221 Agreement 13522102

Fluor Contract AOWT

CEC

Unit

44

Symbol Serial No

25-001

3/3/95 A. PIHOUEE R. AGAZZI 8.1 CERTIFIED

Rev

19/9/94 Y. SIMON J. CASTEL 7\a i /5 /c* \ ; f 2 I' 2/8/94 Y. SIMON R.AGAZZI 7Ai 1 W o 4 ; E >NiH A

1 25/1/94 i H. MAHE J. CASTEL 6/5/97 Y. SIMON A. RABINIAUX

0

Rev.

5/10/93 i A LEGALL R. AGAZZI 19/4/97 Y. SIMON R. AGAZZI

JJ/MUfAA Written by Checked by Rev Dm

Written by Checked by

Document revisions

76001. CECO! - SPPW - R x . 1 - AKO-W1J0M.0 .

Page 146: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

PROCESS SPECIFICATION

TECHNIP

CEC | 76^JL C=C

OrjuctiC C. •

CLIENT

LOCATION

UNIT

ADNOC

HABSHAN

44

NOTES

Rev. Date

5/10/93 25/1/94 2/8/94

3/3/95 19/4/96

Made by ALG HM

PHA

Checked by RA JC RA RA RA

Page

5 GENERAL A/OTES-

Le«f«< 1 conBtponcts to a loea! sftm down (to pump E*M t»o*r)

Level 2 corresponcft to • systam shut down (a.g. group of items) or zone anm oown

Zona stu* down corresponds to Units 34 - *A shut down tor xor* 20

17

IE WOTES

1 SIGNAl WITH START UP OVERRIDE

•W-HS-SOIS FOR 44J'ALI -3029

t * - H S - X \ B FOH 4*4>ALL-3032

25 26

2 SIGNAL GENERATED BY COMPRESSOR VENDOR PLC

4DEIETCO

5 SIGNAL WITH START-UP OVERRIDE 44+ i&90M FOR 44-PALL-3069

8 SIGNAL W T H START UP OVERRDE 44+IS-9021 FOR 44-FAU.-3071

9 XV-9006 PERMISSIVE TO O P E N : 44-PclSt-3Q73

10 CONTROL TRANSFERRED TO 44-LV-20S2B

11 ESO SEQUENCE OF MACHINES AND PACKAGES ARE BY VEWJORS

12 INWatTION OF 44-XHSC-9077 F THE HEATER W g - I O I U l IS RUNNING (STATUS OF HEATCR BY 44-XL-7817)

13 44-XZSO-90O3 P E R M B S V E TO START 44-C-201

14 44-XZSC7501 PERMISSIVE TO OPEN 44.XV-S0OS

B PERMISSIVE TO START 44-EC-301 (XS-9022)

15 CLOSING THE VALVE 44-XV-9006 WHL STOP THE TURBO EXPANDER AND WIU. GENERATE AN ALARM IN DCS

16 44-XZSO9010 INHIBIT TO START THE TURBO-EXPANDER

44-)tZSO-9010 AUTHORISATION TO START THE TURBOEXPANDER

17 INHIBITION OF H-XHSO-MXH WHEN THE 44-C-201 IS RUNNING (44-XS-7620)

18 WITH THE TIME DELAY •= 1 MN.

19 RESET FACILITIES TOBE PROVIDED AFTER ACTIVATION OF HAND SWITCHES

20 SHUT OOWN OF EXPANDER WHEN M-XV-9007 IS CLOSED (INTERNAL SIGNAL)

7600L-CEC01 - SPP 1 - R*v.2- ANG-Wl23*4 0

Page 147: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

PROCESS SPECIFICATION

j CEC 76CG_ Z=.Z

M-yuerK. ' S o n a ' N : - .R t i ' . (

CUENT

LOCATION

UNIT

ADNOC

HABSHAN

44

NOTES

Date. 2/8/84

imm

19/4«6

Made by YS YS

YS

Checked by RA J C

RA

Page:

1 Bis

siSENERAL NOTES'

L e v * 1 coTBsporKts t o * local shut down (•.& punp tnut oown)

Level 2 ayrMpontlJ to a systam mul down (e.g. o™4> o* " m i ) or zone shu (Sown

Zone s i u down correspanOs to Units 34 • 44 shul down for zone 20

titOTES-21 SIGNAl. WITH START UP OVERRIDE •M-HS-BOBS FOR 44-XZSC-9077

22 SIGNAL WITH START UP OVERRIDE -M-HS^OBT FOR M-XSC-gOCD

23 23 W Z S C - i 5 a \ AND 4+-XZSC-7S01 PERMISSIVE TO OPEN WOCV^OIO

24 444tS-711B AND 44 .XZSO«11DAND44 jaSa«X» PERMISSIVE TO START 4 4 E C J 0 1

25 THE ACTION IS POSSIBLE ONLY IF OIL PUMPS HAVE BEEH SHUT DOWN FOR MORE THAN 5 MINUTES (44-XM105)

'36 •'

37 ~

38 -

39 r

42

43

45

46 ~

47 -

48 -

49

50

51

52

S3

54

55

58

57

58

59

60

61

62

63

64

65

66

67

66

76OOL-CEC01 - S P P 1 - R*»-2- ANG - WI23M.0

Page 148: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 149: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 150: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

I FUNCTION PETtfORMED .

4<-ME- lBl H I S H U T D O W S I G N A L

R E G E N , C A S T O H X A T E R 44-MZ-I01 H i

MOTOR BAY U . «*-g-301 MOTOR BAY IB MOTOR BAY 2A 44-t-m MOTOR BAY IB 44-Z-2H MOTOR BAY JA 4*-g-3M

;*4.XS-90S6A MOTOR BAY 3B 44-R-m MOTOR BAY 4A 4*-Z-3»l

| U-XS-K16 B MOTOR BAY 4B

jl 44-X3-9W7B MOTOR BAY 5A **-t^2*l MOTOR BAY 5B 44-g-Hl MOTOR BAY SA 44-E-3H MOTOR BAY <B 4*.g-Ill

3 44-X3.»li? A MOTOR BAY 7A 44-1-111

rag

TRIP TRIP g44.X5-?PCT B.

3 44^XS-9C« A j44.X5-90rt B

MOTOR BAY TB 44-E-H1 MOTO I BAY

t BAY >A 44-E-i« BB 44.E-2IJ TRIP

TRIP MOTOR BAY 9A 44.E.2H MOTOR BAY gB 44-g-itl MOTOR BAY IOA 44-R^II MOTOR BAY HB 44-Z-Ut MOTOR BAY IIA44-g-2» MOTOR BAY 1 IA U - t A i 1 MOTOR BAY IIA 44-E-2U MOTOR BAY IIB 44-g-3»l

BECHTIXTrCHNIP

JOINT VEISTURK

ABU DHABl NATIONAL OIL COMPANY

'*—v***' JiJV ^ ONSHOM GAS DEVEU)Pfgwr FROJECT

DRAWIWC TITLE

- p a w RIV I DATI

ISSUED FOR CONSTRUCTION tSSUED TOR PIS1GW

FnoiT

CAUSE i EFFECT CHA2T 7600L CEC-44-00-25-001

BY CtDPD t F J a

2 BIS

Page 151: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

r

F V f t C T I O N P E R F O R M E D

MOTOR BAY IA U-ZJU

i l l

i if lth

MOTOR BAY IB i4-E-311 U-XS.906tA MOTOR BAY IA 44-XS-9DW B MOTOR BAY 2B 44-R3H

44-XS-90CT A MOTOR BAY IA M-E-WI MOTOR BAY IB M-I-WI MOTOR BAY IA U-IMl MOTOR BAY2B U-UCI MOTOR BAY 3A U-Um MOTOR BAY i B 44-t-«i

R BAY <A MOTOR BAY 4B M J ^ M MOTOR BAY SA «4-I-IH MOTOR BAY 5B 44-I-TO MOTOR BAY 6A 44-lt-l02

BfCHTtL-nSCHNIP

T W * j o m r v i N T U R i ;

ABU DHABl NATIONAL OIL COMPANY

*-*au« J J A ^ ONSHORE CfcS DEVELOPMENT PROJXCT

DRAWING TITLE

CAUSE * EFTECT CHART

MOTOR BAY SB M-t^l

UXS-Wtt A MOTOR BAY IA **-E-IPl ITOR BAY IB 44-E.iai

MOTOR BAY IA «*-K-316m)4 MOTOR BAY IB 44-B-316/4M

44-P.W1 HC SUMP DRUM PUMP

ISSUED FOR DESIGN

DRAWING NO-

7600L CEC-44-00-2S-001

0 fcF.PR CLIEIVT PACE

2 TER

Page 152: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 153: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

2

PWCTTON PERFORMED •*4 .I01 SHITTDOWW SIGNAL *4~C-20\. DEPRESSLfRIZATION 44-C.IOI FIRST STAGE SUCTION U-C-;oi SECOND STACK SUCTION **-C-lt>\ DISCHARGE

T STAGE ANTISURGE DESUPERHMTINC 44-C-101 SECOND STAGE ANTISURGE DESUPERHEATI CLOSE 44-EC-381 EXPANDER SUCTION CLOSE

44-ECJftl DISCHARGE 44-EC-3II SEAL GAS **-ZC-Ml S/D SIGNAL REGENERATION CAS TO FUEL CLOSE WATER TD SOUR WATER STRIPPER SALES GAS FROM HEADER SHUTDOWN SIGNAL TO UNIT 34

44-C.M1 DISCHARGE 44-CJOI SUCTION 44-C4B1 SUCTION (BY PASS) 4^CJ01 DEPRESSURIZATION

CLOSE CLOSE

*4-C-3g] S/D SIGNAL

W-LV-30S2A

CONDENSATE TO STORAGE CONDENSATE TO STORAGE CONDENSATE TD FLARE DRUM

44-FV-l04t 44-XS-9M9

44-XS-9051A/B

3 FOR CONSTRUCTION REV DATE DESCRgTlON BY cmcD Af.n

STEAM CONDENSATE FROM 44-E-403 NGL TO STORAGE U-ME-IH-H1 SHUTDOWN SIGNAL *i-i>-4H Am DEBUT ANP J R REFLUX PUMP

REISSUED FOR DESIGN REISSUED POR CONSTBUCTION

R E V | DATE DESCRIPTION DRAWING NO.

I 1 CLIENT PAGE

BECHTEL TECHNIP

JOINT VENTURE

ABU DHABI NATIONAL OIL COMPANY

i — ^ j l J j ^ iSjJi

ONSHORE OAS DEVEUPMENT PROJECT

REV

CAUSE 4 EFPECT CHART 7600L CEC-44-00-25-001

Page 154: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 155: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

S S S S S S S S S S S S i S S i S S S S S g

144-HV-7W

BECHTEL TECHNIP

JOTNT VENTURE

ABU DHABI NATIOMAL OIL COMPANY

ONSHOM CAS DEVELOPMENT PROJeCT

DRAWING TITLE

CAUSE d EFFECT CHART 7600L

-«-C.2flI SHUTPOHW 5TCNAL

EFFECT FUNCTION PRRPORMTO '

<4-C-aoi DEPRESSURIZATION *4-C2t>l "FIRST STAGE SUCTION 44-0301 SECOND STAGE SUCTION 44-0101 DISCHARGE ANTISURGE FIRST STAGE DESUPERHEATING ANTISURGE SECOND STAGE DESUPERHEATINC 44-EOM1 EXPANDER SUCTION. 44-gC-Ml COMPRESSOR DISCHARGE 44-EC.3B1 SEAL GAS 44-EOm S/D SIGNAL REGENERATION GAS TO FUEL WATER TO SOUR WATER STRIPPER SALE GAS FROM HEADER SIGNAL TO UNIT 14 TRIP

Z M \ DISCHARGE 4*0401 SUCTION 44-OM1 SUCTION fBYPASS) 44-034! DEPRESSURIZATION

CLOSE

^01 S/D SIGNAL

CONDENSATE TO STORAGE CONDENSATE TO STORAGE CONDENSATE TO FLARE DRUM CLOSE STEAM CONDENSATE FROM 44-E-4a3 CLOSE

NCL TO STORAGE 44-ME.m-Hl SHUTDOWN SIGNAL 44-P-4D1 Am DEBUTANIZER REFLUX PUMP STOP

REISSUED FOR CONSTRUCTION ISSUED FOR DESIGN

DESCRIPTION. DRAWING NO.

CEC-44-00-25-001

p ir.m [CLIENT

Page 156: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

FUNCTION PERFORMED RgFRlC UQUID FROM **-g-302

j 44-XV-90TT S T O H R A T E R 44 -Ng^ ia i H I

In WATER TO SOUR WA1TR STTUPPER

44-t.U I TOTAL SHUTDOWN U-RJ1U404 TOTAL SHUTDOWN

sis

Nl

g CM'QtAL'nuy U-E;!* 1 TOTAL SHUTDOWN _ TRIP U-E-311 TOTAL SHUTDOWN U-E-Wl TOTAL SHUTDOWN

TRIP

• ICHrrn . TECHNIP

JOINT VENTURE

ABU DHABI NATIONAL OIL COMPANY

ONSHORE CAS DEVELOPMENT PROJECT

DRAWING TITLE

CAUSE A EFFECT CHART

ISSUED FOR DESIGN DESCRIPTION DRAWING NO,

7600L CEC-44-00-25-001

BY CHCD Af.fR

Page 157: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

mmmmm mmtm® mmmmmtmmm FUNCTION PERFORMED

U-C-202 COMPRESSOR

53

U-E-203 PROPANE OOWOENSgR F W S

_ DEMETHANIZER BUTTOMS PUMP 44-p-302A

DEMETHANIZER BUTTOMS PUMP 44.P-302B

_ W - 3 0 B COLD OEUETHANIZER B O n O M S O U U E T

4*£>31B 2ND FEED CHILLER

4AE-tO& DEBUTANIZER TRIM CONDENSER

44E-407 NGL SUBCOOLER

ISSUED FOR CONSTRUCTION

N O T E S : FOR LOGIC R E F E R TO TOROMONT C & E .

C O N D E N S E R W.E .203 F A N S TRIP F R O M O C S .

REVISED PER GASCO COMMENTS S t !

ISSUED FOR APPROVAL

DESCRIPTION

SflKO FIUOR. C A U S E AND E F F E C T C H A R T

G A S C O ETHANE R E C O V E R Y MAXIMIZATION P R O J E C T CEC-44-00-25-001

Page 158: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

c z 3

S 3

FUNCTION PERFORMED

*j-C-202 COMPRESSOR

i : U-E-203 PROPANE CONDENSER FANS

DEMETHAHLZER BUTTOMS PUMP A4-P-302A

DEMETHANIZER BUTTOMS PUMP 44-P-303B

44V-30B COLD DEMETHANIZER BOTTOMS OUTLET

I I

44E-31B gND FEED CHILLER

r *4E-<06 DE8UTANEER TRIM CONDENSER

I * J E ^ 0 7 NGL SUBCOOLER

1

1

N O T E S : F O R 44-C-202 L O G I C R E F E R TO T O R O M O N T C A E .

C O N D E N S E R 44-E-203 F A N S TRIP F R O M D C S .

ISSUED FOR CONSTRUCTION E E ^ O s f f i ? T ^ g "

ISSUED FOfl APPROVAL

BY CHK'D APPR'D C U E m

FLUOR, C A U S E A N O E F F E C T C H A R T

G A S C O E T H A N E R E C O V E R Y MAXIMIZATION P R O J E C T 13522102 CEC-W-00-25-001

C O N T R A C T

A O W T

Page 159: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

TOROMONT PROCESS SYSTEMS, INC

GASCO ERM PROJECT #5221

SHUTDOWN/INTERLOCK SYSTEMS CAUSE AND EFFECT DIAGRAM

PROPANE REFRIGERATION SYSTEM

APPROVED P3R CONSIUlXmON

STATUS

ISSUED POR DESIGN

DATE CHK APP'D

GWO MWW CWO

OWO MWW OWO

OUTPUT OR

EFFECT

DESCRIPTION

PROJECT NUMBER: 22717

INPUT OR CAUSE DESCRIPTION

jjoxmKJuxnn*

Eg) WITH EBTtSSBJaEUTKN (LOCAL)

DwnHMnmwaaATicH (Erj

MAf MOTCR WTT BLN (OTB* CCWTACD

KAM MOTCR VJS ICLOffiD COKT ACT)

KxnrccMmsJXM D J J C K A J K E M U W U X E

BIOBCtMnaSMRDIJCnAICETEMr.

t^COMmMOKWmSTAOESUCnQKWUWUBE

HIOH UQUB LEVEL V «E -103

mOQ UQUD LEVEL t4<4G-l(

ccc c n m a j j x FAULT

LOWLUIS OL ium.T PIIBW ura JOUTOFiVOTHJ

BIOHIHHASY ICAL VBfT tUJV. SUCTION DID

men FRMABY E A L van-IUTW. CUCK B O 2 OCT CF 1 VOTED

BWfl UOTORKCCItAOlALIHAIUNO V D R A T I C W

HWH HCfTDR MEF. HAJjiAL lEAKINQ VtlUiTTON

raoBMOTOftDE RADIAL tHAXWO VfflaATKW

HMH KOTOS KKADIALIfiAIlINO V O K A T W

HWH 08A» RS. ILIND END RADIAL • EAU VQ VB.

H»a(iaA*ttS.lL!!«>Br€>HADIAL>BAlWOVIl.

HJOR OEAX L-S. CCLFDM END RADIAL lEAAMQ VB.

moa aEA*LAcc*ruNo BWD R A D I A L I B A I N Q vm.

DXIfl DEAR LA. U X C E M ) RADIAL BRAXVffl VH.

IDOB O A * US, WJHD B O RADW, BEMWO VO.

IDOH OEAR R l ComjHO END RADIAL * EAX WO VD).

BK1H06AR a i COWLWO END RADIAL •EAaiNQ VD.

mon MKP. JucnoN END RADIAL IEARKO MB.

mOH C<MP. rjCTIONEND RADIU. UAKKO \T> .

BIOH CtU?. DBCKAROE E«D RADIAL DEARWO V B .

BOS CCMP.DOCHAROa END RADIAL REAR NO VB. M i miii i ' i I I iii ' I J I M I

-m mna WAS AmLEXATION

Rioa (EAR AXIAL Mwmcw JOJrCPlVOTBJ

EJOB COMPREMOR AXIAL POSTTICIN 1 OLT OF 1 VOTED

BOB GEAStL&ILHD END RADIAL BBARWO TBUP.

EIOH GEAR H. J. COITLWO END X. A. lEARDOTEMP.

Document No. 0430S C E T Page 1 of 3 Rev. 4 By: GWO Data: 06/29/2004

Page 160: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

TOROMONT PROCESS SYSTEMS, INC

GASCO ERM PROJECT #5221

SHUTDOWN/INTERLOCK SYSTEMS CAUSE AND EFFECT DIAGRAM

PROPANE REFRIGERATION SYSTEM

APPROVED POR CONSTRUCTION

ISSUED RJR DESIGN

DATE CHK APP'D

GWO MWW OWO

OUTPUT OR

EFFECT

DESCRIPTION

PROJECT NUMBER: 22717

INPUT OR CAUSE DESCRIPTION

LL»EAJUNOTEMP-

KWH (KAB MOAJID TWUITIEAUWO194?.

HKJH OEA* ffflOAAD TVOtLTT B&AJlf*0 Tl

mOH[EARpqOAiU>-ngH3T lEAJtlNO T M .

MWH (»A» CWnOAKD Trmusr oaaiNo TOO*.

Mom^M OUHQAKD imiar ISAI wo TEMP.

IDOHCCfcff.fUCnOM END RADIAL BEAXtNO TBtT.

HMH COMP. iqjmnNEMl RADIAL REAR WO TOO.

" M H Q g . OtJCHAROB WD RADtAL MA*WO TEMP.

IDOH M W . DUCHAROE B<D RADIAL BEARlfi) TEMP.

WOHCOMF, ACTTVH TKI UST REAR INO TEKP.

HWH CCMP. ACTTVE-n» UST teAXIW) TIMP.

iOOHCOq'. WACTTVS TWUTTI EAA WO TEMP.

fUQHCtMtF. KACTTVB TTB UTT BSARMO TIM?.

CCMP. DISCHAROE ESD VALVE POimON .TWlTTrH

VOW. DWyiAROE VALVE OPEN PR om COfcff. DBCHAJIOB VALVE CLOSB Pt

"0 VALVB C K M P l

M m a n B wn V A L V E O X V E P J cm yttLXTB*} VALVE t f W PR

LP t t E T ESO VALVE a o * n

HP U S T EflD VALVE OIEN PB om c»4in-K5» VALVE aore rs

MAIN DRIVS MOTCR PUSOE READT FOB ITART

Mnon-nuunmamrtixM

LWE OIL RWDOWN TANK U^B. HMH

LUIE OS. fljm.T TMCRAHttE HOT LOW

ufiF OR. oomBi PAKS rjfoiyto 3 0W0F)ROMNt»

CCMP. DOCHAR OB BSD VAL^POSmON IWITCH

HHH! BtflM.Mra LOAD EIP VAI.VF.WMmONigirCH

U3W PREW. ttJCnCN ESD VALVG POSITTOH SWITCH

pg*EumMOEg)VALvspwmcwsvirca

AI/niCRIZATXWF

ureacnoN AMTvaynoBComtoL VALVE OPEN

S© ALIVfel AKn-XUlKS C(» TSOL VALVE Cr&4

MmfWEATKN POR LOCAL ITAJfT

DCaiTABTctJMMAM)

COMP.DHIVB MOTOR COOJWO FANS RUMW) lOOTOF J lWNtJO

LUl HO ILH JU? A DUOtAROE PBEOTBF. LOW

Document rto. 04305 C E T Page 2 of 3 Rev. 4 By: G W O Date: 06/29/2004

Page 161: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

TOROMONT PROCESS SYSTEMS, INC.

GASCO ERM PROJECT #5221

SHUTDOWN/INTERLOCK SYSTEMS CAUSE AND EFFECT DIAGRAM

PROPANE REFRIGERATION SYSTEM STATUS

APPROVED TOR CONSTTtUCnON

ISSUH) Hm DF.SIGN

DATE T

PROJECT NUMBER: 22717

PHO HO. INPUT OR CAUSE DESCMPTION

onEOLmuriDUawtoEraEASutELDw

OUTPUT OH EFFECT

DESCRIPTION

* muum} A B m&uutE LOW

!SFAXA-no« IIXTO OAJ TWMUU HOT LOW

J J l E O l - l M X Y O t t T E M m A T W l U m

ujiKon.iRwavoa-rtMPEfcA-miEK

LUIEOB. IS3avoaU\ tLU)W

LUIE OIL i£aa \oa KEAm ovatmip LUIE OIL ttsavoB HEATBI ovsnsip

UJIE OL fuwps W T mjwwnw 2 OUT OP 1 KOT IUN

NOTES: 0 = HOI PRESENT, P = PERMISSIVE, R = RESET 1. AFTER "NORMAL STOP". ESD VALVES XV7400, 7401, 7402 WILL REMAIN OPEN. FLARE VENT VALVE XV7405 REMAINS CLOSED. 2. SEPARATION GAS PERMISSIVE ONLY ACTIVE ON INITIAL PUMP STARTUP, I.E. BOTH PUMPS NOT RUNNING AND MAIN MOTOR NOT RUNNING. 3. ESD VALVES MUST BE OPENED BEFORE START-UP BY FIELD OPERATOR AFTER LOGIC IS RESET. FLARE VENT VALVE XV-7405 REMAINS CLOSED EXCEPT UPON ESD WITH DEPRESSURIZATION. 4. OUTPUT IS ENERGIZED WHEN ALL TRIP CONDITIONS ARE NORMAL AND RESET FROM HS-9455 IS RECEIVED. 5. START OUTPUT IS ENERGIZED FOR S SECONDS WHEN DCS START PULSE IS RECEIVED IF ALL TRIPS ARE CLEARED AND RESET, AND ALL PERMISSIVES SATISFIED. 6. LOCAL START PERMISSIVE IS ENERGIZED WHEN DCS AUTH FOR LOCAL START IS RECEIVED IF ALL TRIPS ARE CLEARED AND RESET AND ALL PERMISSIVES SATISFIED. 7. ONLY ONE RELAY CONTACT FOR HEATER CONTROL, OPEN = HEATER OFF, CLOSED = HEATER ON.

CONTACT CLOSES WHEN TEMPERATURE FALLS TO SOFTWARE SETTING FOR TSL5417 AND REMAINS CLOSED UNTIL TEMP. REACHES TSH5417 OR OTHER TRIP CONDITION IS PRESENT. 8. AUTO START ANYTIME LESS THAN 2 FAN MOTORS ARE RUNNING OR LOW MOTOR AIR PRESSURE OCCURS. 9. DEPRESSURIZING VALVE OPEN PB IS DISABLED WHILE COMPRESSOR IS RUNNING 10. XZSC7400 IS A ONE-SHOT TRIP ACTION WHEN VALVE CLOSED POSITION FIRST OCCURS. TRIP LOGIC MAY BE RESET BY HSR945S WHILE VALVE IS CLOSED. 11. SURGE CONTROLLER IS SIGNALED FOR NORMAL UNLOAD AND 10 SECONDS LATER COMPRESSOR IS STOPPED AND NON ESD VALVES ARE DE-ENERGIZED. 12. SURGE CONTROLLER IS SIGNALED FOR RAPID UNLOAD AS LOCAL STOP IS CONNECTED DIRECTLY TO THE MOTOR STARTER.

TRIP LOGIC MAY BE RESET BY HSR9455 WHILE MOTOR IS NOT RUNNING (XS7414 OPEN CONTACT IS A ONE-SHOT TRIP ACTION) 13. HSR9455 IS ENABLED ONLY AFTER ALL TRIP CONDITIONS ARE NORMAL. 14. REFERENCE APPENDIX "A" ATTACHED FOR START-UP FLOW CHART

Document No. 04305 CET Page 3 of 3 Rev. 4 By: GWO Dato: 06/29/2004

Page 162: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

CHAPTER 5

NORMAL OPERATION

CONTENTS

SECTION PAGE

1.0 OPERATING VARIABLES AND CONTROL PHILOSOPHY 2

1.1 Gas Chilling and Expansion 2 1.2 Recovery Tower 4 1.3 Demethanizer System 4 1.4 Recycle Compressor 6 1.5 Debutanizer 6

2.0 TROUBLESHOOTING.

2.1 E R M Refrigeration System Shutdown 8 2.2 Trip of the Existing Refrigeration System 8 2.3 Other Trips 9 2.4 Understanding Alarms 9

CHAPTER 5

Page 163: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

1.0 OPERATING VARIABLES AND CONTROL PHILOSOPHY

The ethane recovery performance of Unit 44 is dependent on the following three main variables:

» Temperature ofthe I s ' Stage Feed KO Drum (44-V-301). Ethane recovery increases as the temperature of 44-V-301 is lowered.

• Temperature at the bottom of the Demethanizer (44-V-306). In order to hold the recovered ethane in the liquid stream, the temperature at the bottom of the column is reduced.

• Temperature ofthe Debutanizer Overhead Accumulator (44-V-402). As ethane recovery increases, the temperature of 44-V-402 must be lowered to ensure that the C2+ NGL is totally condensed.

These variables are discussed in detail in this section.

1.1 Gas Chilling and Expansion

1.1.1 First Stage Chilldown

The E R M modifications do not impact the flow control philosophy used in the first stage gas chilldown section of the unit. The dried feed gas is distributed and controlled as follows:

44-FIC-1034 controls the gas flow to 44-E-301. 44-FIC-1034 is reset by 44-TIC-5054 (residue gas from E-301). This arrangement ensures that the residue gas leaves 44-E-301 at a fairly constant temperature and optimizes the recovery of refrigeration from the residue gas.

44-FIC-1035 controls the gas flow to 44-E-313. 44-FIC-1035 is reset by 44-TIC-5061 (feed gas from E-313). This arrangement allows the temperature approach of 44-E-313 to be optimized.

44-HIC-7210 controls the gas flow to 44-E-306 and 44-E-318.

The three feed paths operate in parallel. Therefore, the pressure drop across each path (including the control valve) must be the same. Since the pressure drop through the 44-E-306/44-E-318 flow path is the highest, 44-HV-7210 will normally be operated full open. 44-FV-1034 and 44-FV-1035 will close as required to maintain the required flow rate at the available AP. NOTE: Operating with 44-HV-7210 full open will minimize pressure drop through the system and will maximize C2/C3 recovery.

The key temperature control point for the first stage chilldown section is at 44-V-301. The temperature of V44-V-301 is controlled by adjusting the load ofthe two propane chillers (44-E-306 and 44-E-318). 44-E-306 provides the majority ofthe required cooling duty. 44-E-318 provides less duty, but its refrigeration is at colder level. Two control schemes are provided:

1. Set the duty of 44-E-318 and control the temperature of 44-V-301 by adjusting the duty of 44-E-306. In this option, the set point for the 44-E-318 level controller would remain

CHAPTER 5

Page 164: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. ContractNo. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

fixed, and the 44-E-318 tube bundle would remain completely submerged. The temperature of 44-V-301 would be controlled by adjusting the speed of the 44-C-201. The compressor speed impacts the operating pressure and evaporation temperature on the propane side of 44-E-306. This option is similar to the current control approach.

2. Set the duty of 44-E-306 and control the temperature of 44-V-301 by adjusting the duty of 44-E-318. In this option, the set point for the 44-C-201 speed controller would remain fixed. The temperature of 44-V-301 would be controlled by adjusting the propane level in44-E-318 (44-TIC-5056 to LIC-2111 cascade control).

Option 1 is recommended due to the flexibility of the steam turbine driver and the larger design duty of 44-E-306. A new Hand Switch (44-HS-5056) is provided to allow the operators to select the preferred control mode.

The pressure drop on the feed gas side of 44-E-306 is much higher than the design valve. It is believed that this is due to plugging from molecular sieve dust. The high pressure drop currently limits the flow through 44-E-306. To solve this problem, the existing feed gas bypass line around the First Stage Chilldown section is re-routed to between 44-E-306 and 44-E-318. The relocated bypass ensures that the new feed chiller can always be fully loaded by mixing warm feed gas from dehydration section with the outlet from 44-E-306. Manual valve 44-M-052 can be used to adjust the flow if required. The manual valve should be adjusted to maintain the temperature of 44-V-301 as low as possible.

As shown in the table below, the temperature of 44-V-301 is reduced as ethane recovery increases.

ERM Mode

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejection

44-V-301 Temperature -22 -21 -19 -17 -12

1.1.2 Second Stage Chilldown

The flow and temperature control strategies for the second stage chilldown section are not changed as a result ofthe ERM Project.

As the ethane recovery level increases, the temperature of 44-V-302 will decrease. The temperature of 44-V-302 can be controlled to a limited extent with TIC-5058 which bypasses a portion of the gas from 44-V-301 around 44-E-302. The temperature of 44-V-302 is mainly dependent on the temperature of 44-V-301.

ERM Mode

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejection

44-V-302 Temperature -42 -39 -35 -32 -32

CHAPTER 5

Page 165: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

1.1.3 Expander

The control scheme for the expander (44-EC-301) is not modified.

The E R M operating conditions will have the following effects:

Inlet Temperature: As shown in Section 1.1.2 of this Chapter, the temperature of 44-V-302 will decrease.

Inlet Volumetric Flow: The inlet flow to the expander will decrease due to the lower inlet temperature and the higher percentage of feed gas condensed in 44-V-301 and 44-V-302.

Power: The power generated by the expander will decrease due to the lower inlet flow.

1.2 Recovery Tower

The control scheme for the Recoveiy Tower (44-V-305) is not modified.

As shown in the table below, the temperature of 44-V-305 is reduced as ethane recovery increases.

ERM Mode

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejection

44-V-305 Top -64 -61 -60 -58 -57

44-V-305 Bottom -60 -57 -56 -53 -54

The Recovery Tower Reboiler (44-E-303) is not used in any ofthe C2 recovery modes.

1.3 Demethanizer System

The purpose of the Demethanizer system is to fractionate light components from the NGL. The overhead vapor from the demethanizer system is recycled back to the Recovery Tower and used as reflux to improve product recovery.

The new Cold Demethanizer (44-V-308) acts as extension of the existing Demethanizer. Since 44-V-308 is made of stainless steel and has a minimum design temperature of -100oC, lower operating temperatures are possible. The cold stream from 44-V-307 is sent to the new tower instead of 44-E-305. This moves the coldest streams into the new column and protects the carbon steel Demethanizer from exposure to low temperatures. In the E R M operation, the overhead temperature of 44-V-306 will actually increase.

The operating pressure of the Demethanizer (44-V-306) remains unchanged the E R M operation. As in the current design, the Demethanizer pressure is controlled by adjusting speed of the Recycle Gas Compressor turbine with performance controller PIC-3740.

CHAPTER 5

Page 166: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

As explained above, the overall temperature profile in the Demethanizer is reduced in ERM mode to maximize the C2 content in the bottom stream to the Debutanizer. The temperature profile is lowered by adjusting the overall reboiling duty (bottom reboiler + side reboiler).

The following table summarizes the expected temperatures at the Demethanizer control point.

ERM Mode

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejection

44-V-306 Tray 2 Temperature 28 42 48 61 75

In the E R M mode of operation, most of the heat input to the column will be generated by the Bottom Reboiler (44-E-308). The duty ofthe Side Reboiler (44-E-307) is minimized with TV-5088 B such that the thermosiphon reboiler is continuously primed. The amount of feed preheating is also reduced by bypassing 44-E-315 in E R M mode.

As the ethane recovery level is decreased, it will be necessary to increase the amount of feed preheating in order to unload the Demethanizer Bottom Reboiler. This will require the new bypass around 44-E-315 to be closed. The table below provides the recommended valve positions for the various operating modes.

ERM Mode

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejection

M-4405 Open Open Open Closed Closed

M-4406 Closed Closed Closed Open Open

NOTE: When performing this operation is necessary, M-4406 should be opened before M-4405 is closed.

The new Cold Demethanizer and Cold Demethanizer Bottoms Pumps are fully integrated with the existing Demethanizer. The overhead vapor from V-306 is sent to V-308. Liquid from V-308 is sent to V-306 (via P-302A/B).

In E R M mode, the liquid from V-304 is sent to V-308 after being heated in E-314. The heavy components in this stream act as a sponge for light components and improve ethane recovery. As the ethane recovery level is decreased, this stream is not required and should be redirected to 44-V-306 using manual valve M-4401 and M-4402.

ERM Mode

30% C2 Recovery

20% C2 Recovery

10% C2 Recovery

C2 Rejection

M-4401 Closed Closed Open Open Open

M-4402 Open Open Closed Closed Closed

CHAPTER 5

Page 167: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

In case of a high flow alarm (FAH-1070) on the discharge ofthe new Cold Demethanizer Bottoms Pumps, the stream from 44-E-314 should be re-directed to V-306 using manual valves M-4401 and M-4402. If this operation is necessary, M-4401 should be opened before M-4402 is closed.

1.4 Recycle Compressor '

The controls for the Recycle Gas Compressor are not modified for the E R M Project.

As ethane recovery increases, the molecular weight of the recycle gas will decrease. This will impact the amount of discharge pressure generated by the Recycle Gas Compressor. The discharge pressure of the compressor should be maximized. This will help ensure that the recycle gas is condensed in 44-E-304 and will increase the amount of JT cooling across PV-3058. Both of these effects will improve ethane recovery.

A new bypass is added around 44-E-303. This bypass is located near E-301/2/4 and reduces the pressure drop in the recycle loop. This helps compensate for the lower discharge pressure of the compressor. The new bypass should be used for all modes of operation except for C2 rejection mode.

When transitioning to higher ethane recovery modes, it is important to adjust the Demethanizer operating temperatures before adjusting the temperature of 44-V-301. This will prevent the recycle compressor from being overloaded. In case of gas build up in the recycle loop, the existing pressure control valve PV-3201 located at compressor discharge will prevent a trip the compressor by releasing the excess gas to residue gas grid. The set point of PIC-3201 shall be adjusted slightly above the normal compressor discharge pressure (which depends on the operating conditions).

1.5 Debutanizer

In E R M mode, the operating conditions of the Debutanizer have to be adjusted to account for the increased ethane content of the overhead stream.

The raw NGL from the Demethanizer is heated in the Debutanizer Feed Preheater (44-E-405) before being fed to tray 23 of the Debutanizer. The temperature profile of the tower will not change significantly as the ethane content ofthe NGL increases. The main effects on the system will be:

1. A lower temperature will be required to condense the overhead stream.

2. The reflux rate can be reduced.

The new Debutanizer Trim Condenser (44-E-406) provides the cooling necessary to condense the overhead stream. High level refrigerant from the new refrigeration system is used on the shell side of the new exchanger. Since 44-E-406 is located at grade below the Debutanizer Overhead Accumulator (44-V-402), the pressure at the exchanger will be higher than the pressure in 44-V-402 due to the static head of the liquid. Therefore, the NGL leaving 44-E-406 must be subcooled to prevent vaporization in the drum. 44-E-406 has been designed to provide the necessary subcooling.

CHAPTER 5

Page 168: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

As discussed in Section 3.1 of Chapter 2 the Debutanizer pressure control scheme is modified for the E R M Project. Tower pressure will be controlled using the hot vapor bypass. The accumulator pressure will be an outfall from the Debutanizer pressure (44-V-402 Pressure = V-401 overhead pressure - 44-E-402 DP - 44-E-406 DP - static head).

The temperature ofthe NGL leaving 44-E-406 can be controlled by adjusting the level of propane on the shell side ofthe exchanger (TIC-5127 to LIC-2116 cascade). In normal operation, it is recommended to use straight level control (no temperature cascade). In the event that pressure in the system continues to fall even with the hot vapor bypass is fully open, the temperature controller can be used to reduce the amount of subcooling achieved in 44-E-406 and the pressure will stabilize.

CHAPTER 5

Page 169: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Switching V-307 Bottoms Stream

from E-305 to V-308 Rev. 0

GASCO ProjectNo.: 13522102

Switching V-307 Bottoms Stream From E-305 to V-308

Rev.O May 19, 2005

The following procedure covers the diversion of V-307 bottoms stream from E-305 to V-308 and the concurrent alignment of V-308 bottoms stream to E-305 (Opening of valve M-4404 and closing of valve M-4403).

The temperature in the top section of the Demethanizer, V-306, will increase as soon as cold liquid from V-307 is replaced with warmer liquid from V-308. V-306 top temperature is expected to increase by approximately 150C in the new steady state.

The key to a successful switch is to minimize the time that flow to E-305 is lost or reduced during the switch to minimize the potential for upsets due to the loss of cooling at the top of V-306. When valves M-4403, M-4404, and LV-2126 are open, the flow from LV-2126 will preferentially return to V-308 instead of flowing to E-305. The period of time when all three valves are open should be as short as possible to minimize the loss of flow to E-305.

In this procedure, we want to control the flow rate to E-305 by minimizing the loss of flow to E-305 and avoiding a subsequent high rate of flow from V-308. The flow rate can be best controlled by minimizing the time it takes to make the switch, minimizing the recycle back to V-308. This can be done by opening valve M-4404 and closing valve M-4403 quickly as soon as LV-2126 opens up. The target flow rate through 44LV-2126 is approximately 140 - 160 m3/hr. Try to maintain a steady flow rate from LV-2126 and let the level in V-308 fluctuate during the switch. The target flow rate is 150-160 m3/hr.

Preparation prior to the switch

1. LC-2126 at the discharge of P-302 should be on manual and should be closed. 2. Start P-302 on full recycle. 3. Reduce the level in V-307 from the normal 30% to 25% to have some room available for

a possible level increase during the switch. 4. Increase the level in V-303 and V-304 to be able to increase flow to V-306 if additional

flow is required to maintain V-306 level. 5. Steam flow to E-308 (Demethanizer reboiler) should be put on manual. (Note: There is a

possibility that some off-spec product may be produced during transition. We believe this is unlikely because the reflux will be warmer than normal during transition). The Reboiler retum temperature and the Reboiler duty should remain constant during the transition.

6. The temperature controller, TIC-5088, for side reboiler, E-307, should be kept in manual during the switch. The Reboiler retum temperature should remain constant.

7. The recycle gas compressor should be on speed control with no reset from PIC-3051 A. During the switchover, the board operator must monitor the Demethanizer pressure. If the pressure rises as indicated by PIC-3015A above 22 barg, the operator must increase the compressor speed to bring the pressure back down to normal.

Page 170: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Switching V-307 Bottoms Stream

from E-305 to V-308 Rev. 0

GASCO ProjectNo.: 13522102

8. Due to the transitive nature of the switchover some alarms may occur. Therefore, the alarm set points associated with this system may need to be reviewed by the Operators to avoid unnecessary nuisance alarms during the transition.

When making the switch, it is critical to establish a steady flow from the V-308 to E-305 as quickly as possible to maintain a steady flow to E-305. After the system is stable, the levels in V-307 and/or V-308 can be slowly corrected to the normal values after the switch is completed.

Performing the Switch

1. Open the block valve between V-307 and V-308 (M-4404) approximately 15-20% to raise the level in V-308 to 35%.

2. When the level in V-308 reaches 35%, DCS operator will open LV-2126 to achieve a minimum flow rate of 100 m3/hr.

3. As LV-2126 opens, the Field operator will quickly open the block valve between V-307 and V-308 (M-4404).

4. While one field operator opens M-4404 valve, another field operator shall immediately close the block valve between V-307 and V-306 (M-4403).

5. The DCS operator manually ramps up LV-2126 to a flow rate of 150-160 m3/hr. his flow rate should keep the level in V-308 under control by establishing a steady flow of liquid to E-305.

6. Level controller LC-2126 must be put on automatic once levels are stabilized. 7. Monitor V-306 reboiler E-307 and E-308 retum temperatures and V-306 tower pressure.

Adjust as necessary, but avoid sudden large changes in the controllers. 8. Slowly re-establish normal levels in V-303, V-304, V-307, and V-308.

Page 171: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Performance Test Procedure

Rev. 0

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-003

STARTUP of ERM Refrigeration System and Integration In The C2 Rejection Mode of Operation

Rev. 0-May 19, 2005

ERM Refrigeration Compressor Startup and Switch to C2 Rejection Mode

Refer to Compressor Startup Procedures, Section 10.2, Chapter 3, Operating,

Maintenance and Safety Manual - Unit 44.

Once the compressor is stable on recycle, a portion ofthe refrigeration load will be

switched over from C-201 to C-202 by placing chiller 44-E-318 in service. The load to

C-202 second stage will come from chillers 44-E-407 and 44-E-406.

1. Introduce propane refrigerant into 44-E-407, raising the level using LIC-2121.

Set the level in 44-E-407 to target for a 44-E-407 tubeside outlet temperature of

20 to 25 0 C.

2. Ensure that the Debutanizer is operating at 15 barg. The temperature of 44-V-

402, should be about 60 oC. Begin raising the level of propane refrigerant in the

Debutanizer Trim Condenser (44-E-406). 44-UC-2116 should be in MANUAL.

As the level of propane is increased, the temperature of 44-V-402 will fall. The

pressure of the Debutanizer will also begin to fall. Close the louvers of the

Debutanizer Condenser (44-E-402) in order to maintain the temperature of

44-V-402 at 60 oC. Once the level of propane in 44-E-406 reaches normal, place

the controller in AUTO. The target outlet temperature for 44-E-402 is 66 0C.

C-202 compressor second stage should be close to being loaded at the

completion of these two steps.

3. Introduce propane refrigerant into 44-E-318 to reduce the temperature in V-301

to -12 0C. Increase the level in 44-E-318 using LIC-2111 to shift the refrigeration

load from C-201 to C-202, keeping LV-2111 in manual. Once the level in E-318

reaches normal, place the controller in Auto. Position HS-5056 such that the

temperature of V-301 is maintained by adjusting the load ofthe existing

refrigeration system via TIC-5056 and select a set point of -12 0C.

4. The anti-surge valves for the new Propane Compressor, C-202, should be closed

(44-FV-1402 and 44-FV-1403). If not, the load to the second stage can be

increased by increasing the duty on 44-E-406 and decreasing the duty of the

upstream air cooler, 44-E-402. The load to the first stage can be increased by

Page 172: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Performance Test Procedure

Rev. 0

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-003

increasing the load on 44-E-318 while decreasing the duty of the upstream

exchanger (44-E-306) or by slightly opening the warm feed gas bypass valve M-

052.

5. The following controllers should be adjusted to new set points:

TIC-5056 (44-V-301) at -12 0C

TIC-5061 (outlet of 44-E-313) at -21 0C

TIC-5058 (bypass around 44-E-302) at -32 0C

TIC-5067 (tube side outlet of 44-E-314) at -32 0C

TIC-5080 (Recovery Tower bottoms) at -42 0C

TIC-5207 (V-307 flash Vapor to E-302) at -43 0C

TIC-5088 (V-306 Side Reboiler) at 45 0C

TIC-5082 (V-306 Steam Reboiler) at 75 0C

TIC-5081 (V-306 Overhead) at 3 0 C

TIC-5054 (Residue Gas from 44-E-301) at 22 0C

TIC-5212 (Feed to V-401 Debutanizer) at 74 0C

TIC-5127 (44-E-406 outlet) at 59 0C

PIC-3064 (V-401 Debutanizer Pressure) at 15.0 barg

6. Monitor the load on the Recycle Gas Compressor (44-C-301) and

Demethanizer Reboiler (44-E-308). If either equipment item approaches

its design duty, increase the set point of TIC-5080 (44-V-305 bottoms).

Ensure that the isolation valve on the liquid line to 44-E-303 is open.

These actions wili put Recovery Tower Reboiler into service and will

reduce the amount of light ends sent to the Demethanizer system.

Page 173: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, L t d . Contract No. AOWT Ethane Recovery Maximization (ERM) Project

GASCO ProjectNo.: 13522102

STARTUP of ERM Refrigeration System and Integration Into Ca Enhancement Mode of Operation

Rev. 0-May 18, 2005

ERM C-202 Refrigeration Compressor Startup While on pre-ERM C2 Enhancement

Mode.

This procedure covers the startup of the new ERM refrigeration system and its

integration into the existing (or pre-ERM) C2 Enhancement mode of operation. Unit

44 will remain in the pre-ERM C2 Enhancement mode of operation, but the

refrigeration load will now be divided between C-201 and C-202 compressors. To

transfer some of the refrigeration duty from C-201 to C-202, it will be necessary to

adjust the duty on 44-E-402 and 44-E-306. These adjustments will result in new

targets for the Debutanizer overhead air cooler, E-402, outlet temperature (TI-5124),

the NGL product rundown temperature (TI-5121), and the E-306 outlet temperature

(TI-5063). All other temperatures and pressures should remain the same.

I. Startup and Integration of ERM Refrigeration System Into Unit 44 Operations

Refer to Compressor Startup Procedures, Section 10.2, Chapter 3, Operating,

Maintenance and Safety Manual - Unit 44.

Once the compressor is stable on recycle, a portion of the refrigeration load will be

switched over from C-201 to C-202 by placing a cooling load on 44-E-318, 44-E-407

and 44-E-406.

1. Introduce propane refrigerant into 44-E-407, raising the level using LIC-2121.

Set the level in 44-E-407 to target for a 44-E-407 tubeside outlet temperature of

SOX.

2. Maintain Debutanizer pressure at 18 barg (PIC-3064). The temperature of 44-V-

402 should be about 50oC. Slowly begin raising the level of propane refrigerant

in the Debutanizer Trim Condenser (44-E-406). 44-LIC-2116 should be in

MANUAL. As the level of propane is increased, the temperature of 44-V-402 will

fall. The pressure of the Debutanizer will also begin to fall. Close the louvers

of the Debutanizer Condenser (44-E-402) in order to maintain the

Page 174: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project GASCO ProjectNo.: 13522102

temperature of 44-V-402 at 50oC (TIC-5127). Once the level of propane in 44-

E-406 reaches normal, place 44-LC-2116 controller in AUTO. The target outlet

temperature for 44-E-402 is 60oC.

3. Introduce propane refrigerant into 44-E-318 while maintaining the temperature in

V-301 at -14 0C (TIC-5056 set at -14 0C). HS-5056 should be positioned such that

the temperature of V-301 is maintained by adjusting the load of the existing

refrigeration system (C-201) via TIC-5056. Slowly increase the level in 44-E-318

using LIC-2111 to shift the refrigeration load from C-201 to C-202.

4. The anti-surge valves for the new Propane Compressor, C-202, should be closed

(44-FV-1402 and 44-FV-1403). If not, the load to the second stage can be

increased by increasing the duty on 44-E-406 and decreasing the duty of the

upstream air cooler, 44-E-402. The load to the first stage can be increased by

increasing the load on 44-E-318 while decreasing the duty of the upstream

exchanger (44-E-306) or by slightly opening the warm feed gas bypass valve M-

052.

5. The actual set points in effect at the time of the start of C-202 compressor should

be retained. The set points in effect on April 8, 2005, in C2 Enhancement mode

are listed here for reference only.

TIC-5056 (44-V-301) at -14 0C

TIC-5061 (outlet of 44-E-313) at -20 oC

TIC-5058 (44-V-302) at -34 0C

TIC-5067 (tube side outlet of 44-E-314) at -36 0C

TIC-5080 (Recovery Tower bottoms) at -50 oC

TIC-5207 (V-307 flash Vapor to E-302) at -49 0C

TIC-5088 (V-306 Side Reboiler) at 33 0C

TIC-5082 (V-306 Steam Reboiler) at 53 0C

TIC-5081 (V-306 Overhead) at -30 oC

TIC-5054 (Residue Gas from 44-E-301) at 18 0C

TIC-5212 (Feed to V-401 Debutanizer) at 63 0C

TIC-5127 (44-E-406 outlet) at 50 oC

PIC-3064 (V-401 Debutanizer Pressure) at 18.0 barg

Page 175: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

A 2.0 TROUBLESHOOTING

2.1 ERM Refrigeration System Shutdown

In the event of a shutdown of the new refrigeration package for any of the causes described in Section 2.2.2 of Chapter 4, the chilling of the feed gas in 44-E-318 will stop. Due to this, the temperatures of 44-V-301 and 44-V-302 will begin to warm-up. As the temperatures increase, ethane recovery decreases. After the trip of the new refrigeration system, the set points for TIC-5056 and TIC-5058 should be increased to their current settings (approximately -9 0 C and -31 0 C respectively). Once the front-end of the unit has warmed-up, the set points of TIC-5082 and TIC-5088 should also be increased to their current settings in order to adjust the Demethanizer temperature profile (about 50oC and 70 oC respectively).

After these changes, the unit will transition to its new steady state operating point. The unit can continue to be operated at these new conditions at the full feed gas rate. When the ethane recovery level falls below 30%, it may be necessary to re-route the stream from 44-E-314 to the existing Demethanizer (44-V-306) by opening the manual valve. The valve in the line to the new Cold Demethanizer (44-V-308) should then be closed. Monitor the flow from 44-P-302A/B to determine when to divert the flow.

The trip of the new refrigeration package will also impact the Debutanizer. Cooling to the Debutanizer Trim Condenser (44-E-406) and NGL Subcooler (44-E-407) will stop. Since the vessels in the unit (44-V-301, 44-V-302, 44-V-305, 44-V-306, 44-V-307, and 44-V-308) will contain an inventory of light components, the ethane content of the NGL to the Debutanizer will not immediately decrease. Therefore, there may be momentary venting of light components from the Debutanizer Overhead Accumulator (44-V-402) via PV-3068 while the unit transitions to the new operating point. Venting from 44-V-402 is a better option than attempting to change the temperature profile ofthe Demethanizer too quickly. Doing this may overload the recycle gas compressor and result in a larger unit upset.

As the Unit transitions to the new steady state condition, it may be necessary to divert the E-314 shell side outlet stream from V-308 to V-306. The flow from P-302 and the level in V-308 should be monitored. Ifthe high flow alarm or high level alarm in V-308 is reached, manual valve M-4401 should be opened and M-4402 should be closed.

2.2 Trip of the Existing Refrigeration System

In the event of a shutdown ofthe existing refrigeration package, the chilling of the feed gas in 44-E-306 will stop. Due to this, the inlet temperature to 44-E-318 will begin to warm-up. As the temperature increases, load on the ERM refrigeration package will increase. If the load approaches the limits of the compressor's electric driver, the C-202 performance controller will start to close the suction valves (PV-3402A/B). This will increase the pressure in E-318 which will increase the propane evaporation temperature and reduce heat transfer. This will prevent the new compressor from tripping.

After the trip of the existing refrigeration system, the set points for TIC-5056 and TIC-5058 should be slowly increased to a value that results in the suction valves (PIC-3402A/B) completely open.

CHAPTER 5

Page 176: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

The trip of the existing refrigeration system also results in the loss of cooling in 44-E-310. This will impact the performance ofthe mole sieve dehydrators. Refer to the existing Operating, Maintenance and Safety Manual for a description of this issue.

2.3 Other Trips

Tag Number Description Actions

TALL-5126 E-314 Tube Side Outlet ESD logic can be reset and LV-2044 can be opened after:

Feed gas flow to E-314 is firmly established or

V-303 temperature is above -30 oC. TIC-5058 is used to accomplish this.

TALL-5131 E-313 Shell Side Inlet ESD logic can be reset and XV-9080 can be opened after:

V-301 temperature increases to-15 0C. TIC-5056 is used to accomplish this.

PALL-3084 P-302 Seal Pot Check integrity of B Pump seal Start B Pump • If the level in V-308 rises to the High Alarm

setpoint before the standby pump can be started, the liquid flow to V-308 should be diverted to V-306 by changing the positions of manual valves M-4401, M-4402, M-4403, and M-4404.

LALL-2127 V-308 Level Check line-up of manual valves M-4401/2/3/4 Check position of LV-2126 Check position of LV-2044 Check position of FV-1204

2.4 Understanding Alarms

Tag Number Description Actions

TAL-5068 E-314 Tube Side Outlet Check position of TV-5067 Check position of LV-2044

TAH-5121 E-407 Tube Side Outlet Check propane level in E-407 via LI-2121 Check position of LV-2121 Check inlet temperature to E-407 via TI-5127 Check pressure of E-407 shell side via PI-3413

TAH-5124 V-401 Overhead from E-402

Check status of E-402 motors Check position of E-402 louvers

CHAPTER 5

Page 177: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Tag Number Description Actions

Check propane level in E-406 via LI-2116 Check position of LV-2116 Check inlet temperature to E-406 via TI-5124 Check pressure of E-406 shell side via PI-3413

TAH-5127 E-406 Tube Side Outlet

TAL-5131 E-313 Shell Side Inlet Increase setpoint of TIC-5056 (V-301) TAH-5401 C-202 Discharge Check discharge pressure of C-202 via PI-3401

Check pressure of V-205 via PI-3410 Check status of E-203 motors Check position of E-203 louvers Check C-202 suction temperatures via TI-5404/5 Check position of anti-surge valves (FV-1402/3) Check position of quench valves (TV-5404/5)

TAH-5404 C-202 Side Load Inlet Check side load pressure via PI-3402 Check position of anti-surge valves (FV-1402/3) Check position of quench valve TV-5404

TAH-5405 C-202 Low Stage Inlet Check suction pressure via PI-3403 Check position of anti-surge valves (FV-1402/3) Check position of quench valve TV-5405

TAH-5410 E-203 Outlet Check pressure of V-205 via PI-3410 Check status of E-203 motors Check position of E-203 louvers Check status of E1 motors Check position of TV-5415 Check temperature of TKI via TI-5417

TAH-5416 Lube Oil Supply

TAH-5417 Lube Oil Reservoir Check status of E l motors TAH-54XX C-202 Bearings Check LO temperature via local gauge

Check supply temperature of LO via TI-5416 Check LO flow via local sight glasses Check LO pressure via PI-3417 and PI-3421 Check position of PC V-3418/3419

TAH-5423 C-202 Motor Stator Check status of CM-202 blowers Check C-202 current Check C-202 performance controller PIC-3402

PAH-3081 V-308 Top Confirm high pressure via PI-3051 Check flow via FI-1730 Check position of PV-8031

PAL-3081 V-308 Top Confirm low pressure via PI-3051 Check flow via FI-1730 Check position of PV-8031

PDAH-3082 V-308 DP Confirm DP using PI-3081 and PI-3051 Check for signs of tower flooding

PAL-3083 P-302 Discharge Confirm low pressure using local gauge PG-4111A/B Check pump running status Check suction pressure via PI-3081 Check position of FV-1070 Check position of LV-2126

CHAPTER 5 10

Page 178: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Tag Number Description Actions

PAL-3084A/B

P-302 Seal Pot Confirm low pressure with local gauge PG-4117AJB Check integrity of seal Add barrier fluid to seal pot

PAH-3401 C-202 Discharge Confirm high pressure using local gauge PG-4402 Check pressure of V-205 via PI-3410 Check status of E-203 motors Check position of E-203 louvers Check position of hot vapor bypass PV-341 OA Check C-202 suction pressures via PI-3402/3 Consider venting non-consensables using HIC-9092 • If pressure is high and all else is normal,

reduce the load on the system. PAL-3401 C-202 Discharge Confirm high pressure using local gauge PG-4402

Check pressure of V-205 via PI-3410 Check status of E-203 motors Check position of E-203 louvers Check position of hot vapor bypass PV-341 OA Check position of vent to flare PV-341 OB & HIC-9092 Check C-202 suction pressures via PI-3402/3 • If pressure is low and all else is normal,

slowly close E-203 louvers to increase the propane condensing temperature/pressure.

PAH-3402 C-202 Side Load Inlet Confirm high pressure using local gauge PG-4406 Check flow via FI-1402 Check position of anti-surge valve FV-1402 Check discharge pressure PI-3401.

PAL-3402 C-202 Side Load Inlet Confirm low pressure using local gauge PG-4406 Check flow via FI-1402 Check position of PV-3402A Check position of anti-surge valve FV-1402 Check discharge pressure PI-3401.

PAH-3403 C-202 Low Stage Inlet Confinn high pressure using local gauge PG-4405 Check flow via FI-1403 Check position of anti-surge valve FV-1403 Check side load pressure via PI-3402 Check discharge pressure PI-3401.

PAL-3403 C-202 Low Stage Inlet Confirm low pressure using local gauge PG-4405 Check flow via FI-1403 Check position of PV-3402B Check position of anti-surge valve FV-1403 Check side load pressure via PI-3402 Check discharge pressure PI-3401

CHAPTER 5 11

Page 179: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Tag Number Description Actions

PAH-3410 V-205 Confirm high pressure using local gauge PG-4403 Check discharge pressure of C-202 via PI-3400 Check status of E-203 motors Check position of E-203 louvers Check position of hot vapor bypass PV-341 OA Consider venting non-consensables using HIC-9092

PAL-3410 V-205 Confirm high pressure using local gauge PG-4403 Check discharge pressure of C-202 via PI-3400 Check status of E-203 motors Check position of E-203 louvers Check position of hot vapor bypass PV-3410A Check position of vent to flare PV-341 OB & HIC-9092 • If pressure is low and all else is normal,

slowly close E-203 louvers to increase the propane condensing temperature/pressure.

PAH-3413 V-206 Confirm high pressure using local gauge PG-4416 Check flow via FI-1402 Check position of PV-3402A Check position of anti-surge valve FV-1402 Check discharge pressure via PI-3401

PAH-3414 V-207 Confirm high pressure using local gauge PG-4410 Check flow via FI-1403 Check position of PV-3402B Check position of anti-surge valve FV-1403 Check side load pressure via PI-3402

PAL-3415 LO Pump Discharge Confirm low pressure using local gauge PG-4115A/B Check pump running status Check position of PCV-3419 Check position of PCV-3418

PDAH-3416 LO Filter DP Confirm high DP with local gauge PDG-4417 Change to spare filter

PAL-3417 LO Supply at LO Skid Confirm low pressure using local gauge PG-41 U Check LO pump running status Check position of PCV-3419 Check position of PCV-3418

PAL-3421 LO Supply at Compressor Confirm low pressure using local gauge PG-41 IS Check LO pump running status Check position of PCV-3419 Check position of PCV-3418

PDAH-3430 Seal Gas Filter DP Confirm high DP with local gauge PDIT-3430 Change to spare filter

PDAH-3431 Seal Gas Filter DP Confirm high DP with local gauge PDIT-3431 Change to spare filter ^iiau&c iu spaic unci

Confirm high DP using local gauge PDIT-3432 Check integrity of balance piston

PDAH-3432 Balance Chamber DP

CHAPTER 5 12

Page 180: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Tag Number Description Actions

PAL-3433 Buffer Gas Check nitrogen header pressure Check position of valve PCV-3437 Check local gauges (FI-1438/9) for flow

FAH-1070 P-302 flow Confirm high flow using local indicator FI-1070 Check level in V-308 via LI-2126 Check position of valve FV-1070 Check position of valve LV-2126 • If flow is high and all else is normal, re-direct

flow from E-314 to V-306 by opening M -4401 and closing M-4402.

FAL-1070 P-302 flow Confirm low flow using local indicator FI-1070 Check level in V-308 via LI-2126 Check position of valve FV-1070 Check position of valve LV-2126

FAH-1400 C-202 Discharge Check position of FV-1402/3 Check flow of propane to E-318/406/407 Check position of PV-3402A/B Check performance of chillers

FAL-1400 C-202 Discharge Check position of FV-1402/3 Check flow of propane to E-318/406/407 Check position of PV-3402A/B Check performance of chillers Check position of FV-1402 Check position of PV-3402A Check propane flow to E-406/7 via FI-1411 Check position of LV-2116/2121 Check performance of E-406/7

FAH-1402 C-202 Side Load

FAL-1402 C-202 Side Load Check position of FV-1402 Check propane flow to E-406/7 via FI-1411 Check position of LV-2116/2121 Check performance of E-406/7 Check position of FV-1403 Check position of PV-3402B Check propane flow to E-318 via FI-1412 Check position of LV-2111 Check perfonnance of E-318

FAH-1403 C-202 Low Stage

Check position FV-1403 Check propane flow to E-318 via FI-1412 Check position of LV-2111 Check performance of E-318

FAL-1403 C-202 Low Stage

Confirm high flow using local gauges Check position of FV-1430

FAH-1430 Primary Seal Gas

FAL-1430 Primary Seal Gas Confirm low flow using local gauges Check position of FV-1430 Check DP across inlet filter

CHAPTER 5 13

Page 181: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Tag Number Description Actions

Confirm low flow using local gauges Check position of FV-1431 Check DP across inlet filter Check nitrogen header pressure C.hpck f l o w n f spfll eras mine* FT-

FAL-1431 Secondary Seal Gas

FAH-1432D Primary Seal Flow Check flow of seal gas using FI-1430 Check integrity of primary seal.

FAL-1432D Primary Seal Flow Check flow of seal gas using FI-1430 Check integrity of secondary seal (low primary seal flow may be a sign of degradation of the secondary seal)

LAH-2111 E-318 Level Confirm high level using local gauge LG-2110 Check position of LV-2111 Check position of XV-7401 Check position of HV-7210 Confirm low level using local gauge LG-2110 Check position of LV-2111

LAL-2111 E-318 Level

LAH-2116 E-406 Level Confirm high level using local gauge LG-2115 Check position of LV-2116

LAL-2116 E-406 Level Confirm low level using local gauge LG-2115 Check position of LV-2116

LAH-2121 E-407 Level Confirm high level using local gauge LG-2120 Check position of LV-2121

LAL-2121 E-407 Level Confirm low level using local gauge LG-2120 Check position of LV-2121

LAH-2126 V-308 Level Confirm high level using local gauge LG-2125 Check position of LV-2126 Check running status of P-302 Check position of FV-1070 Check position of XV-9081 • If level is high and all else is normal, re-direct

flow from E-314 to V-306 by opening M -4401 and closing M-4402.

Confirm low level using local gauge LG-2125 Check position of LV-2126 Check positions of M-4401/2/3/4 Check running status of P-302

LAL-2126 V-308 Level

LAH-2403 V-205 Level Confirm high level using local gauge LG-2413 Check position of propane supply valves (LV-2111, 2116, 2121) Check level in chillers (LI-2111, 2116, 2121)

LAL-2403 V-205 Level Confirm low level using local gauge LG-2413 Check position of propane supply valves (LV-2111, 2116, 2121) Check level in chillers (LI-2111,2116,2121) Check position of hot vapor bypass (PV-341 OA)

CHAPTER 5 14

Page 182: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

Tag Number Description Actions

LAH-2404 V-206 Level Confirm high level using local gauge LG-2414 Check position of LV-2404 Check position of TV-5404 Check level in E-406/7 via LI-2116/2121

LAL-2404 V-206 Level Confirm low level using local gauge LG-2414 Check position of LV-2404

LAH-2405 V-207 Level Confirm high level using local gauge LG-2415 Check position of LV-2405 Check position of TV-5405 Check level in E-318 via LI-2111

LAL-2405 V-207 Level Confirm low level using local gauge LG-2415 Check position of LV-2405

LAL-2420 LO Rundown Tank Check position of fill valve. LAL-2431 LO Reservoir Confirm low level using local gauge LG-2430

Check LO flow using local sight glasses Check the all drains are closed.

CHAPTER 5 15

Page 183: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.': 13522102 Doc. No.: PP-AOWT-44-00-001

3.0 TRANSITION TO REDUCED C2 RECOVERY MODES

This procedure assumes that Unit 44 is running in ERM C2 Recovery Mode (40% C2 recovery) at steady state conditions.

General Overview When reducing the ethane recovery level, the temperature profde around the cold box (44-V-301 and 44-V-302) should be adjusted using TIC-5056 and TIC-5058 prior to adjusting the temperature profile of the Demethanizer. This will prevent the recycle compressor loop from being overloaded. The Debutanizer operating conditions are changed last to avoid venting of light components from the accumulator.

Controller set points for ethane recovery values of 30%, 20%, and 10% are provided in Table 2.1 and 2.2a in Chapter 4. Set points for ethane rejection are also provided in the tables. Changes to the ethane recovery level should be done gradually allowing for unit stabilization at intermediate points.

Stepwise Instructions • Gradually increase the temperature in 44-V-301 via TIC-5056 to the value corresponding

to the target ethane recovery level.

• The temperature of 44-V-302 will increase. Adjust the set point of TIC-5058 to the proper value.

• Increase the set point of TIC-5207 to the proper value.

• Adjust the Demethanizer temperature profile using TIC-5082 (bottom reboiler) and TIC-5088 (side reboiler).

o As ethane recovery decreases, the steps are required:

• The flow of reflux to the Debutanizer will need to be increased to maintain the C5+ specification.

• The required duty of the Debutanizer Trim Condenser (44-E-406) will decrease. The duty can be adjusted by changing the set point of TIC-5121 or decreasing the propane level in the exchanger using LIC-2116.

• At ethane recovery levels around 20%, the stream from 44-E-314 should be re­directed to 44V-306 by opening the manual valve. The valve in the line from 44-E-314 to 44-V-308 should be closed. The switch should occur when the flow from 44-P-302 approaches 265 m3/h.

• At ethane recovery levels around 10%, the isolation valve for the recycle gas to 44-E-315 should be open. The recycle gas bypass around 44-E-315 should be closed. The switch should occur when the Demethanizer Reboiler approaches its design duty.

• In ethane rejection mode, the Recovery Tower Reboiler is required (44-E-303). The block valve in the liquid line to the exchanger should be opened. The new recycle gas bypass for44-E-303 that is located near44-E-301 and 44-E-302 should be closed.

• At low ethane recovery levels, the operating pressure of the Debutanizer can be reduced.

CHAPTER 5 16

Page 184: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

CHAPTER 6

NORMAL SHUTDOWN

CONTENTS

SECTION PAGE

1.0 GENERAL 2

2.0 TRANSITION TO C3 MODE 2

3.0 STOP THE ERM REFRIGERATION SYSTEM 2

CHAPTER 6

Page 185: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

1.0 GENERAL

The majority of the nonnal shutdown procedure contained in Chapter 6 ofthe existing Operating, Maintenance and Safety Manual is applicable to the modified unit. Any differences are highlighted in this section.

In all shutdowns, the new Cold Demethanizer would be shutdown with the existing Demethanizer. Prior to the shutdown, the liquid inventory in the Cold Demethanizer would be reduced the operational minimum (low level alarm).

2.0 TRANSITION TO C3 MODE

Before shutdown, Unit 44 should be transitioned to C3 mode using the procedure defined in Section 2.2 of Chapter 5 in this manual.

Once the unit has stabilized in C3 Mode, the new E R M exchangers should be taken out of service by switching the level controllers into manual and closing the level control valves.

ERM Exchanger

44-E-318

44-E-406

44-E-407

Controller

44-LIC-2111

44-LIC-2116

44-LIC-2121

Once the level control valves are closed, all of the propane in the exchangers will vaporize and the will Propane Compressor (44-C-202) will be operating in full recycle.

3.0 STOP THE ERM REFRIGERATION SYSTEM

Once the process exchangers have been decoupled from the refrigeration system, the inventory of liquid propane in exchangers 44-E-204 and 44-E-205 should be reduced to a minimum. The level controllers should be switched into manual and the level valves closed.

A l l ofthe propane from the exchangers will end up in 44-V-205. Monitor the level in 44-V-205 to ensure that the drum is not over filled.

At this stage, the compressor is ready to be stopped. General procedures and actions associated with shutting down the compressor are shown below. Refer to the detailed instructions from the vendor for more information.

• Stop the compressor using 44-HS-9451

o LV-2404, LV-2405, LV-2111, LV-2116, LV-2121 will move to their safe positions (closed)

• The anti-surge valves (FV-1402 and FV-1403) will open fully

• The quench valves close (TV-5404 and TV-5405)

CHAPTER 6

Page 186: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

The normal stop button will not close the ESD valves which isolate the compressor. If isolation is required, the ESD valves can be closed with the local push buttons. The ESD valves are:

44-XV-7400: 44-C-202 discharge 44-XV-7401: Side load vapor 44-XV-7402: Suction vapor

Depending on the nature and duration of the shutdown, it may be necessary to also shutdown the auxiliary systems.

The refrigeration system can be depressurized to the Cold Flare system using the relief valve bypass lines and the depressurization valve in the compressor discharge (XV-7405). Purging the hydrocarbons out is done using the procedure described in the existing Operating, Maintenance and Safety Manual.

Before any maintenance can be done on the compressor, it is critical that the compressor is properly isolated (valves and blinds), drained, depressurized and inerted.

CHAPTER 6

Page 187: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

CHAPTER 7

EMERGENCY SHUTDOWN

CONTENTS

SECTION PAGE

1.0 GENERAL 2

2.0 UTILITIES FAILURE 3

2.1 Loss of Electrical Power 3 2.2 Loss of Steam 3 2.3 Loss of Instrument Air 3 2.4 Loss of Nitrogen 3 2.5 Loss of Cooling Water 3 2.6 Loss of Fuel Gas 3

3.0 UNIT SHUTDOWN INTERLOCKS 4

3.1 ESD System - Level 1 4 3.2 ESD System - Level 2 4

CHAPTER 7

Page 188: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. ContractNo. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

1.0 GENERAL

The emergency shutdown philosophy used in the design ofthe E R M system is consistent with the existing unit. The new ERM shutdowns are divided into two categories:

Level 1: Local shutdown involving an individual item affected by an upset condition, but not affecting other items.

Level 2: Provides protection against certain critical process upsets conditions. This is a system shutdown including a number of items or complete systems.

CHAPTER 7

Page 189: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. ContractNo. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

2.0 UTILITIES FAILURE

2.1 Loss of Electrical Power

In the event of a total power failure, the Propane Compressor (44-C-202), Cold Demethanizer Bottoms Pump (44-P302A or B), Propane Condenser fans (44-E-203), lube oil pumps, and lube oil cooler fans will stop. The unit will have to be shutdown according to the procedure in the existing manual.

2.2 Loss of Steam

The E R M Project does not add any new steam users. Refer to the existing manual for a description of this case.

2.3 Loss of Instrument Air

In the unlikely event of a loss of instrument air, all new control valves will move to their fail safe positions. Depending on the duration of the instrument air failure, the unit will need to be shutdown following the procedures contained in the existing manual.

The Propane Compressor (44-C-202) will be shutdown. The Propane Condenser fans and Cold Demethanizer Bottoms Pump can continue to operate.

2.4 Loss of Nitrogen

Nitrogen is used in the new Propane Compressor seal system (secondary seal fluid and buffer gas). A loss of nitrogen will result in several alarms:

FAL-1431: Low flow of Secondary Seal Gas FAL-1432D: Low primary vent flow (suction side) FAL-1433D: Low primary vent flow (discharge side) PAL-3433: Low buffer gas pressure

Operating the compressor without nitrogen is not recommended. If the outage lasts for more than two hours, the compressor should be stopped to avoid damage to the labyrinths.

It will not be possible to re-start the lube oil pump of the compressor until buffer gas pressure is re-established.

2.5 Loss of Cooling Water

The E R M Project does not add any new cooling water users. Refer to the existing manual for a description of this case.

2.6 Loss of Fuel Gas

The E R M Project does not add any new fuel gas users. Refer to the existing manual for a description ofthis case.

CHAPTER 7

Page 190: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. ContractNo. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

3.0 UNIT SHUTDOWN INTERLOCKS

There are many emergency situations that may cause all or part ofthe unit to be shutdown by means of the automatic Emergency Shut Down (ESD) system. The major new shutdowns added as a part ofthe ERM Project are described below. Some ofthe ancillary shutdowns and local controls which are part ofthe equipment vendor's scope are not shown. Refer to the Process Cause and Effect charts in Section 2.2 of Chapter 4 for additional information on these shutdowns.

3.1 ESD System - Level 1

Low-Low Level Detection Cause: Low-low level in the Cold Demethanizer, 44-V-308 (LALL-2127) Effect: Cold Demethanizer Pumps (44-P-302A/B) tripped

Low-Low Temperature Detection Cause: Low-low temperature at shell side inlet to 44-E-313 (TALL-5130) Effect: Close XV-9080 and LV-2111

Cause: Low-low temperature at shell side outlet of 44-E-314 (TALL-5126) Effect: LV-2044 moved to safe position (closed)

Low-Low Pressure Detection Cause: Low-low seal pressure in P-302A/B seal system (PALL-3084A/B) Effect: 44-P-302A/B stopped

High-High Vibration Detection Each fan of 44-E-203 is equipped with a high vibration switch which trips the motor when high vibration is detected.

3.2 ESD System - Level 2

3.2.1 E R M Refrigeration System

The E R M refrigeration system is shutdown in the event of any of the following:

• High-high level in 44-V-206 (LAHH-2401) • High-high level in 44-V-207 (LAHH-2402) • High-high 44-C-202 discharge temperature (TAHH-5400) • High-high 44-C-202 bearing temperature • High-high 44-C-202 discharge pressure (PAHH-3400) • Low-low 44-C-202 suction pressure (PALL-3405) • Low-low 44-C-202 side load pressure (PALL-3404) • Low-low lube oil pressure (PALL-3420) • High-high C-202 vibration • High-high C-202 axial displacement • High-high C-202 gear acceleration

The Level 2 shutdown for the compressor system results in the following actions:

CHAPTER 7

Page 191: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. ContractNo. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

• CM-202 trip

• ESD valves to safe position:

44-XV-7400 closed (C-202 discharge) 44-XV-7401 closed (C-202 suction) 44-XV-7402 closed (C-202 side load)

• Control valves to safe position:

44-FV-1402 open (2n d stage anti-surge) 44-FV-1403 open (1s t stage anti-surge) 44-LV-2111 closed (liquid to 44-E-318) 44-LV-2116 closed (liquid to 44-E-406) 44-LV-2121 closed (liquid to 44-E-407) 44-LV-2404 closed (liquid to 44-E-204) 44.LV-2405 closed (liquid to 44-E-205) 44-PV-3402A open (C-202 side load) 44-PV-3402B open (C-202 suction) 44-TV-5404 closed (quench to 2n d stage) 44-TV-5405 closed (quench to l 5 1 stage)

An ESD button in the main control room (44-XS-9467) has also been provided for the compressor system. This button results in all ofthe above action plus trips the lube oil pumps and lube oil cooler fans.

The compressor system can also be automatically shutdown and depressured by activation of the following:

• High-high primary seal vent flow, suction side (FAHH-1432) • High-high primary seal vent flow, discharge side (FAHH-1433) • 44-XHS-9466 (IES) • 44-XHS-9469 (local)

These trips cause all of the effects described above plus open ESD valve 44-XV-7405 to depressurize the compressor.

3.2.2 Unit 44 and Zone 20 Shutdowns

The existing Unit 44 and Zone 20 shutdowns include the following new actions:

e C-202 trip (including all actions listed in Section 3.2.1 except 44-XV-7405) • 44-P-302AyB shutdown • 44-E-203 shutdown . 44-XV-9081 closed

CHAPTER 7

Page 192: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. ContractNo. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the E R M Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

CHAPTER 8

SAFETY

CONTENTS

SECTION

1.0 GENERAL.

PAGE

2

CHAPTER 8

Page 193: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

1.0 GENERAL

The fire, explosion, and toxic hazards present in Unit 44 after the implementation of the E R M Project are identical to those described in the existing Unit 44 Operating, Maintenance and Safety Manual.

The updated safety drawings, including the drawing showing location of the new flammable gas detectors, are provided in Chapter 10 of this manual.

CHAPTER 8

Page 194: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

CHAPTER 9

EQUIPMENT AND DATA SHEETS

CONTENTS

SECTION PAGE

("AS-BUILT" DATASHEETS TO BE INSERTED WHEN AVAILABLE)

CHAPTER 9

Page 195: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Equipment List

Rev.2

GASCO ProjectNo.: 13522102 Doc. No.: NM-A0W-M4-06-001

ETHANE RECOVERY MAXIMIZATION (ERM) PROJECT

Equipment List

Revision 2

Approved

Rev. Date Description By Chk. Disc. Proj. GASCO

"^7 22-Mar-04 Approved for Construction

15-Sep-03 Approved for Design 2> DWM

Page 196: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

ETHANE RECOVERY MAXIMIZATION Rel: 13522102

FLUOR Contract AOWT Date: 22-Mar-04, Rev. 2 By: DTS / OPM / PL CHK: ED

OGD-I Train 3 - Unit 44 EQUIPMENT LIST - VESSELS

Rev Item No. Descripiion

Criticality

Rating

Inside

Diameter

m

T/T

Design

Press

barg

Temp

Operating

Press

barg

Materials of Construction

Insul.:

Ih / lc

Orient.:

Hor./Vert.

Requistion

Manulacturer

P&ID

Remarks

44- V-402 Debutanizer Overhead Accumulator

2.5 10.0 20 90/-29 18 29 CS Ic

40 mm Horizontal

02 0810 06

JENKINS

44 00 30 028 2

Add insulation to existing vessel. Remove inlet distributor.

44- V-205 Propane Receiver 2.7 22/FV 90/-45 19 55 LTCS Horizontal 4-0701-01 Toromont

22717-104

Part of Refrigeration Package 44-ME-201.

44- V-206 High Pressure Knockout Drum

2.3 6.1 2 2 / F V 85 / -45 6.4 16 LTCS Ic

50 mm Horizontal

4-0701-01 Toromont

22717-103

Part of Refrigeration Package 44-ME-201.

44- V-207 Low Pressure Knockout Drum 1.7 6.1 2 2 / F V 85 / -45 -24 LTCS

Ic 100 mm

Horizonta

4-0701-01 Toromont 22717-102

Part of Refrigeration Package 44-ME-201.

Equipment List - Unit 44 - Rev 2.xls 1 OF 8

Page 197: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

WD' ETHANE RECOVERY MAXIMIZATION Ref: 13522102

FLUOR Contract AOWT Date: 22-Mar-04, Rev. 2 By: DTS / OPM / PL CHK: ED

OGD-I Train 3 • Unit 44 EQUIPMENT LIST - HEAT EXCHANGERS

Rev Item No. Descripiion

Criticality

Rating

Design

Duty

Gcal/h

Shell Design

Press

barg

Temp

Tube Design

Press

barg

Temp Materials Of Constmction

Shell Tubes

Exch. Type

Total

Suriace

Area.m'

No. Series X N o .

Parallel

Requistion

Manufacturer

P&ID

Remarks

44- E-318 2ncl Feed Chiller 3.15x 1.1 2 2 / F V 85 / -45 75 85 / -45 LTCS LTCS BKU 644 1 x 1 4-0401-01

Energy Exch. 44 00 30 019 2

Kettle ID = 1.76 m, Tube Length = 6.1 m Cold insulation: S S = 220 mm thk. TS = 160 mm thk.

44- E-406 Debutanizer Trim Condenser 6.79 x 1.1 2 2 / F V 8 5 / - 4 5 20 90/ -29 LTCS LTCS B K U 605 1 x 1

4-0401-01 Energy Exch.

44 00 30 028 1

Kettle ID = 1.83 m, Tube Length = 6.1 m Cold insulation: S S = 100 mm thk. TS = 40 mm thk.

44- E-407 NGL Subcooler 0.92x1.1 2 2 / F V 8 5 / -45 30 90/-29 L T C S LTCS B K U 206 1 x 1 4-0401-01

Energy Exch. 44 00 30 028 3

Kettle ID = 1.17 m, Tube Length = 6.1 m Cold insulation: S S = 100 mm thk. TS = 40 mm thk.

High Temperature Subcooler 85/-45 LTCS LTCS BXU 456 1 x 1

4-0701-01 Toromont

22717-103

Part of Refrigeration Package 44-ME-201. Bundle ID = 1.07 m, Tube Length = 6.1 m Cold insulate both TS & S S , 50 mm thk.

44- E-205 Low Temperature Subcooler 0.78 x 1.1 2 2 / F V 8 5 / -45 22 85 / -45 L T C S LTCS BXU 111 1 x 1

4-0701-01

Toromont

22717-102

Part of Refrigeration Package 44-ME-201. Bundle ID = 0.61 m, Tube Length = 6.1 m Cold insulate both T S & S S , 100 mm thk.

44-C-202 E 2 A / B

Lube Oil Healer ELEC. 4-0701-01

Toromont

10512S

Part of Refrigeration Package 44-ME-201 Electric heaters = 2 x 4.5 kW

Equipment List - Unit 44 - Rev 2.xls 2 OF 8

Page 198: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

ETHANE RECOVERY MAXIMIZATION Ref: 13522102

FLUOR Contract AOWT Date: 22-Mar-04, Rev. 2 By: DTS / OPM / PL CHK: ED

OGD-I Train 3 - Unit 44

EQUIPMENT LIST - AIR COOLERS

Rev Item No. Description

Criticality

Rating

Design

Duty

Gcal/h

Process

Flow rate

Kg/hr

Operating

Inlet Temp

Design Conditions

Press

ban

Temp

Materials Of Construction

Header Tubes

Bare Surface

Area, rr?

Total Fan Power,

KW

No. of Bays / Bundles

Requistion

Manufacturer

P&ID

Remarks

44- E-203 Propane Condenser 15.13x1.1 217600 22 91 (hot)

-45 (cold) LTCS LTCS 5936

18x 30kW

9 / 1 8 GEA-BTT

44 00 30 041

Exisling supplus Item (45-E-701) used in new service. Tube Lengths 12.2 m Total Width = 18 x 3.6 m

C-202-E1 A/B/C Oil Cooler 0.082 9870 77 13.8

121 (hot) 5 (cold)

SA-516 GR70

SA-214 WLD

53.5 3 x

3.7kW

4-0701-01 Toromont 10512S

Part of Refrigeration Package 44-ME-201

Equipment List - Unit 44 - Rev 2.xls 3 0 F 8

Page 199: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

ETHANE RECOVERY MAXIMIZATION Ref: 13522102

FLUOR Contract AOWT Date: 22-Mar-04, Rev. 2 By: DTS / OPM / PL CHK: ED

OGD-I Train 3 - Unit 44

EQUIPMENT LIST - COLUMNS

Rev llem No. Description

Criticality

Rating

Inside

Diameter T/T

Design

Press

Part

Temp

°C

Operating

Press

barg

Temp

"C

Materials of Construction

Shell Internals

Insul.:

Ih/lc Tray Type Requistion

Manulacturer

P&ID

Remarks

44- V-308 Cold Demethanizer 2.4 12.8 2 8 / F V 85/-100 23.3 -36 Top -19 Bot

304 L 304 L Ic

220 mm 8 Valve Trays

4-0201-01 KNM

44 00 30 023 4

Fireproof exterior of skirt. Trays supplied by Sulzer.

Equipment List - Unit 44 - Rev 2.xls 4 OF 8

Page 200: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Mi E T H A N E R E C O V E R Y M A X I M I Z A T I O N

Ref : 1 3 5 2 2 1 0 2

FLUOR Con t rac t A O W T

D a t e : 2 2 - M a r - 0 4 , R e v . 2

By : D T S / O P M / P L C H K : E D

OGD-I T r a i n 3 - U n i t 4 4

EQUIPMENT LIST - P U M P S

Rev Item No. Description

Criticality

Rating

Rated

Capacity

m3/h m

Pump

Head

Design Conditions piujp

Density,

kg/ma °C bai

Temp Press

a r ^

Materials of Construction

Casing Impeller

PumpType Driver: Motor or turbine

Esfd Driver

kW

Pump Eff. %

Requistion

Manufacturer

P&ID

Remarks

44- P-302 A/B Cold Demethanizer Bottoms Pumps

202x 1.3 61 -100 35.5 316L 316L centrifugal 45 70.7 4-0801-01

Sulzer 44 00 30 023

One operating and one spare. API A-8 Seal Plan 53B. C2 Rejection mode is controlling (240 m3/h).

C-202-P1 A/B

Oil Pumps 23.6 5.2 barg 850 Cast Steel

Screw motor 15 73.3

4-0701-01

Toromont

10512S

Part of Refrigeration Package 44-ME-201. One operating and one spare.

Equipment List - Unit 44 - Rev 2.xls 5 OF 8

Page 201: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

(MM ETHANE RECOVERY MAXIMIZATION Ref: 13522102

FLUOR Contract AOWT Date: 22-Mar-04, Rev. 2 By: DTS / OPM / PL CHK: EC

OGD-I Train 3 - Unit 44 EQUIPMENT LIST - COMPRESSORS

Description

Criticality

Rating Design

Flowrate

Actual mS/tir

Molecular Weiaht

Suction Condiiions

barg

Temp

'C

Discharge Pressure

barg

Design Conditions

Materials of Construction

Compr. Type Driver: Motor or turbine

Esfd Driver kW

Requistion

Manufacturer

P&ID

Remarks

11900 44.0 6.3 44- C-202 Propane Compressor

14900

22 barg 105*0 (hot) -45'>C (cold)

Casing: LTCS Internals: LTCS

centrifugal 5800 4-0701-01 Toromont

22717-101

Part of Refrigeration Package 44-ME-201. Spare rotor provided

Equipment List - Unit 44 - Rev 2.xls 6 0 F 8

Page 202: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

ETHANE RECOVERY MAXIMIZATION

Ref: 13522102

FLUOR Contract AOWT Date: 22-Mar-04, Rev. 2

By: DTS / OPM / PL CHK: ED

OGD-I Train 3 • Unit 44

EQUIPMENT LIST - TANKS

Rev Item No. Description

Criticality

Rating

Inside

Diameter T/T

Design

Press Temp

Operating

Press

barg

Materials of Constnjction

Insul.:

Ih/lc

Orient.:

Hor./Vert.

Requistion

Manufacturer

P&ID

Remarks

44-C-202 TK-1

Lube Oil Reservoir 2.2 L 1.5 W

m

1.4 H ATM.

44-C-202 TK-2

Lube Oil Rundown Tank 0.5 1.8 ATM. 93

317LSS 4-0701-01 Toromont 10512S

Part of Refrigeration Package 44-ME-201.

316L Vert. 4-0701-01 Toromont

16-440-901-526

Part of Refrigeration Package 44-ME-201.

Equipment List - Unit 44 - Rev 2.xls 7 OF 8

Page 203: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

ETHANE RECOVERY MAXIMIZATION Ref: 13522102

OGD-I Train 3 - Unit 44

EQUIPMENT LIST - MISCELLANEOUS

FLUOR Contract AOWT Date: 22-Mar-04, Rev. 2 By: DTS / OPM / PL CHK: E[

Rev Item No.

44- C-202-X1

Description

Lube Oil Console

Criticality

Rating Duty Specification

API-614 Lube Oil Console Containing: Lube Oil Reservoir (44-C-202-TK1) Lube Oil Filters (44-C-202-F1A/B) Lube Oil Pumps (44-C-202-P1A/B) Lube Oil Heater (44-C-202-E2A/B)

Lube Oil Cooler (44C-202-E1A/B/C)

Requistion

Manufacturer

P&ID

4-0701-01

Toromont

10512S

Remarks

Part of Refrigeration Package 44-ME-201.

44-C-202-GB-202

C-202 Gearbox API-613 Gearbox and API-671 Coupling 4-0701-01 Toromont

Part of Refrigeration Package 44-ME-201. Spare gear set provided.

44- Y-202 Overhead Travelling Crane

Rated Capacity = 12,000 kg Span = 12 m Lift = 9 m Crane Travel = 44 m

4-0801-02 J. Barnsely

Cranes

Existing surplus crane (45-Y-101) modified for this new service. This service replaces existing 6T (Y-001) crane.

44-C-202-F1 A/B

Lube Oil Filters Cartridge Type, 10 micron, 316SS elements Design pressure = 16.2 barg Design temperature = 100°C

4-0701-01 Toromont 10512S

Part of Refrigeration Package 44-ME-201.

44-C-202-F2 A/B

Primary Seal Gas Filters 316 SS construction, 1 micron, glass fiber elements Design pressure = 24 barg Design temperature = -45°C

44-C-202-F3 A/B

Secondary Seal Gas Filters

316 SS construction, 1 micron, glass fiber elements Design pressure = 24 barg Design temperature = -450C

4-0701-01 Toromont

16-440-938-561

Part of Refrigeration Package 44-ME-201.

4-0701-01 Toromont

16-440-938-561

Part of Refrigeration Package 44-ME-201.

44-CM-202-BL1 A/B/C

CM-202 Motor Air Blowers

Cooling for CM-202 (TEAAC type). 3 x 10 kW motors. 4-0701-01 Toromont

M68D100087

Part of Refrigeration Package 44-ME-201.

Equipment List - Unit 44 - Rev 2.xls 8 OF 8

Page 204: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

Fluor Mideast, Ltd. Contract No. AOWT

Ethane Recovery Maximization (ERM) Project Operating, Maintenance and Safety Manual - Unit 44

Addendum for the ERM Project - Rev. 1

GASCO ProjectNo.: 13522102 Doc. No.: PP-AOWT-44-00-001

CHAPTER 10

DRAWINGS

CONTENTS

SECTION PAGE

("AS-BUILT" DRA WINGS TO BE INSERTED WHEN AVAILABLE)

CHAPTER 10

Page 205: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 206: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 207: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 208: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 209: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 210: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 211: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 212: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

^ - 3 9 3 1ST STAGE LIDUiD FLASH ORUH s.... mm . sua m IT Dtiip f x 'S BSW/ Full 1KM

1ST STAGE LIOU1D/FEEO EXCHfiWDER

h n ^ r : » . [ ] ) i s E J « :

Tub. > 75 EWC O . n ^ I ! S M I t 1ST / ' ' S T

Tvb* i 1ST / - (ST

FEED CHILLER flEFR 1 LiRAliT FLASH DRUH £.» i IESS m m . 4e3a HH II

P i ?3 B M C ' F J ] Vecw i

ISl SIC.FLnSM VWW

..•IW-^ll-H-£ " H i ^ IS l STC. FLOS" IIOUIB

TO " E - J I S

5. L l M* I 13 EE F E S i m E ••KK BT.PMS V«LVE,

E. l l r W I 13 PT I S « M i E FR>

MV-:H mir saaiE to BE L XAT ED M U S t * . « « £ <'E-]I6

R E f R l K R i n : OJ IU I WIILE

FLUOR. ETHANE RECOVERY MAXIMIZATION PROJECT

PIPING AND INSTRUMENT DIAGRAM NGL RECOVERY - UNIT 44 THAMMAMA 'F '

SUPPLEMENT FEED GAS MAIN CHILLDOWN FIRST STAGE

14=41 1001 I 3 i 0 i 0 i l 9 i U J

Page 213: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

M - ? M 4 - l t - l 6 - - 6 1 1 7 a - C

2N0 FEED CHILLED

A

mi I. t'-L £:ulPi01I. ao

3. Wfl fv*S£ a :»-aNCm» siCWELT.

3. DESICK fOPI S.U0 FLO*.

L G - 2 n B TO BI (GflC»3UE FRCH I V - i l l l BrPSSS VALVE.

5. I tK iT- i CP ;NSU»T£a l l t C - I ' I fCULMIW IMIO^'CSS.

6. SIOE lUr -X H f -Wl •.'OiTltAL.

7. TRIP CN K t i - S t M .

] RElSS' j rO A»?ajVE0 ^ S n J ^ I P j p ^ ^ T t f ^ f l s - ' . f - t - K

2 | U » . 1 t tPFROVHD FOS C^STSUCTION

L M I I ] *P?R0VE0 fOH I K S I C

S I H f ! ] iSSJ IO F31 C L I D d REVIEV

D V T M ] ISSUED F31 iNTCmiM. AEVIEW

ToR^r

FLUOR. ETHANE RECOVERY MAXIMIZATION PROJECT

PIPING AND INSTRUMENT DIAGRAM NGL RECOVERY - UNIT 44 THAMMAMA "F*

2ND FEEO CHILLER

D H A W i N G N U M B E R

14,41 0 0 1 13-0113,1 -RI (2|

Page 214: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

<m STAGE LIQUID FLASH DRUH S i n i J S W ( « l O / ' S i i f . IT 0 , , . * f u i t t m / f j ] T . : — O i i i T i 7 :B5'C / - « «

^ •314

2N0 STAGE LIOtllO/FEEO EXCHANGER D-n . 1.18 SC4l / h tyst .Hu lu W p.-. 3 . . . ^ » i H u l l i !6 B W

I i * . .7S BMK t . i 1 9 n I t S M l i B i t / - U B t

<-Ei.1^-IC-< ,-E4l.-C

2 0 S t « I FLUSH V*FtP

Ml

f & W " " '

-\r— T O K X C r t S Y l a c S I M E a « H LIOUIO

THIS SRflWItA 'Jf iS Pf lEVIOUSLT I5S'-ED FOB THE OGO I J I I PFTOJECT o - O / C OGO 3«5 PH3JCCT a i c

REVISED ' O T PROJECT S e l l .

t 22*3 T BE FE*a«aLE r * tx B T - = A S S cr LV ,

! « . . [ • »T M i H l ^ DisTatcE

FRW <(£-31i LOCATE v:4.VE Al L W POINT

S . MLV I rfllHCW EITEIOEO BOMCI

B, SISMNILING F.MCES

1. IVO-PMSE FLW • ttCWH SECUf ia* .

n . a o s c s L v . : e « cn i on ioir T E - F I F W ^ E .

11. « V t l . * M POIMS F W CIS I INO T i - i B S E . TIC-5663 CLKES l V - ; 8 " IF TE*CT«TtflE F«U5 BELO' IIS SET P3IKT.

a iTsss V « . V E L O - K L O a c s i ! ; .

- H.L rffilHUPEHI s ;c !« .s S H U TTR l IS *^ [N IE5- t IKLESS SHJrt OIW^VISI.

- PIPIW CLA'SES E ' l ' H ' W I . CHI33<Mi i -O B 'L I IH IOJ V=UES W l ^ S E PJPTrC CLASSES A»E IK c i t c c t N : : SEtH'tH I ;>TESTED BOWfT 1 El t iPT rtt" DilEPHISI H O I C A H S s r fit re e.

- FIEFE5 ts CE: "-M-JS-SCI FOT WLSE HO EFFECI LOJIC.

<ZZZZ2) tfV (OOIFICST

CiawnHED

f f . ! /?* ' R - l S S l - O W a p v - D FOR C C N S I P L C i ; 3 - | l ? U ^ j t ) - g f c t h L

V K . ' ^ W f f f l V E O FOR COffiTf lUC-ICN O I > H ( T S D T s j D m t i - L - F i t - ^

n'PRavEO FOfl DESIGN

! M & | ] ISSLED FCF, C U E N I HEVIEw

JA W W I 1EELE0 FCR INTERfWL REVIEV

C > : 0 | s u P l E M l [ g ^ c q

FLUOR. ETHANE RECOVERY MAXIMIZATION PROJECT

PIPING rtNO INSTRUMENT DIAGRAM NGL RECOVERY - UNIT 44 THAMMAMA f

FEEO GAS SUPPLEMENT CHILLOOWN SECONO STAGE

• R a W i N D N U M B E R

14,41 a a j i3|iaigi2-g,

Page 215: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 216: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

DEMETHANIZER Sn. ,2*t» .ti io . sna MM it

D i n ^ f :2t BAtG / R U VtOJUf 0 * 1 : 7 1 : . »a ' : / - *B-c

OEMETHANIZEa REFLUX CONDENSER DEMETHANIZER EOT TOM REBOILER I y * r *Iu-r)flg« P l i U - ' l t l T jp . 1 BEK V . - L " - : lie cei/:-. o . ccd/fc . . ^ , 1 P .25 B*=ffi D*«9i P i ^ I l i J J ) 3MG Ot.,711 t(3-:/-!!a-; 1^,. .it em

OtLtn J .s».si!iae-c/-?«

1- ME-SS :3 oifficitr awes HMTD SMJ is sjptfiim m ICP or M T - S S .

?- r.uez ro Fi»a nw«tiiiK. «- cfsracE ffrrfEK se r i * n. c- cat** «»-33t

itw* H£*3 T: K U nwcnim ' C C U D U * 13 HOTE J 1- gOITON ff lEfll E10«*C;B <IE-3SJ IP6I«.LD »I SSM Xi MVIKW

FRCM OITIET ie;a.£ OF caiw i>- PIPf sipteimwit M- ELEV*HCH KXLPOI^C ta TK 1NSTSJ.»715I CF CECILtR "E-3B3

ij- tnn <i;joji txKHsa BS«I 13- C a O INSU.HICM V E H l C i L LEWMt L • S I 3 fSU.«TW IHltWttSS

I*- AVOID POWEIS aCVN5T(E«H C C K T i a VW.VE

16- SFAIEB I C I t a E D . 3L1H3 70 SE PROVlttO IN V B W K P

17- ( ILEIED.

IB- CELETEO.

- I M S T A K M S I * NLNEE^-• J . lMS l t tK t . rS L M E U E U '« FO 3 U i l l «

• AajrstftKw^siesw.s ;Htt.L IEBMIW^ IM IES-S UtESS

• PIPIJC CLASSES E'LIEJJjil . C'U3a<HI I B'l.il3<58) . V=S [i WSE P1FIN5 aflSSES ffl! iK tSTOCOIC SERVICES (EXIEWTD BIWE; ! C»:EP: * H ' Z oit&nsL IICIEAIED BI ICIE I;

FLUOR. ETHANE RECOVERY MAXIMIZATION PROJECT

PIPING ANO INSTRUMENT DIAGRAM NGL RECOVERY - UNIT AA THAMMAMA 'F '

DEMETHANIZER

— " • a E ^ ^ i ^ . - b - j - ' ~ - 1

Page 217: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 218: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 219: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

DiDUIflNIZER COIJDENSER

E* (COLEF / uaaa Kan i l5.B CC*)/h

gn P / 1 j 28 BWG / 173 T / - M t

(O l Vaf lH BtPflSS

'4-E-436 DEBUTANIZER TRIM CONDENSER Typ» ifJOl

O w ; ^ SS.]] .22 b f - f / r . ! : V K ^ .20 fcvi

0...^ 9.11 ;BS/-«X to... ,t/-rrt

fOS K I A I L CF « t - 4 B ?

stE P I O . 4<-ee-3i ) 3 i

1. EDO H O FEPIUCE E X t S I l * 19' L l t C VIIH 16 ' .

2 . WTE K X E i E O .

3. im mss aw-*ao« SEDKLT. «. CCS1W 'OR SLUG FIOK.

5. 1C-2I15 10 BE K K V U Z f B W IV-21 IE BTt'ASS V«.Vt.

6. IE«1K Of 1HSU.A1ED L l (e -5« IMSLL*IIOI IHICBCSS.

7. SIOE EHIBT M »5- FfW VER1IM..

W l VftPCH BYPoSS

I C i KHIF ICMIO

OISWITUD

T K ] S W f i * I M G WAS POEv lOUSLr TSSUED FOR T-^E W O I2]<* PROJECT WlO/OR T IC CCD 5 * 5 PROJECT f-KJ

HEVISED FOR PPOJECT 3221.

i4 FLUOR. ETHANE RECOVERY MAXIMIZATION PROJECT

PIPING AND INSTRUMENT DIAGRAM NGL RECOVERY - UNiT 44 THAMMAMA 'F '

OEBUTANIZER CONDENSERS

D R A W I N G N U M B E R

14,4]

Page 220: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

DEBUTAHiZER COHDENSER 1^. • W COLER / IUXJCED OTW!

thitp f / i itt Bans / C3 X / X

OEBUTANIZER OVERHEAD ACCUMULATOR yf^SA Sit-2»S_KH »_._!»».•«. II

Cmjn P/I tI8 3WC / 'C / t

p ^ n PST -n.i aws

4JP-401 A/B

DE9UTANIZER OVERHEAD PUMPS

f€tO H

M-t'w-n-i-anim

OEBUI lZEB REFLU TO HV-lBI

015WXTUD

B. SA.-EII CiSIfti£:- "0 K KESPECJEO ISEE BP n-l)-IW !.2.1.B I «.3 1

I. F*ST LOCP SIIPN [FW et j fH i CO tCIED TO FUWI COlLECrCR <f ««.>5ER SHELTEfl

11. U M M ic ;mn «KN PIC see STA'.tS 3PENI(C I(C VAUE

12. SFMEER IHSletlEO EL ISD PWVICE3 IN VOKSMCF

II. EITE^W. 5ETP01XI FW t K «CI. Mi E'TEflML StlPOIVT FW UX ' t l . IJ. DELETED.

is. P V - 3 X ' «o fr-37£i ncviruSLT IMSEO POV-KE: A P:I-?SS7 PREVIOUSLY I«SED PD:C-?W7.

FLUOR. ETHANE RECOVERY MAXIMIZATION PROJECT

PIPING ANO INSTRUMENT DIAGRAM NGL RECOVERY - UNIT 44 THAMMAMA "F"

DEBUTANIZER REFLUX SYSTEM

DR AVT iNG NLMBEfl

Page 221: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

44-E-4B7 NGL SUBCOOLER

•uti, i &.<U GC.]/K Dt i i t r i S M I i j ? b * V F u l

D.uyi 9..:i .(5/-«T

10 lUffll TKlIW

I. TW P K S E flCV-»MOOq SECLflSLI.

x%m FW siuc FLCV. 3. LG-IIJO TO Bi KaiUftE FBW LV-IIM n>»SS V*tVE.

;. LEIC:M O; !NsasiEo ire • 5< iwu.'. 6, E i K EN IAY BI 45- FROH V E M : : * . .

Ti-ilJI (SEG FW TEWiSATtflE CCTSECUOI CF FLOV ItASUieSM. FETES TOfPI iW(.r-«-36-B*.* FER DTMIS.

• ALL iFSI^UtlT NUB-^S « WIC3 KITH iit UNIT HWEfl I *

• • L l INSIBOCII S10W.S TDtl lWTE II IES B.

• HEFTR TO CW CEC U - a - J S - I l l CDT 1WS£ A l l F F E ; i LOGIC.

=g:v cwtE I SCaLE i

wointAiiw

0 ]5«HrL iD

IWI/J] CFFSOVEO FOfl DESIGN

" r ^ i \ 10 NCI 5ICfi«E

TMIS ORAWIMO wos PREVIOL'SLT ISSUED TOR THE DGD 1711 POOJECT CNO/OR T i C OGD 5 ' 5 P R O J E C l

REVISED FOH PROJECT 5221.

1 / S l H RFPROVEO FOfi C C I I S T R U : ! : ^

39 IJ/lfl/Jj ISSUEO FCfl CLIENT REVIEW

Sfl ISSUED -OS I ,TERH«. REVIEV

CIS 3m tS-l-fH-S

FLUOR. ETHANE RECOVERY MAXIMIZATION PROJECT

PiPING AND INSTRUMENT DIAGRAM NGL RECOVERY - UNIT M THAMMAMA "F*

NGL SUBCOOLER

Df lAWIKG N U K S t H

Page 222: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 223: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

sd—

44E-2B3 PRCPWE COIJDENSEfl

O,, , l i l l Ctol/K

O.nj" 1 . =lT/-*yC NJIE Jl

«HE-201 REFfllGERflTICN PACKAGE

' " M X A n * A \ in?*

l-?CS<'Fl.C-<--ill7t-H

n-ftF-fi-'Jina-c <4HE-2ai

F:R frtifjia a i n t s owe :!:I7-III T-waiCH Bvt:iTi7-in E>**E5SOS rn*. s rsw iOvt it-oe-^M-ai CWISSOP ! . « BIL SlSIEH iWC IS-fa-l/l-S?*! IJEE EIL C M O i rOVD 1B!!5 CJfffllSSOS HMIEfilK SlSltM :CWt 16-<i(-16B-!?)

CQNSfLE

f-aoa-it-i '- iBeia-

^'•^P3•^D•«-•lBI^^^H

-a 3*-(«-<9-ia

4-7i«-i*-r-mi?-<j

-H \i.lS-7t-tS!

-H

.<-;e-3t-ci6 i 1

2 J-Tlt' a?=E0VEO FOR CONSTRUCTIOH

ISSUED m aiE-u PEVIEW

o M M : ISSUED FOR IMEWWL PEVIEM

FLUOR. ETHANE RECOVERY MAXIMIZATION PROJECT

PIPING ANO INSTRUMENT DIAGRAM NGL RECOVERY - UNIT AA THAMMAMA V

ERM REPRIGERATION PACKAGE

• RAWING NUMBER

14,41 | 0 0 J 13,010,4,01 • J J

Page 224: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 225: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 226: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 227: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 228: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 229: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

/5- 1

Page 230: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual
Page 231: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

13-1

Page 232: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

n C X H U O C E D RADIAL VIHRATON MOMTtM SCTPOtKTS

3. U T P O i K T I C N T X S H V T V n U I I O N MOMTOfl G K A l L t E INTTIAILV SET

.DfcOCJWWETEW FOB A L A I M W © T>t HGH+fOH A l > f N SET r.TM.COO

U W C R O M E T E B S M O M e R

OF p J

«. ATTCT BTE«W-«TATC OPERATICW AT C C H O N &C»OTl O M B ESTXBUStttD. R E M T T y * ALWW W C TWF ttTWm* AT 11 ICCftOUETERB M R f s n O T W L Y « m t T>« NORMAL W R A T K M

R E C £ » * l t H » ) T > IT POOrOW UONTIOR S E T P O K T t

M BTtAOT-STATE CEAATION

IH THE -COUMTEET Drf tECnOH MAMTA1N Al

MOTOR AA-CM-2Q2 •

6

3 3 3 3

r» ANO M K N O (HAU. COMPLY W I M IEC ANO B f L A i E l i D ACCORDtMM.*. C i f m n C A T E l M E Q U U D .

1. UENTLY AW4CREO CABLE SHALL OE S£CUR£DTO COMPfiESSOR HHEPE P R A C I K M . UWM) IrtUJN C O . T t D O S M R E H E I , HANdT Ofl E O l i l * .

I. A i i C A f l U T E X M N A T K X S a H A U B E rOCNTVIlO VWTX A f«AT-*M«:Wl P R E J U H T E O O i e V B ABOUND T l « CABLE

B A r t O R C U T l . T A t t CAi ffi­l l JJNCT1C« BOX IO INQJJOe A BL IX LAOEL WTW WHTT* LETTEfflMO StATlMO

11 A i l W R E TEBMHATTOMO ON TERMNALB BHU1INCUJCE FERRELB,

M KOE OLAM)PlAT« POfl OE SHOP WWMO. JLMCTON BOX WMX

vaRAHOW MOMTOR UMfT Of S J P f V r

i. y--II.IM

<>

TYPICAL. CONNECTION OF BENTLY NEVADA EOUIPMEMT MBRATWWTTRUaT PROOEB. K E Y m A W R S )

3 3 3 3 3 3

m i

3 3 3 3 3 3 3

•fm

3 3 3 3 3 3 3 3 3

3

co«cncN-oi-

3 i \ cowjEcnwor |

BEm'LY NEVADA SMO SYSTEM VIBRATION RACK

BENTLY NEVADA 3500 SYSTEM VIBRATION RACK

I I I I X T n—r i — r

ALL INSTRUMENT TAGS TO BE PREFIXED WITH I.E.. «TE6«7A.

BILL OF MATERIAL 18-UW25-213

FLUCT* i t : w m PTOJECT l iXAT IOM K « 8 » « H * a O O M i

E Q U n C M T I C O f m C A T K K R W n O W A T K X • C M P R Z U O f l

eouiMfuiT ITEM iu«En: «^oaa

Page 233: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

NOTES:

1. RELAYS ARE NORMALLY ENERGIZED AND WLL BECOME OE-ENERGIZED FOR AN ALERT OR DANGER COM51TION.

2. TEMPERATURE ELEMENTS FURNISHED IN THE COMPRESSOR, GEAR, ANO MOTOR ARE IOO OHM ft C C , 3 WIRE PLATINUM RESISTORS. TYPICAL COMPRESSOR RTD ELEMENT CONNECTIONS ARE

JUNCTION flOX ON MOTOR

J-BOX U4TM52

3. COMPRESSOR BEARING RTD LEADS SHALL BE CONTINUOUS FROM ELEMENT TO COMPRESSOR MOUNTED JUNCTION BOX. RTD LEADS SHALL BE RUN IN COPPER FREE ALUMINUM CONDUfT. CONDUIT SHALL ENTER JUNCTION BOX FROM BOTTOM ONLY. JUNCTION BOX TO INCLUDE EXTERNAL AND INTERNAL GROUNDING LUG.

4. RECOMMENDED COMPRESSOR BEARING TEMPERATURE MOWTOR SETPOIMTS:

A. SETPOINTS OF THE COMPRESSOR TEMPERATURE MONITOR TO BE I NITI ALLY SET AT BCC FOR ALARM 1 AND U V C FOR ALARM 2.

AFTER NORMAL OPERATION IS ESTABLISHED. SET THE ALARM SETPOINT 10*0 HIGHER THAN NORMAL FOR EACH INOIVIDUAL BEARING AND THE TRIP SETPOINT SHALL BE SET 23*C HIGHER THAN NORMAL FOR EACH BEARING.

7. ALL WIRE TERMINATIONS SHALL BE IDENTIFIED WITH A HEAT-SHRINK PRE-PRINTED SLEEVE AROUND THE WRE SHEATH AFTER THE WIRE ENTERS TO JUNCTION BOX.

M

7®=

•'-•r. SPARE

SPARE

JUNCTION BOX ON UOTOR

J-BOX M 4 T M M

TEMJ1A [

TES421B [

TYPICAL RTD CONNECTION BENTLY NEVADA

TEMPERATURE MONITOR

g ALL W R E TERMINATIONS ON TERMINALS SHALL INCLUDE FERRELS.

. TEMPERATURE PRE-ALARMS ARE CONFIGURED ON TVC ANALOG MOOBUS POfWTS IN THE DCS

• * i i » i i L j i • t i i 1 BENTLY NEVADA 3n00 SYSTEM TEMPERATURE RACK

m . i F-S^O*

FLUOR No r ACWT «T91-tt/AWmCOHI-l M

ALL INSTRUMENT TAGS TO BE PREFIXED WITH "44", I.E., 44TE5447A.

Page 234: Vol 1 of 1 - Plant Operation Maintenance and Safety Manual

E —

C -

PSET=20nnWC

XS-9477A (RUNNING)

\ XS-9480A (AUTQ START) / \

r

^ X S ^ S S A ^ (TRIP)

XS-9477B (RUNNING)

r •

XS-94a3B CTRIP) /

XS-9477C (RUNNING)

NCC r

XS-94aOC (AUTD START) ^ ^ X

| XS^SS^ (TRIF)_ /

XS-9499 (CCC FAULT TRIP)

HS-9460 (AUTH. FDR DCS START)

I I | XS-9470_(LGCAL START PERM.) j

. ^ S ^ 7 ^ R C M D T E _ S T A R T ) ^ / [ \

" 7_4I_4 i L T A T U S ) ^ ^ , ^ - ^ ^ / -

- I — 7 -

XS-9472 (TRIP)

I _X^42D_(HULTIUN_TRIP) |

A -A - PROCEED HotlflcMlor to procom do«a not constltuta K M , rait... Contmctof/Ssllor o) nny lliblllty. AcMpUnco l« Bccompllthod undar Uw wmt ot Hw Contr.ct/Purche»«

FLUOR. cev punc* nor

GASCO ERM Project 8-JUI-04

FLUOR No.: AOWT 4-0701-01/AOWT100011 -230-2

REFERENCE MOTOR DWG. H M88D1000B7 FOR COMPONENT DESCRIPTION.

START PERMISSIVE

PURGE COMPLETE

PURGE IN PROGRESS

NOT PRESSURIZED

> < - ° — i ' XL >

X S ^ 4 6 0

MDTDR READY TD START

X S ^ M A

PURGING ENDED

XS-_9460D

PURGING IN PROGRESS

X S - 9 4 6 D C

MOTOR NDT PRESSURIZED

cgtnDtKiw.-F«»om or:

GEOil&Gas

DO NOt SCALE Ofl RNtRAriO

DRAWWC DO MOT UMUKll UPQMt.

BREAK ALL SHUtP COKNEIO AND fttWM BWtRS UNUSS OIWBWSI SPEC RED. STAi*> OP nc« pun iDonrKATioH IN ARIA HARKED [^><J

SIMILAR TO

M K . -'•LE NO. NONE

cx GWO 04/09/04

^ MWW 04/09/04

01 04/09/04 JM GWO; ftDBCD SIGNALS 10 MCC.

DDED NOTES. ADDED I-5*?5B. /t l 10D0B?.

021 06/30/04 |GWQ|MWW

-D

UNlfSS OIHERWISE SPtOFTED

1- PUCt OEC.1.060 2- PUCE OEC.t.OJO 3- PIACE OEC.t.010

MOTOR CONTROL DIAGRAM 0 4 3 0 5

TOROMONT FOR FLUOR/GASCO

ABU DHABI SCALE

1:1 1/1

PART WO

1 6 - 2 4 2 - 2 2 6 - 4 1 1

ISSUE

02

- C