vibrational modes of silicon metalattices from …vibrational modes of silicon metalattices from...

15
Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo Materials Science and Engineering, Penn State University October 6 th , 2016

Upload: others

Post on 12-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

Vibrational modes of silicon metalattices

from atomistic and finite-element calculations

Yihuang Xiong, Weinan Chen, Ismaila Dabo

Materials Science and Engineering, Penn State University

October 6th, 2016

Page 2: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

Inte

nsity (

a.u

)

Raman spectroscopy at the nanoscale

100 nm

Wavenumber (cm-1)

–30 –15 0 15 30

_____

Kuok et al., Phys. Rev. Lett. 90, 25 (2003)

Vibrational spectroscopy provides a highly sensitive probe of structural properties at

the nanoscale.

Page 3: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

What is a metalattice?

Cavity

Crystalline

Silicon

1–100 nm

Metalattices are 3D nanoscale structures consisting of crystalline aggregates,

periodically repeated on the scale of 1-100nm.

_____

Han and Crespi, Phys. Rev. Lett. 86, 696 (2001)

Page 4: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

How to calculate acoustic modes

Acoustic wave equation:

Boundary conditions:

How to calculate optical modes

Optical wave equation:

Boundary conditions:

We need both acoustic and optical elastic coefficients Cijkl and Dijkl._____

Thonhauser and Mahan, Phys. Rev. B 69, 075212 (2004)

Page 5: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

TA1,

2

TO1,2TO1

LO

LO

TO1,2

TA1

TA1,2

LA LA LA

LOTO2

TA2

Γ X Γ ΓR Lq q q0

100

200

300

400

500ω

(cm

–1)

}DFPT

Expt.a

Expt.b

Calculation Details:

Functional = LDA (local density approx.)

Wavefunction Cutoff = 100 Ry

K-Point Sampling = 24 x 24 x 24

Experiment:

aNilsson and Nelin, Phys. Rev. B 6, 3777 (1972)bDolling, Proc. Symp. Inelastic Scattering Neutrons

in Solids and Liquids 2, 37 (1963)

Phonon spectrum of silicon

from density-functional perturbation theory

Page 6: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

Γ X Γ ΓR L

ω2

(cm

–2)

DFPT}

q2 q2 q2

2 × 105

105

0

Transformation of the phonon spectrum of silicon

By carrying out the transformation q → q2 and ω → ω2, all of

the phonon branches become linear close to the Γ point.

Page 7: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

Path Branch Linear Regression Perturbation Expression

Γ → Χ

[q 0 0]

q ∈ [0,1]

TA1,TA2 ω2 = 9.08×104 q2 ω2 = C44/(a2c2ρ) q2

LA ω2 = 2.64×105 q2 ω2 = C11/(a2c2ρ) q2

TO1,TO2 ω2 = 2.60×105 – 1.98×105 q2 ω2 = ω02 + D44/(a2c2ρ) q2

LO ω2 = 2.60×105 – 4.52×104 q2 ω2 = ω02 + D11/(a2c2ρ) q2

Γ → Κ

[q q 0]

q ∈ [0,3/4]

TA1 ω2 = 1.27×105 q2 ω2 = (C11 – C12)/(a2c2ρ) q2

TA2 ω2 = 1.88×105 q2 ω2 = 2C44/(a2c2ρ) q2

LA ω2 = 5.68×105 q2 ω2 = (C11 + C12 + 2C44)/(a2c2ρ) q2

TO1 ω2 = 2.60×105 – 2.52×105 q2 ω2 = ω02 + (D11 – D12)/(a2c2ρ) q2

TO2 ω2 = 2.60×105 – 3.70×105 q2 ω2 = ω02 + 2D44/(a2c2ρ) q2

LO ω2 = 2.60×105 – 2.40×105 q2 ω2 = ω02 + (D11 + D12 + 2D44)/(a2c2ρ) q2

Γ → L

[q q q]

q ∈ [0,1/2]

TA1,TA2 ω2 = 2.08×105 q2 ω2 = (C11 – C12 + C44)/(a2c2ρ) q2

LA ω2 =8.96×105 q2 ω2 = (C11 + 2C12+4C44)/(a2c2ρ) q2

TO1,TO2 ω2 = 2.60×105 – 4.24×105 q2 ω2 = ω02 + (D11 – D12 + D44)/(a2c2ρ) q2

LO ω2 = 2.60×105 – 4.17×105 q2 ω2 = ω02 + (D11 + 2D12 + 4D44)/(a2c2ρ) q2

Linear regression of the first-principles phonon spectrum

____

q in unit of 2π/a, ω in cm–1, and all other quantities are in S.I. units. a = 5.40×10–10 m; ρ = 2370 kg/m3; c = 3×108 m/s.

Page 8: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

_____

aCowley, Phys. Rev. Lett. 60, 2379 (1988)

LDA PBE PBEsol SW SWa Expt.

C11 (GPa) 160.2 156.9 161.5 152 151.4 168

C12 (GPa) 83.9 78.6 85.1 77.2 76.4 65

C44 (GPa) 56.9 56.5 54.9 56.7 56.4 80

D11 (GPa) –28.1 –27.3 –28.4 –118.7 — —

D12 (GPa) 121.2 127.7 127.6 8.1 — —

D44 (GPa) –122.8 –125.2 –120 –106.5 — —

Elastic constants of the acoustic and optical modes of silicon

from density-functional perturbation theory

We exploit the linear regression and perturbation results to obtain:

Page 9: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

Acoustic vibrational modes

Method = DFT-based FEM

Pore size = 1.37 nm

Number of nodes = 63,918

Pore volume fraction = 52%

5

10

15

20

25

30

35

40

0F

req

ue

ncy (

cm

–1)

Γ ΧA

B

C

C

B

A

Method = DFT-based SW

Pore size = ~1.5 nm

Number of atoms = 2,140

Pore volume fraction = ~52%

C

B

A

0

5

10

15

20

25

A

B

C

Fre

qu

en

cy (

cm

–1)

30

35

40

Γ Χ

Page 10: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

Acoustic vibrational modes (cont’d)

5

10

15

20

25

30

35

40

0F

req

ue

ncy (

cm

–1)

Γ ΧA

B

C

C

B

A

Method = DFT-based FEM

Pore size = 1.37 nm

Number of nodes = 63,918

Pore volume fraction = 52%

0

5

10

15

20

25

A

B

C

Fre

qu

en

cy (

cm

–1)

30

35

40

Γ

C

B

A

Χ

Method = DFT-based SW

Pore size = ~1.5 nm

Number of atoms = 2,140

Pore volume fraction = ~52%

Page 11: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

Acoustic vibrational modes (cont’d)

5

10

15

20

25

30

35

40

0F

req

ue

ncy (

cm

–1)

Γ Χ

A BC

C

B

A

Method = DFT-based FEM

Pore size = 1.37 nm

Number of nodes = 63,918

Pore volume fraction = 52%

0

5

10

15

20

25

A B

C

Fre

qu

en

cy (

cm

–1)

30

35

40

Γ

C

B

A

Χ

Method = DFT-based SW

Pore size = ~1.5 nm

Number of atoms = 2,140

Pore volume fraction = ~52%

Page 12: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

Method = DFT-based FEM

Pore size = 1.37 nm

Number of nodes = 63,918

Pore volume fraction = 52%

C

B

A

Χ

Optical vibrational modes

Γ

A B C

484

488

492

496

480

500

Fre

qu

en

cy (

cm

–1)

482

C

B

A

488

490

492

494

486

484

482

Fre

qu

en

cy (

cm

–1)

Γ Χ

A B C

Method = DFT-based SW

Pore size = ~1.5 nm

Number of atoms = 2,140

Pore volume fraction = ~52%

Page 13: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

C

B

A

Χ

Method = DFT-based FEM

Pore size = 1.37 nm

Number of nodes = 63,918

Pore volume fraction = 52%

Γ

Optical vibrational modes (cont’d)

A CB

484

488

492

496

480

500

Fre

qu

en

cy (

cm

–1)

C

B

A

488

490

492

494

486

484

482

Fre

qu

en

cy (

cm

–1)

Γ Χ

A CB

Method = DFT-based SW

Pore size = ~1.5 nm

Number of atoms = 2,140

Pore volume fraction = ~52%

Page 14: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

Optical vibrational modes (cont’d)

C

B

A

Χ

Method = DFT-based FEM

Pore size = 1.37 nm

Number of nodes = 63,918

Pore volume fraction = 52%

Γ

A CB

484

488

492

496

480

500

Fre

qu

en

cy (

cm

–1)

C

B

A

488

490

492

494

486

484

482

Fre

qu

en

cy (

cm

–1)

Γ Χ

A CB

Method = DFT-based SW

Pore size = ~1.5 nm

Number of atoms = 2,140

Pore volume fraction = ~52%

Page 15: Vibrational modes of silicon metalattices from …Vibrational modes of silicon metalattices from atomistic and finite-element calculations Yihuang Xiong, Weinan Chen, Ismaila Dabo

We have calculated the vibrational modes of silicon metalattices (silicon crystal

with an array of nanopores) using COMSOL.

We have determined the acoustic and optical phonon dispersion spectrum of

silicon metalattices in agreement with atomistic models.

Those results open up the possibilities to predict the influence of nanoscale

geometry on the optical response of silicon metalattices.

Funding: NSF-DMR 1420620

atomistic continuum

Summary