vapor:’a’desktop’environmentfor’interac7ve’ exploraon’of ... ·...

26
VAPOR: A desktop environment for interac7ve explora7on of large scale CFD simula7on data John Clyne , Alan Norton Na7onal Center for Atmospheric Research Boulder, CO USA This work is funded in part through U.S. Na7onal Science Founda7on grants 0325934 and 0906379, and through a TeraGrid GIG award. Computa7onal and Informa7on Systems Laboratory Na7onal Center for Atmospheric Research 9/23/2011 FRHPCS Sept. 23, 2011

Upload: others

Post on 15-Aug-2020

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

VAPOR:  A  desktop  environment  for  interac7ve  explora7on  of  large  scale  CFD  simula7on  data  

John  Clyne,  Alan  Norton  Na7onal  Center  for  Atmospheric  Research  

Boulder,  CO  USA  

 

This  work  is  funded  in  part  through  U.S.  Na7onal  Science  Founda7on  grants  03-­‐25934  and  09-­‐06379,  and  through  a  TeraGrid  GIG  award.      

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

FRHPCS  Sept.  23,  2011  

Page 2: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computational and Information Systems Laboratory National Center for Atmospheric Research

9/23/2011  

Outline  

•  Problem  mo7va7on  •  VAPOR  overview  –  what  makes  VAPOR  unique?  

–  Data  model  –  Earth  and  space  sciences  focus  –  Analysis  capabili7es  

•  Laptop  demonstra7on  •  Future  direc7ons  

Page 3: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computational and Information Systems Laboratory National Center for Atmospheric Research

9/23/2011  

Solar  thermal  star7ng  plume  Computed  at  the  dawn  of  terascale  compu7ng  

Mark  Rast,  NCAR/CU,  2003  

•  2003  -­‐  Simula7on  –  6  months  run  7me  –  504x504x2048  grid  –  5  variables  (u,v,w,rho,temp)  –  ~500  7me  steps  saved  –  9  TBs  storage  (4GBs/var/7mestep)  –  112  IBM  SP  RS/6000  processors    

•  2004  -­‐  Post-­‐processing  –  3  months  –  3  derived  variables  (vor7city  

components)    

•  2004  -­‐  Analysis  –  Abandoned!!!  

Why  did  Mark  give  up?  1.  Analysis  tools  didn’t  scale  2.  Analysis  tools  didn’t  have  features  needed  for  in-­‐depth  analysis      

•  2006  -­‐  Analysis  Resumed  •  2007  -­‐  New  Journal  Physics  publica7on  

Page 4: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

VAPOR  Project  Goals  •  Improve  scien7fic  produc7vity  by  facilita7ng  interac7ve  analysis  and  

explora7on  of  the  largest  numerical  simula7on  outputs  without  the  need  for  Herculean  interac7ve  compu7ng  resources  

 And…    •  Change  role  of  Advanced  3D  Visualiza7on  in  sciences  

 From:  a  scien7fic  finale  

•  Pictures  for  publica7on  and  presenta7on  •  Performed  by  visualiza7on  experts    

To:  an  integral  part  of  the  scien7fic  discovery  process  •  Visual  data  analysis  aiding  inves7ga7on  •  Performed  by  scien3sts  

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

Page 5: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computational and Information Systems Laboratory National Center for Atmospheric Research

9/23/2011  

Key  Components:  What  makes  VAPOR  different  from  other  tools?    

1.   Domain  specific:  earth  and  space  sciences  CFD  

2.   Data  analysis:  qualita7ve  and  quan7ta7ve  data  interroga7on  and  manipula7on  capabili7es  

3.   Terabytes  from  the  desktop:  operates  on  terascale  sized  simula7ons  with  only  desktop  compu7ng  

Page 6: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computational and Information Systems Laboratory National Center for Atmospheric Research

9/23/2011  

Key  component  (1)  Earth  and  space  sciences  CFD  focus  

•  Scien7fic  steering  commilee  guides  development  –  18  scien7sts  from  a  broad  set  of  disciplines  

•  Algorithms  –  General  purpose  

•  E.g.  volume  rendering,  isosurfaces,  cumng  planes,  histograms  –  Specialized  for  earth  sciences  CFD  

•  E.g.  steady  and  unsteady  flow  visualiza7on  •  Geo-­‐referenced  data  (e.g.  map  projec7ons,  lat-­‐lon  coordinates)  •  Physically  based  feature  tracking  

Page 7: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computational and Information Systems Laboratory National Center for Atmospheric Research

9/23/2011  

Key  component  (1)  Earth  sciences  CFD  focus  

•  Data  types  and  grids:  –  Regular  grids  

•  Uniform,  terrain  following,  staggered  –  Block  structured  AMR  –  Spherical  (prototype)  –  Temporal  data  with  non-­‐uniform  sampling  

•  Domain  specific  Graphical  User  Interface  1. Features  you  need  are  there  (hopefully!)  2. Features  you  don’t  need  are  not  there    

•  =>  improved  ease-­‐of-­‐use  

Page 8: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

Specialized  algorithms:  Spherical  shell  data  volume  rendering

•  Simula7on  of  deep  convec7on  in  convec7on  zones  of  solar-­‐like  stars

•  Grid  geometry  is  a  spherical  shell,  covering  all  la7tudes  and  longitudes  and  spans  a  depth  of  0.72-­‐0.96  solar  radii  

•  Non-­‐uniform  grid  spacing  in  la7tude  and  radial  axes  

•  Image  courtesy  of  Ben  Brown,  University  of  Colorado

Page 9: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

Specialized  algorithms:  Magne7c  field  line  advec7on  •  Combines  steady  and  unsteady  

flow  integra7on  to  advect  field  lines  in  a  7me-­‐varying  velocity  field  

–  Algorithm  proposed  by  Aake  Nordlund,  Neils  Bohr  Ins7tute  and  Pablo  Mininni,  U.  Buenos  Aires  [Mininni  et  al,  2008]  

S   SP

Time  T  

S’  

P’  

Time  T+1  

S’  

S

S’  

Data  courtesy  Pablo  Mininni  

Page 10: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computational and Information Systems Laboratory National Center for Atmospheric Research

9/23/2011  

Key  component  (2)  Data  analysis  

1.  Quan7ta7ve  informa7on  available  throughout  GUI  –  E.g.  histograms,  probes,  annota7on,  user  coordinates  

2.  GUI  supports  visualiza5on-­‐aided  analysis  3.  Coupled  with  IDL®  to  calculate  and  visualize  derived  quan77es  in  

region-­‐of-­‐interest  –  Immediate  analysis  applied  to  data  iden7fied  in  visualiza7on  –  Immediate  visualiza7on  of  derived  quan77es  calculated  in  IDL  

•  Iden7fy  region  of  interest  •  Export  to  IDL  session  •  Import  result  into  visualiza7on  

4.  Integrated  Python  (numpy/scipy)  calcula7on  engine  

Page 11: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computational and Information Systems Laboratory National Center for Atmospheric Research

9/23/2011  

Key  Component  (3)  Terabyte  data  handling  from  a  desktop  PC  (or  laptop)  

•  Progressive  data  access  –  Permit  speed/quality  tradeoffs  –  Region  of  Interest  (ROI)  iden7fica7on  and  isola7on  

•  Two  wavelet-­‐based  models:  –  VDC1:  mul7resolu7on  –  VDC2:  mul7resolu7on  and  coefficient  priori7za7on  

Combina7on  of  visualiza7on,  ROI  isola7on,  and  mul7resolu7on  data  representa7on  that  provides  sufficient  data  reduc3on  to  enable  interac7ve  work  

Visual data browsing

Data manipulation

Quantitative analysis

Refine

Coarsen Think  Google  Earth!!!  

Page 12: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Compu7ng  technology  performance  increases  from  1977  to  2006  

Orders  of  magnitude  difference  between    improvements  in  CPU  speed  and  IO  bandwidth  

Balance  between  compute  and  IO  is  changing  rapidly  

Moore’s  Law  does  not  apply  to  these!!!  

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

Page 13: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Storage  capa

city  &  bandwid

th  

What  does  this  mean  for  data  analysis  and  visualiza3on?  

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

Time  

Page 14: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computational and Information Systems Laboratory National Center for Atmospheric Research

9/23/2011  

Defini7on:  A  system  is  interac5ve  if  the  7me  between  a  user  event  and  the  response  to  that  event  is  short  enough  maintain  my  full  alen7on  

 

If  the  response  7me  is…  1-­‐5  seconds  :      I’m  engaged  5-­‐60  seconds  :  I’m  tapping  my  foot  1-­‐3  minutes  :        I’m  reading  email  >  3  minutes  :        I’ve  forgolen  why  I  asked  the  ques7on!  

What  is  meant  by  interac5ve  analysis?  Mark  Rast,  University  of  Colorado,  2005  

Wait time in seconds for reading a 3D scalar volume

0.01

0.1

1

10

100

1000

10000

100000

512 804 1024 4096 12288

Volume resolution

Tim

in

seco

nd

s

100 MB/sec

400 MB/sec

4000 MB/sec

24,000 MB/sec

Star7ng  plume  

ES,  Kaneda  2003   NSF  Track  1  turbulence  app.  

Desktop  

Worksta7on  

Vis  cluster  

10%  Jaguar  Interac7ve  

(7  TBs)  (2  GBs)   (4  GBs)   (262  GBs)  

Inadequate  IO  performance  alone  can  preclude  interac3ve  work  such  as  visualiza3on  and  analysis!!!    What  can  be  done?  

Page 15: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

Discrete  Wavelet  Transforms  •  Discrete  Fourier  transform    

•  Discrete  Wavelet  Transform  

–  Proper7es  •  Mul7resolu7on  representa7on  •  Efficient:  Linear  7me  complexity  •  Adaptable:  Can  represent  func7ons  with  discon7nui7es,  bounded  domains,  

and  arbitrary  topology  •  Time  frequency  localiza7on:  Many  coefficients  are  zero  or  close  to  zero  

f t( ) =1N

atej 2πnt N

n= 0

N−1

∑ 0 ≤ t ≤ N −1( )

f t( ) = c k( )k∑ φk t( ) + d j k( )

j= 0

log2 N

∑k∑ ψ j,k t( )

φ t( ) = hφ k( )k∑ 2φ 2t − k( ), k ∈ Z scaling function

ψ t( ) = hψ k( )k∑ 2φ 2t − k( ), k ∈ Z wavelet function

Scaling  term  (coarse  representa7on  of  signal)  

Detail  term  (high  frequency  components  of  signal)  

Page 16: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

Wavelet  compression  and  progressive  access  (VDC1)  Frequency  trunca3on  method  

•  Truncate  “j”  parameter  of  expansion:      •  Provides  coarsened  approxima7on  at  power-­‐of-­‐two  

increments  •  Good    

–  Simple  –  Fast  –  Maintains  structure  of  original  grid    

•  Bad:  –  Limited  to  power-­‐of-­‐two  reduc7ons  –  Compression  quality  

f t( ) = c k( )k∑ φk t( ) + d j k( )

j= 0

log2 N

∑k∑ ψ j,k t( )

Page 17: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

•  Goal:  priori7ze  coefficients  used  in  linear  expansion  

f t( ) = anu t( )n= 0

N−1

∑ , original f (t)

ˆ f t( ) = amu t( )m= 0

M −1

∑ , M < N( ), compressed f (t)

L2 = f (t) − ˆ f (t)2

2

L2 = aπ i( )( )2

=2

2

f t( )− ˆ f t( ) , where aπ i( )i= M

N−1

∑ are discarded coefficients

If  u(t)  (φ(t)  and  ψ(t)  in  case  of  wavelet  expansion  func7ons)  are  orthonormal,  then  

•   The  error  is  the  sum  of  the  squares  of  the  coefficients  we  leave  out!  •   So  to  minimize  the  L2  error,  we  simply  discard  (or  delay  transfer)  the  smallest  coefficients!  •   If  discarded  coefficients  are  zero,  there  is  no  informa7on  loss!  

orthonormal : uk t( ),ul t( ) = u∫ kt( )ul t( )dt =

0, k ≠ l1, k = l$ % &

' ( )

L2  error  given  by:  

Wavelet  compression  and  progressive  access  (VDC2)  Coefficient  priori3za3on  method  

Page 18: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computational and Information Systems Laboratory National Center for Atmospheric Research

9/23/2011  

Solar  thermal  plume  at  varying  resolu7ons  (VDC1)  [M.  Rast,  2006]  

5042x2048  (na7ve)  

2522x1024  1262x512  632x256  

What  have  we  lost???  

Page 19: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Magne7c  field  line  integra7on  resolu7on  comparison  (VDC1)  

15363  7683  

3843  1923  

• 15363  MHD  Simula7on  

• 4th  order  Runge-­‐Kule  

• Mininni  et  al.  (2007)  

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

Page 20: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

100:1  Compression  10243  Taylor-­‐Green  turbulence  (enstrophy  field)  [P.  Mininni,  2006]  

No  compression   Coefficient  priori7za7on  (VDC2)  Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

Page 21: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

40963  Homogenous  turbulence  simula7on  output  visualized  with  VAPOR  2.0  Volume  rendering  of  original  enstrophy  field  and  800:1  compressed  field  

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

Data  provided  by  P.K.  Yeung  at  Georgia  Tech  and  Diego  Donzis  at  Texas  A&M  

Original:  275GBs/field   800:1  compressed:  0.34GBs/field  

9/23/2011  

Page 22: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Live  demos  on  a  laptop  

MHD  decay    [Mininni  et  al.,  PRL  97,  244503  (2006)]  –  15363,  pseudo-­‐spectral  method  

–  12GBs/variable/7me-­‐step  –  Exhibits  new  finding  in  MHD:  current  

“folding”  and  “roll-­‐up”  

 Compressible  convec7on  

simula7on  [Rast,  et  al,  2000]  –  5122x256  –  horizontally  periodic,  dimensions  

6x6x1(deep)  constant  heat  flux  into  the  bolom,  constant  temperature  on  top  

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

Page 23: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

Future  direc7ons  

•  Broadening  scien7fic  end  user  community  –  E.g.  Weather  researchers,  ocean  modelers  

•  Geo-­‐referenced  2D  &  3D  data  •  Stretched  grids  •  Missing  &  undefined  data  

•  VAPOR  progressive  access  data  model    –  VAPOR  data  importers  for  VisIt  and  ParaView  –  Fortran-­‐callable,  distributed  memory  (MPI)  API  

•  Extensible  architecture    –  Facilitate  3rd  party  development  

Page 24: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computa7onal  and  Informa7on  Systems  Laboratory  Na7onal  Center  for  Atmospheric  Research  

9/23/2011  

VAPOR  Summary  •  Progressive  data  access  

–  Enables  interac7ve  explora7on  of  massive  datasets  –  Hypothesis  may  be  interac3vely  explored  with  coarsened  

data  and  later  validated  (perhaps  non-­‐interac3vely)  with  na3ve  data  

•  Visualiza7on  aided  data  analysis  –  Intended  to  be  used  by  scien7sts,  not  visualiza7on  specialist  –  Requirements  defined  by  a  steering  commilee  of  scien7sts  

•  Narrow  focus:  Earth  &  space  CFD  simula7ons  –  Algorithms  –  Data  types  

•  Emphasis  on  desktop/laptop  pla}orms,  not  on  visualiza7on  supercomputers  

Page 25: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computational and Information Systems Laboratory National Center for Atmospheric Research

9/23/2011  

Acknowledgements  •  Steering  Commilee  

–  Benjamin  Brown  –  U.  of  Wisconsin  –  Nic  Brummell  –  CU  –  Gerry  Creager  –  Texas  A&M  –  Yuhong  Fan  -­‐  NCAR,  HAO  –  Aimé  Fournier  –  NCAR,  IMAGe  –  Pablo  Mininni  -­‐  NCAR,  IMAGe  –  Aake  Nordlund  -­‐  University  of  

Copenhagen  –  Leigh  Orf  -­‐  Central  Michigan  U.  –  Yannick  Ponty  -­‐  Observatoire  de  la  

Cote  d'Azur  –  Thara  Prabhakaran  -­‐  U.  of  Georgia  –  Annick  Pouquet  -­‐  NCAR,  ESSL  –  Mark  Rast  -­‐  CU  –  Duane  Rosenberg  -­‐  NCAR,  IMAGe  –  Malhias  Rempel  -­‐  NCAR,  HAO  –  Geoff  Vasil,  CU  

•  Developers  –  John  Clyne  –  NCAR,  CISL  –  Dan  Lagreca  –  NCAR,  CISL  –  Alan  Norton  –  NCAR,  CISL  –  Kenny  Gruchalla  –  NREL  –  Victor  Snyder  –  CSM  –  Kendal  Southwick  –  NCAR,  CISL    

•  Research  Collaborators  –  Kwan-­‐Liu  Ma  -­‐  U.C.  Davis  –  Hiroshi  Akiba  -­‐  U.C.  Davis  –  Han-­‐Wei  Shen  -­‐  Ohio  State  –  Liya  Li  -­‐  Ohio  State    

•  Systems  Support    –  Joey  Mendoza  -­‐  NCAR,  CISL  –  Pam  Gilman  -­‐  NCAR,  CISL  

Page 26: VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of ... · VAPOR:’A’desktop’environmentfor’interac7ve’ exploraon’of’large’scale’CFD’simulaon’data

Computational and Information Systems Laboratory National Center for Atmospheric Research

9/23/2011  

Ques7ons???  

www.vapor.ucar.edu  [email protected]