vada lab.sungkyunkwan univ. 1 reduandant binary-based booth multipler 곱셈은 덧셈과 함께...

29
SungKyunKwan Univ . 1 VADA Lab. Reduandant Binary-base d Booth Multipler 곱곱곱 곱곱곱 곱곱 correlation, convolution, filtering, DFT(Discrete Fourier Transform) 곱곱 곱곱 곱곱곱 곱곱 곱곱곱 곱곱곱 곱곱 곱곱 곱곱곱곱 곱곱곱곱 . 곱곱 곱곱 곱곱 곱곱곱곱 곱곱곱곱 곱곱곱곱곱 곱곱곱 곱곱 곱곱곱곱곱곱 Booth 곱곱곱곱 , 곱곱곱곱곱 곱곱곱 adder array 곱곱 Wallace Tree 곱 곱곱곱곱 곱곱곱곱곱 . 곱 곱곱곱곱곱 2 곱 곱곱곱 곱곱 Redundant Binary 곱곱 ( -1, 0, 1 ) 곱 곱곱곱곱 Booth 곱곱곱곱 곱곱곱곱곱 , 곱곱 Carry-Propagat ion-Free Adder 곱 곱곱곱곱 곱곱곱곱곱 곱곱곱 곱곱곱 곱곱곱곱 곱곱곱곱곱 .

Upload: charlene-bethany-short

Post on 05-Jan-2016

224 views

Category:

Documents


4 download

TRANSCRIPT

  • Basic Encoding Method (BEM)

    Multibit Recoding Booth . . , ,

    , ,

    , RB Y(n-bit) , ,

    VADA Lab.

  • Basic Encoding Method (BEM) -

    4-bit

    0000

    0001

    0010

    0011

    0100

    0101

    0110

    0111

    VADA Lab.

  • Extended Encoding Method (EEM)

    BEM digits({ , 0, 1 }) , . Extended Encoding Method(EEM) . EEM Virtual MSB( ) . ( )

    ,

    ( )

    ,

    VADA Lab.

  • Extended Encoding Method (EEM) -

    4-bit

    0000

    0001

    0010

    0011

    0100

    0101

    0110

    0111

    1001

    1010

    1011

    1100

    1101

    1110

    1111

    VADA Lab.

  • Conversion

    2 EEM . ,

    ,

    8 bits

    VADA Lab.

  • Redundant Binary (RB) Booth

    RB Booth .Recoded Digit ( )= Y2i-1 + Y2i -2Y2i+1 ( Y-1=0) Receded Digit ( )= - ( Y2i-1 + Y2i -2Y2i+1) ( Y-1=0)Recoded Digit

    y2i-1

    y2i

    y2i+1

    Recoded

    Digit

    Operation

    on X

    0

    0

    0

    0

    1

    1

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    1

    0

    1

    0

    1

    0

    1

    0

    +1

    +1

    +2

    -2

    -1

    -1

    0

    0X

    +1X

    +1X

    +2X

    -2X

    -1X

    -1X

    0X

    y2i-1

    y2i

    y2i+1

    Recoded

    Digit

    Operation

    on X

    0

    0

    0

    0

    1

    1

    1

    1

    0

    0

    1

    1

    0

    0

    1

    1

    0

    1

    0

    1

    0

    1

    0

    1

    0

    -1

    -1

    -2

    +2

    +1

    +1

    0

    0X

    -1X

    -1X

    -2X

    +2X

    +1X

    +1X

    0X

    VADA Lab.

  • Redundant Binary (RB) Booth

    Example

    carry propagation .Sign extension .4:2 compressor . area, speed power .

    VADA Lab.

  • Block Diagram

    VADA Lab.

  • - Area

    area

    1092862633

    509339552760

    1076095816365

    200971715111647

    BW

    PRB

    DW02_mult

    bits

    area(gates)

    Area

    sheet4

    1092862633

    509339552760

    1076095816365

    200971715111647

    BW

    PRB

    DW02_mult

    bits

    gates

    AREA

    Sheet1

    BWPRBDW02_mult

    81092862633

    16509339552760

    241076095816365

    32200971715111647

    Delay

    44.5931.8456.2

    93.8746.63114.92

    121.46864.96164.5

    195.63679.48283.03

    BW

    PRB

    DW02_mult

    bits

    delay(ns)

    D e l a y

    Sheet2

    BWPRBDW02_mult

    844.5931.8456.2

    1693.8746.63114.92

    24121.46864.96164.5

    32195.63679.48283.03

    power

    177.8834110.6359158.9884

    684.4495527.84191284.2

    1312.44841218.39444226.9

    2278.59242149.97526028.4

    BW

    PRB

    DW02_mult

    Bits

    Power(uW)

    Dissipation Power

    Sheet3

    BWPRBDW02_mult

    8177.8834110.6359158.9884

    16684.4495527.84191284.2

    241312.44841218.39444226.9

    322278.59242149.97526028.4

    Multiplier

    Bits

    DW02_mult

    BW

    PRB

    8

    633

    1092

    862

    16

    2760

    5093

    3955

    24

    6365

    10760

    9581

    32

    11647

    20097

    17151

    VADA Lab.

  • - Delay

    area

    1092862633

    509339552760

    1076095816365

    200971715111647

    BW

    PRB

    DW02_mult

    bits

    area(gates)

    Area

    sheet4

    1092862633

    509339552760

    1076095816365

    200971715111647

    BW

    PRB

    DW02_mult

    bits

    area(gates)

    AREA

    Sheet1

    BWPRBDW02_mult

    81092862633

    16509339552760

    241076095816365

    32200971715111647

    Delay

    44.5931.8456.2

    93.8746.63114.92

    121.46864.96164.5

    195.63679.48283.03

    BW

    PRB

    DW02_mult

    bits

    delay(ns)

    D e l a y

    sheet5

    44.5931.8456.2

    93.8746.63114.92

    121.46864.96164.5

    195.63679.48283.03

    BW

    PRB

    DW02_mult

    bits

    delay(ns)

    DELAY

    Sheet2

    BWPRBDW02_mult

    844.5931.8456.2

    1693.8746.63114.92

    24121.46864.96164.5

    32195.63679.48283.03

    power

    177.8834110.6359158.9884

    684.4495527.84191284.2

    1312.44841218.39444226.9

    2278.59242149.97526028.4

    BW

    PRB

    DW02_mult

    Bits

    Power(uW)

    Dissipation Power

    sheet6

    177.8834110.6359158.9884

    684.4495527.84191284.2

    1312.44841218.39444226.9

    2278.59242149.97526028.4

    BW

    PRB

    DW02_mult

    bits

    power dissipation(uw)

    POWER DISSIPATION

    Sheet3

    BWPRBDW02_mult

    8177.8834110.6359158.9884

    16684.4495527.84191284.2

    241312.44841218.39444226.9

    322278.59242149.97526028.4

    Multiplier

    Bits

    DW02_mult

    BW

    PRB

    8

    56.20

    44.59

    31.84

    16

    114.92

    93.87

    46.63

    24

    164.50

    121.468

    64.96

    32

    283.03

    195.636

    79.48

    VADA Lab.

  • - Power Dissipation

    area

    1092862633

    509339552760

    1076095816365

    200971715111647

    BW

    PRB

    DW02_mult

    bits

    area(gates)

    Area

    sheet4

    1092862633

    509339552760

    1076095816365

    200971715111647

    BW

    PRB

    DW02_mult

    bits

    area(gates)

    AREA

    Sheet1

    BWPRBDW02_mult

    81092862633

    16509339552760

    241076095816365

    32200971715111647

    Delay

    44.5931.8456.2

    93.8746.63114.92

    121.46864.96164.5

    195.63679.48283.03

    BW

    PRB

    DW02_mult

    bits

    delay(ns)

    D e l a y

    sheet5

    44.5931.8456.2

    93.8746.63114.92

    121.46864.96164.5

    195.63679.48283.03

    BW

    PRB

    DW02_mult

    bits

    delay(ns)

    DELAY

    Sheet2

    BWPRBDW02_mult

    844.5931.8456.2

    1693.8746.63114.92

    24121.46864.96164.5

    32195.63679.48283.03

    power

    177.8834110.6359158.9884

    684.4495527.84191284.2

    1312.44841218.39444226.9

    2278.59242149.97526028.4

    BW

    PRB

    DW02_mult

    Bits

    Power(uW)

    Dissipation Power

    sheet6

    177.8834110.6359158.9884

    684.4495527.84191284.2

    1312.44841218.39444226.9

    2278.59242149.97526028.4

    BW

    PRB

    DW02_mult

    bits

    power dissipation(uw)

    POWER DISSIPATION

    Sheet3

    BWPRBDW02_mult

    8177.8834110.6359158.9884

    16684.4495527.84191284.2

    241312.44841218.39444226.9

    322278.59242149.97526028.4

    Multiplier

    Bits

    DW02_mult

    BW

    PRB

    8

    158.9884

    177.8834

    110.6359

    16

    1284.2

    684.4495

    527.8419

    24

    4226.9

    1312.4484

    1218.3944

    32

    6028.4

    2278.5924

    2149.9752

    VADA Lab.

  • Redundant Binary , Booth . .Booth n/2 .Redundant Binary carry-propagation-free adder , . encoding , .Redundant Binary array , Wallace tree Booth . Digital Signal Processing(DSP) .

    VADA Lab.

  • References

    A. Chandrakasan and R. Brodersen, Low Power CMOS Design Kluwer Academic Publishers, 1995.J. Rabaey and M. Pedram, Ed., ow Power Design Methodologies Kluwer Academic Publishers, 1995.Proceedings of the IEEE, Special Issue on Low Power, April 1995.

    VADA Lab.

    Booth Multiplier , ,

    VADA Lab.

    Instruction Level Power AnalysisEstimate power dissipation of instruction sequences and power dissipation of a programEb : base cost of individual instructions Es : circuit state change effects

    EM : the overall energy cost of a program Bi : the base cost of type i instruction Ni : the number of type i instruction Oi,j : the cost occurred when a type i instruction is followed by a type j instruction Ni,j : the number of occurrences when a type i instruction is immediately followed by a type j instruction

    VADA Lab.

    Instruction orderingDevelop a technique of operand swappingRecoding weight : necessary operation cost of operands

    Wtotal : total recoding weight of input operand Wi : weight of individual recoded digit i in Booth Multiplier Wb : base weight of an instruction Winter : inter-operation weight of instructionsTherefore, if an operand has lower Wtotal , put it in the second input(multiplier).

    VADA Lab.

    RESULT

    VADA Lab.

    References[1] Gary K. Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Publishers.[2] Jan M. Rabaey, Massoud Pedram, "Low Power Design Methodologies", Kluwer Academic Publishers.[3] Abdellatif Bellaouar, Mohamed I. Elmasry, "Low-Power Digital VLSI Design Circuits And Systems", Kluwer Academic Publishers.[4] Anantha P. Chandrakasan, Robert W. Brodersen, "Low Power Digital CMOS Design", Kluwer Academic Publishers.[5] Dr. Ralph Cavin, Dr. Wentai Liu, "1996 Emerging Technologies : Designing Low Power Digital Systems"[6] Muhammad S. Elrabaa, Issam S. Abu-Khater, Mohamed I. Elmasry, "Advanced Low-Power Digital Circuit Techniques", Kluwer Academic Publishers.

    VADA Lab.

    References[BFKea94] R. Bechade, R. Flaker, B. Kaumann, and et. al. A 32b 66 mhz 1.8W Microprocessor". In IEEE Int. Solid-State Circuit Conference, pages 208-209, 1994.[BM95] Bohr and T. Mark. Interconnect Scaling - The real limiter to high performance ULSI". In proceedings of 1995 IEEE international electron devices meeting, pages 241-242, 1995.[BSM94] L. Benini, P. Siegel, and G. De Micheli. Saving Power by Synthesizing Gated Clocks for Sequential Circuits". IEEE Design and Test of Computers, 11(4):32-41, 1994.[GH95] S. Ganguly and S. Hojat. Clock Distribution Design and Verification for PowerPC Microprocessor". In International Conference on Computer-Aided Design, page Issues in Clock Designs, 1995.[MGR96] R. Mehra, L. M. Guerra, and J. Rabaey. Low Power Architecture Synthesis and the Impact of Exploiting Locality". In Journal of VLSI Signal Processing,, 1996.