uva-dare (digital academic repository) synthetic biology ... · references 1. woods dr. 1995.the...

16
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) UvA-DARE (Digital Academic Repository) Synthetic biology of cyanobacterial cell factories Angermayr, S.A. Link to publication Citation for published version (APA): Angermayr, S. A. (2014). Synthetic biology of cyanobacterial cell factories. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 26 Jun 2020

Upload: others

Post on 18-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Synthetic biology of cyanobacterial cell factories

Angermayr, S.A.

Link to publication

Citation for published version (APA):Angermayr, S. A. (2014). Synthetic biology of cyanobacterial cell factories.

General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, statingyour reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Askthe Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,The Netherlands. You will be contacted as soon as possible.

Download date: 26 Jun 2020

Page 2: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References ___________________________________________________________________________

Page 3: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

1. Woods DR. 1995. The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–264.

2. Demain AL. 2000. Microbial biotechnology. Trends Biotechnol. 18:26–31. 3. Slonczewski J, Foster JW. 2010. Microbiology: An Evolving ScienceSecond edition. W. W. Norton &

Company, New York. 4. Smit H, Reijnder W, Van der Dorn J, Willemsen P. 2011. Microcanon - Wat je beslist moet weten

over microbiologie. Veen Magazines B.V., Diemen, The Netherlands. 5. Demain AL. 1990. Achievements in microbial technology. Biotechnol. Adv. 8:291–301. 6. Silver PA, Way JC, Arnold FH, Meyerowitz JT. 2014. Synthetic biology: Engineering explored.

Nature 509:166–167. 7. Keasling JD. 2010. Manufacturing Molecules Through Metabolic Engineering. Science 330:1355 –

1358. 8. Holtz WJ, Keasling JD. 2010. Engineering static and dynamic control of synthetic pathways. Cell

140:19–23. 9. Nielsen J, Keasling JD. 2011. Synergies between synthetic biology and metabolic engineering. Nat.

Biotechnol. 29:693–695. 10. Farmer WR, Liao JC. 2000. Improving lycopene production in Escherichia coli by engineering

metabolic control. Nat. Biotechnol. 18:533–537. 11. Wijffels RH, Kruse O, Hellingwerf KJ. 2013. Potential of industrial biotechnology with cyanobacteria

and eukaryotic microalgae. Curr. Opin. Biotechnol. 24:405–413. 12. Berg JJ, Tymoczko JL, Stryer L. 2006. Biochemistry, 6th ed. W.H. Freeman and Company, New

York. 13. Blankenship RE. 2010. Early Evolution of Photosynthesis. Plant Physiol. 154:434–438. 14. Schopf JW. 2012. The Fossil Record of Cyanobacteria, p. 15–36. In Ecology of Cyanobacteria II -

Their Diversity in Space and Time. Springer, Dordrecht Heidelberg New York London. 15. Bryant DA. 2014. A Brief History of Cyanobacterial Research: Past, Present, and Future Prospects, p.

1–5. In The Cell Biology of Cyanobacteria. Caister Academic Press, Norfolk, UK. 16. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic Assignments, Strain

Histories and Properties of Pure Cultures of Cyanobacteria. J. Gen. Microbiol. 111:1 –61. 17. Paerl HW. 2012. Marine Plankton, p. 127–153. In Ecology of Cyanobacteria II - Their Diversity in

Space and Time. Springer, Dordrecht Heidelberg New York London. 18. Whitton BA. 2012. Ecology of Cyanobacteria II - Their Diversity in Space and Time. Springer,

Dordrecht Heidelberg New York London. 19. Stal LJ, Moezelaar R. 1997. Fermentation in cyanobacteria. FEMS Microbiol. Rev. 21:179–211. 20. Schneegurt MA, Sherman DM, Nayar S, Sherman LA. 1994. Oscillating behavior of carbohydrate

granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J. Bacteriol. 176:1586–1597.

21. Hahn A, Schleiff E. 2014. The Cell Envelope, p. 29–87. In The Cell Biology of Cyanobacteria. Caister Academic Press, Norfolk, UK.

22. Battchikova N, Aro E-M. 2014. Proteomics in Revealing the Composition, Acclimation and Biogenesis of Thylakoid Membranes, p. 89–120. In The Cell Biology of Cyanobacteria. Caister Academic Press, Norfolk, UK.

23. Guglielmi G, Cohen-Bazire G, Bryant DA. 1981. The structure of Gloeobacter violaceus and its phycobilisomes. Arch. Microbiol. 129:181–189.

24. Cooley JW, Vermaas WF. 2001. Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: capacity comparisons and physiological function. J. Bacteriol. 183:4251–4258.

25. Bussel AN, Kehoe DM. 2014. Chromatic Acclimation: a Many-coloured Mechanism for Maximizing Photosynthetic Light Harvesting Efficiency, p. 149–169. In The Cell Biology of Cyanobacteria. Caister Academic Press, Norfolk, UK.

26. Cameron JC, Sutter M, Kerfeld CA. 2014. The Carboxysome: Function, Structure and CEllular Dynamics, p. 171–188. In The Cell Biology of Cyanobacteria. Caister Academic Press, Norfolk, UK.

27. Alric J, Lavergne J, Rappaport F. 2010. Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions. Biochim. Biophys. Acta BBA - Bioenerg. 1797:44–51.

28. Allen JF. 2003. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci. 8:15–19.

29. Vermaas W. 2013. Solar-Powered Production of Biofuels and Other Petroleum Substitutes by Cyanobacteria: Stoichiometries of Reducing Equivalents and Chemical Energy, and Energy Conversion

178

Page 4: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

Efficiency, p. 353–357. In Photosynthesis Research for Food, Fuel and the Future. Springer Berlin Heidelberg.

30. Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I. 2012. Detailing the Optimality of Photosynthesis in Cyanobacteria Through Systems Biology Analysis. Proc. Natl. Acad. Sci.

31. Maarleveld TR, Boele J, Bruggeman FJ, Teusink B. 2014. A Data Integration and Visualization Resource for the Metabolic Network of Synechocystis sp. PCC 6803. Plant Physiol. 164:1111–1121.

32. Abed RMM, Dobretsov S, Sudesh K. 2009. Applications of cyanobacteria in biotechnology. J. Appl. Microbiol. 106:1–12.

33. Lem NW, Glick BR. 1985. Biotechnological uses of cyanobacteria. Biotechnol. Adv. 3:195–208. 34. Rezanka T, Dembitsky VM. 2006. Metabolites produced by cyanobacteria belonging to several species

of the family Nostocaceae. Folia Microbiol. (Praha) 51:159–182. 35. Herrero A, Flores E. 2014. The Cell Biology of Cyanobacteria. Caister Academic Press, Norfolk, UK. 36. Scientists at New England Biolabs. 2011. Catalog & Technical Reference. New England Biolabs, Inc.,

Ipswich, MA, USA. 37. Betenbaugh M, Bentley W. 2008. Metabolic engineering in the 21st century: meeting global challenges

of sustainability and health. Curr. Opin. Biotechnol. 19:411–413. 38. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao

JC. 2008. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10:305–311. 39. Papoutsakis ET. 2008. Engineering solventogenic clostridia. Curr. Opin. Biotechnol. 19:420–429. 40. Sticklen MB. 2008. Plant genetic engineering for biofuel production: towards affordable cellulosic

ethanol. Nat. Rev. Genet. 9:433–443. 41. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. 2008. A green light for engineered algae:

redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19:430–436. 42. Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25:294–306. 43. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. 2006. Environmental, economic, and energetic costs

and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. U. S. A. 103:11206–11210. 44. Li X, Weng J-K, Chapple C. 2008. Improvement of biomass through lignin modification. Plant J. Cell

Mol. Biol. 54:569–581. 45. Hellingwerf KJ, Teixeira de Mattos MJ. 2009. Alternative routes to biofuels: light-driven biofuel

formation from CO2 and water based on the “photanol” approach. J. Biotechnol. 142:87–90. 46. Hasty J, McMillen D, Collins JJ. 2002. Engineered gene circuits. Nature 420:224–230. 47. Deng MD, Coleman JR. 1999. Ethanol synthesis by genetic engineering in cyanobacteria. Appl.

Environ. Microbiol. 65:523–528. 48. Fu P. 2009. Genome-scale modeling of Synechocystis sp. PCC 6803 and prediction of pathway

insertion. J. Chem. Technol. Biotechnol. 84:473–483. 49. Fröhlich C. 2006. Solar Irradiance Variability Since 1978. Space Sci. Rev. 125:53–65. 50. Suresh T, Desa E, Desai RGP, Jayaraman A, Mehra P. 1996. Photosynthetically available radiation

in the central and eastern Arabian Sea. Curr. Sci. 71:883–887. 51. Grigorieva G, Shestakov S. 1982. Transformation in the cyanobacterium Synechocystis sp. 6803.

FEMS Microbiol. Lett. 13:367–370. 52. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M,

Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S. 1996. Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-coding Regions. DNA Res. 3:109 –136.

53. Nakamura Y, Kaneko T, Tabata S. 2000. CyanoBase, the genome database for Synechocystis sp. strain PCC6803: status for the year 2000. Nucleic Acids Res. 28:72.

54. Vermaas WF, Williams JG, Rutherford AW, Mathis P, Arntzen CJ. 1986. Genetically engineered mutant of the cyanobacterium Synechocystis 6803 lacks the photosystem II chlorophyll-binding protein CP-47. Proc. Natl. Acad. Sci. U. S. A. 83:9474–9477.

55. Dzelzkalns VA, Bogorad L. 1986. Stable transformation of the cyanobacterium Synechocystis sp. PCC 6803 induced by UV irradiation. J. Bacteriol. 165:964–971.

56. Ikeuchi M, Tabata S. 2001. Synechocystis sp. PCC 6803 - a useful tool in the study of the genetics of cyanobacteria. Photosynth. Res. 70:73–83.

57. Koksharova OA, Wolk CP. 2002. Genetic tools for cyanobacteria. Appl. Microbiol. Biotechnol. 58:123–137.

58. Herrero A, Muro-Pastor AM, Flores E. 2001. Nitrogen control in cyanobacteria. J. Bacteriol. 183:411–425.

179

Page 5: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

59. Muro-Pastor AM, Herrero A, Flores E. 2001. Nitrogen-regulated group 2 sigma factor from Synechocystis sp. strain PCC 6803 involved in survival under nitrogen stress. J. Bacteriol. 183:1090–1095.

60. Kufryk GI, Vermaas WFJ. 2003. Slr2013 is a novel protein regulating functional assembly of photosystem II in Synechocystis sp. strain PCC 6803. J. Bacteriol. 185:6615–6623.

61. Osanai T, Kanesaki Y, Nakano T, Takahashi H, Asayama M, Shirai M, Kanehisa M, Suzuki I, Murata N, Tanaka K. 2005. Positive Regulation of Sugar Catabolic Pathways in the Cyanobacterium Synechocystis sp. PCC 6803 by the Group 2 σ Factor SigE. J. Biol. Chem. 280:30653 –30659.

62. Osanai T, Imamura S, Asayama M, Shirai M, Suzuki I, Murata N, Tanaka K. 2006. Nitrogen Induction of Sugar Catabolic Gene Expression in Synechocystis sp. PCC 6803. DNA Res. 13:185 –195.

63. Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M. 2001. DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806.

64. Suzuki I, Kanesaki Y, Mikami K, Kanehisa M, Murata N. 2001. Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol. Microbiol. 40:235–244.

65. Williams JGK. 1988. Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol. 167C:766–778.

66. Chu HA, Nguyen AP, Debus RJ. 1994. Site-directed photosystem II mutants with perturbed oxygen-evolving properties. 1. Instability or inefficient assembly of the manganese cluster in vivo. Biochemistry (Mosc.) 33:6137–6149.

67. Montgomery BL. 2007. Sensing the light: photoreceptive systems and signal transduction in cyanobacteria. Mol. Microbiol. 64:16–27.

68. Wada H, Gombos Z, Murata N. 1990. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347:200–203.

69. Anderson SL, McIntosh L. 1991. Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J. Bacteriol. 173:2761–2767.

70. Aurora R, Hihara Y, Singh AK, Pakrasi HB. 2007. A network of genes regulated by light in cyanobacteria. Omics J. Integr. Biol. 11:166–185.

71. Hübschmann T, Yamamoto H, Gieler T, Murata N, Börner T. 2005. Red and far-red light alter the transcript profile in the cyanobacterium Synechocystis sp. PCC 6803: impact of cyanobacterial phytochromes. FEBS Lett. 579:1613–1618.

72. Gill RT, Katsoulakis E, Schmitt W, Taroncher-Oldenburg G, Misra J, Stephanopoulos G. 2002. Genome-wide dynamic transcriptional profiling of the light-to-dark transition in Synechocystis sp. strain PCC 6803. J. Bacteriol. 184:3671–3681.

73. Imamura S, Tanaka K, Shirai M, Asayama M. 2006. Growth phase-dependent activation of nitrogen-related genes by a control network of group 1 and group 2 sigma factors in a cyanobacterium. J. Biol. Chem. 281:2668–2675.

74. Harrison MA, Tsinoremas NF, Allen JF. 1991. Cyanobacterial thylakoid membrane proteins are reversibly phosphorylated under plastoquinone-reducing conditions in vitro. FEBS Lett. 282:295–299.

75. Ghirardi ML, Dubini A, Yu J, Maness P-C. 2009. Photobiological hydrogen-producing systems. Chem. Soc. Rev. 38:52–61.

76. Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P. 2007. Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol. Rev. 31:692–720.

77. Ananyev G, Carrieri D, Dismukes GC. 2008. Optimization of Metabolic Capacity and Flux Through Environmental Cues To Maximize Hydrogen Production by the Cyanobacterium “Arthrospira (Spirulina) Maxima”. Appl. Environ. Microbiol. 74:6102–6113.

78. Lindberg P, Lindblad P, Cournac L. 2004. Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133 and Its hydrogenase-deficient mutant strain NHM5. Appl. Environ. Microbiol. 70:2137–2145.

79. Barbosa MJ, Janssen M, Ham N, Tramper J, Wijffels RH. 2003. Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol. Bioeng. 82:170–179.

80. Bosma R, van Zessen E, Reith JH, Tramper J, Wijffels RH. 2007. Prediction of volumetric productivity of an outdoor photobioreactor. Biotechnol. Bioeng. 97:1108–1120.

81. Janssen M, Tramper J, Mur LR, Wijffels RH. 2003. Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol. Bioeng. 81:193–210.

82. Park K-H, Kim D-I, Lee C-G. 2000. Effect of Flashing Light on Oxygen Production Rates in High - Density Algal Cultures. J. Microbiol. Biotechnol. 10:817–822.

180

Page 6: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

83. Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B. 2007. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol. J. 5:802–814.

84. Takahashi H, Uchimiya H, Hihara Y. 2008. Difference in metabolite levels between photoautotrophic and photomixotrophic cultures of Synechocystis sp. PCC 6803 examined by capillary electrophoresis electrospray ionization mass spectrometry. J. Exp. Bot. 59:3009–3018.

85. Shastri AA, Morgan JA. 2005. Flux balance analysis of photoautotrophic metabolism. Biotechnol. Prog. 21:1617–1626.

86. Yang C, Hua Q, Shimizu K. 2002. Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab. Eng. 4:202–216.

87. Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E, Palsson BO. 2001. Metabolic modeling of microbial strains in silico. Trends Biochem. Sci. 26:179–186.

88. Edwards JS, Covert M, Palsson B. 2002. Metabolic modelling of microbes: the flux-balance approach. Environ. Microbiol. 4:133–140.

89. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H. 2008. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77:1305–1316.

90. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. 2008. Fermentative butanol production by Clostridia. Biotechnol. Bioeng. 101:209–228.

91. Lagarde D, Beuf L, Vermaas W. 2000. Increased Production of Zeaxanthin and Other Pigments by Application of Genetic Engineering Techniques to Synechocystis sp. Strain PCC 6803. Appl Env. Microbiol 66:64–72.

92. Sakai M, Ogawa T, Matsuoka M, Fukuda H. 1997. Photosynthetic conversion of carbon dioxide to ethylene by the recombinant cyanobacterium, Synechococcus sp. PCC 7942, which harbors a gene for the ethylene-forming enzyme of Pseudomonas syringae. J. Ferment. Bioeng. 84:434–443.

93. Dexter J, Fu P. 2009. Metabolic engineering of cyanobacteria for ethanol production. Energy Environ. Sci. 2:857.

94. Huang H-H, Camsund D, Lindblad P, Heidorn T. 2010. Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res. 38:2577–2593.

95. Atsumi S, Higashide W, Liao JC. 2009. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotech 27:1177–1180.

96. Van Dijk PWM. 1999. Chymosin and Phytase. Made by genetic engineering (No. 10 in a series of articles to promote a better understanding of the use of genetic engineering). J. Biotechnol. 77–80.

97. Ducat DC, Avelar-Rivas JA, Way JC, Silver PA. 2012. Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol. 78:2660–2668.

98. Lan EI, Liao JC. 2012. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc. Natl. Acad. Sci. 109:6018–6023.

99. Lindberg P, Park S, Melis A. 2010. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 12:70–79.

100. Niederholtmeyer H, Wolfstädter BT, Savage DF, Silver PA, Way JC. 2010. Engineering cyanobacteria to synthesize and export hydrophilic products. Appl. Environ. Microbiol. 76:3462–3466.

101. Takahama K, Matsuoka M, Nagahama K, Ogawa T. 2003. Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. J. Biosci. Bioeng. 95:302–305.

102. Abdel-Rahman MA, Tashiro Y, Sonomoto K. 2010. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J. Biotechnol. 156:286–301.

103. Garvie EI. 1980. Bacterial lactate dehydrogenases. Microbiol. Rev. 44:106–139. 104. Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A,

Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY. 2006. The cyanobacterial genome core and the origin of photosynthesis. Proc. Natl. Acad. Sci. U. S. A. 103:13126–13131.

105. Pakrasi HB, Williams JG, Arntzen CJ. 1988. Targeted mutagenesis of the psbE and psbF genes blocks photosynthetic electron transport: evidence for a functional role of cytochrome b559 in photosystem II. EMBO J. 7:325–332.

106. Sambrook J, Russel, W. D. 2001. Molecular cloning: a laboratory manual.3. ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY.

107. Knight T. 2003. Idempotent Vector Design for Standard Assembly of Biobricks. 108. Shetty RP, Endy D, Knight TF. 2008. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng.

2:5.

181

Page 7: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

109. Brosius J, Erfle M, Storella J. 1985. Spacing of the -10 and -35 regions in the tac promoter. Effect on its in vivo activity. J. Biol. Chem. 260:3539 –3541.

110. Kunert A, Hagemann M, Erdmann N. 2000. Construction of promoter probe vectors for Synechocystis sp. PCC 6803 using the light-emitting reporter systems Gfp and LuxAB. J. Microbiol. Methods 41:185–194.

111. Nagarajan A, Winter R, Eaton-Rye J, Burnap R. 2011. A synthetic DNA and fusion PCR approach to the ectopic expression of high levels of the D1 protein of photosystem II in Synechocystis sp. PCC 6803. J. Photochem. Photobiol. B 104:212–219.

112. Kaneko T, Tabata S. 1997. Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol. 38:1171–1176.

113. Vermaas W. 1996. Molecular genetics of the cyanobacteriumSynechocystis sp. PCC 6803: Principles and possible biotechnology applications. J. Appl. Phycol. 8:263–273.

114. Griese M, Lange C, Soppa J. 2011. Ploidy in cyanobacteria. FEMS Microbiol. Lett. 323:124–131. 115. Labarre J, Chauvat F, Thuriaux P. 1989. Insertional mutagenesis by random cloning of antibiotic

resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803. J. Bacteriol. 171:3449 –3457.

116. Romero S, Merino E, Bolívar F, Gosset G, Martinez A. 2007. Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl. Environ. Microbiol. 73:5190–5198.

117. Tarmy EM, Kaplan NO. 1968. Kinetics of Escherichia coli B d-Lactate Dehydrogenase and Evidence for Pyruvate-controlled Change in Conformation. J. Biol. Chem. 243:2587 –2596.

118. French CE, Boonstra B, Bufton KA, Bruce NC. 1997. Cloning, sequence, and properties of the soluble pyridine nucleotide transhydrogenase of Pseudomonas fluorescens. J. Bacteriol. 179:2761–2765.

119. De Boer JP, Cronenberg CCH, de Beer D, van den Heuvel JC, de Mattos MJT, Neijssel OM. 1993. pH and Glucose Profiles in Aggregates of Bacillus laevolacticus. Appl. Environ. Microbiol. 59:2474–2478.

120. De Graef MR, Alexeeva S, Snoep JL, Teixeira de Mattos MJ. 1999. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J. Bacteriol. 181:2351–2357.

121. Fiedler T, Bekker M, Jonsson M, Mehmeti I, Pritzschke A, Siemens N, Nes I, Hugenholtz J, Kreikemeyer B. 2011. Characterization of three lactic acid bacteria and their isogenic ldh deletion mutants shows optimization for YATP (cell mass produced per mole of ATP) at their physiological pHs. Appl. Environ. Microbiol. 77:612–617.

122. Gaspar P, Neves AR, Shearman CA, Gasson MJ, Baptista AM, Turner DL, Soares CM, Santos H. 2007. The lactate dehydrogenases encoded by the ldh and ldhB genes in Lactococcus lactis exhibit distinct regulation and catalytic properties - comparative modeling to probe the molecular basis. FEBS J. 274:5924–5936.

123. Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos MJT. 2009. Energy biotechnology with cyanobacteria. Curr. Opin. Biotechnol. 20:257–263.

124. Bentley FK, Melis A. 2012. Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol. Bioeng. 109:100–109.

125. Kufryk GI, Sachet M, Schmetterer G, Vermaas WFJ. 2002. Transformation of the cyanobacterium Synechocystis sp. PCC 6803 as a tool for genetic mapping: optimization of efficiency. FEMS Microbiol. Lett. 206:215–219.

126. Driessen AJ, Kodde J, de Jong S, Konings WN. 1987. Neutral amino acid transport by membrane vesicles of Streptococcus cremoris is subject to regulation by internal pH. J. Bacteriol. 169:2748–2754.

127. Sun J, Wu J, Carrasco N, Kaback HR. 1996. Identification of the epitope for monoclonal antibody 4B1 which uncouples lactose and proton translocation in the lactose permease of Escherichia coli. Biochemistry (Mosc.) 35:990–998.

128. Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Sohngen C, Stelzer M, Thiele J, Schomburg D. 2010. BRENDA, the enzyme information system in 2011. Nucleic Acids Res. 39:D670–D676.

129. Savakis PE, Angermayr SA, Hellingwerf KJ. 2013. Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria. Metab. Eng. 20:121–130.

130. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT. 2011. Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science 332:805–809.

182

Page 8: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

131. Surendranath Y, Bediako DK, Nocera DG. 2012. Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves. Proc. Natl. Acad. Sci.

132. Lewis NS, Nocera DG. 2006. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103:15729–15735.

133. Angermayr SA, Paszota M, Hellingwerf KJ. 2012. Engineering a cyanobacterial cell factory for production of lactic Acid. Appl. Environ. Microbiol. 78:7098–7106.

134. Wijffels RH, Barbosa MJ. 2010. An Outlook on Microalgal Biofuels. Science 329:796–799. 135. Müller P, Li X-P, Niyogi KK. 2001. Non-Photochemical Quenching. A Response to Excess Light

Energy. Plant Physiol. 125:1558–1566. 136. Ruban AV, Berera R, Ilioaia C, Stokkum IHM van, Kennis JTM, Pascal AA, Amerongen H van,

Robert B, Horton P, Grondelle R van. 2007. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578.

137. Snoep JL, Yomano LP, Westerhoff HV, Ingram LO. 1995. Protein burden in Zymomonas mobilis: negative flux and growth control due to overproduction of glycolytic enzymes. Microbiology 141:2329–2337.

138. Fell DA. 1992. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J. 286:313–330.

139. Westerhoff HV, Dam K van. 1987. Thermodynamics and control of biological free-energy transduction. Elsevier.

140. Gao Z, Zhao H, Li Z, Tan X, Lu X. 2012. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ. Sci.

141. Guerrero F, Carbonell V, Cossu M, Correddu D, Jones PR. 2012. Ethylene Synthesis and Regulated Expression of Recombinant Protein in Synechocystis sp. PCC 6803. PloS One 7:e50470.

142. Neves AR, Ventura R, Mansour N, Shearman C, Gasson MJ, Maycock C, Ramos A, Santos H. 2002. Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR. J. Biol. Chem. 277:28088–28098.

143. Yoshida A. 1965. Enzymic properties of lactate dehydrogenase of Bacillus subtilis. Biochim. Biophys. Acta BBA - Enzymol. Biol. Oxid. 99:66–77.

144. Puigbo P, Guzman E, Romeu A, Garcia-Vallve S. 2007. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res. 35:W126–W131.

145. Li M, Wang J, Geng Y, Li Y, Wang Q, Liang Q, Qi Q. 2012. A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli. Microb. Cell Factories 11:19.

146. Wolk CP, Elhai J, Kuritz T, Holland D. 1993. Amplified expression of a transcriptional pattern formed during development of Anabaena. Mol. Microbiol. 7:441–445.

147. Heidorn T, Camsund D, Huang H-H, Lindberg P, Oliveira P, Stensjö K, Lindblad P. 2011. Synthetic biology in cyanobacteria engineering and analyzing novel functions. Methods Enzymol. 497:539–579.

148. Oliver JWK, Machado IMP, Yoneda H, Atsumi S. 2013. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc. Natl. Acad. Sci. 110:1249–1254.

149. Minda R, Ramchandani J, Joshi VP, Bhattacharjee SK. 2005. A homozygous recA mutant of Synechocystis PCC6803: construction strategy and characteristics eliciting a novel RecA independent UVC resistance in dark. Mol. Genet. Genomics MGG 274:616–624.

150. Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB. 2013. Synthetic biology of cyanobacteria: unique challenges and opportunities. Front. Microbiol. 4:246.

151. Wang W, Liu X, Lu X. 2013. Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol. Biofuels 6:69.

152. Dienst D, Georg J, Abts T, Jakorew L, Kuchmina E, Börner T, Wilde A, Dühring U, Enke H, Hess WR. 2014. Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803. Biotechnol. Biofuels 7:21.

153. Datta R, Henry M. 2006. Lactic acid: recent advances in products, processes and technologies — a review. J. Chem. Technol. Biotechnol. 81:1119–1129.

154. Varman AM, Yu Y, You L, Tang YJ. 2013. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microb. Cell Factories 12:117.

155. Angermayr SA, Hellingwerf KJ. 2013. On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories. J. Phys. Chem. B 117:11169–11175.

156. Richter N, Zienert A, Hummel W. 2011. A single‐point mutation enables lactate dehydrogenase from Bacillus subtilis to utilize NAD+ and NADP+ as cofactor. Eng. Life Sci. 11:26–36.

157. Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voss B, Steglich C, Wilde A, Vogel J, Hess WR. 2011. An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. U. S. A. 108:2124–2129.

183

Page 9: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

158. Prentki P, Krisch HM. 1984. In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313.

159. Stephanopoulos G, Aristidou AA, Nielsen JH. 1998. Metabolic engineering principles and methodologies. Academic Press, San Diego.

160. Emmerling M, Bailey JE, Sauer U. 2000. Altered regulation of pyruvate kinase or co-overexpression of phosphofructokinase increases glycolytic fluxes in resting Escherichia coli. Biotechnol. Bioeng. 67:623–627.

161. Knowles VL, Plaxton WC. 2003. From Genome to Enzyme: Analysis of Key Glycolytic and Oxidative Pentose-Phosphate Pathway Enzymes in the Cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 44:758–763.

162. Diesterhaft M, Freese E. 1972. Pyruvate kinase of bacillus subtilis. Biochim. Biophys. Acta 268:373–380.

163. Malcovati M, Kornberg HL. 1969. Two types of pyruvate kinase in Escherichia coli K12. Biochim. Biophys. Acta BBA - Enzymol. 178:420–423.

164. Collins LB, Thomas TD. 1974. Pyruvate Kinase of Streptococcus lactis. J. Bacteriol. 120:52–58. 165. Alper H, Jin Y-S, Moxley JF, Stephanopoulos G. 2005. Identifying gene targets for the metabolic

engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7:155–164. 166. Young JD, Shastri AA, Stephanopoulos G, Morgan JA. 2011. Mapping photoautotrophic metabolism

with isotopically nonstationary (13)C flux analysis. Metab. Eng. 13:656–665. 167. Huege J, Goetze J, Schwarz D, Bauwe H, Hagemann M, Kopka J. 2011. Modulation of the Major

Paths of Carbon in Photorespiratory Mutants of Synechocystis. PLoS ONE 6:e16278. 168. Knoop H, Gründel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R. 2013. Flux

balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput. Biol. 9:e1003081.

169. Luinenburg I, Coleman JR. 1990. A requirement for phosphoenolpyruvate carboxylase in the cyanobacterium Synechococcus PCC 7942. Arch. Microbiol. 154:471–474.

170. Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D. 2007. Activity, Stability and Structural Studies of Lactate Dehydrogenases Adapted to Extreme Thermal Environments. J. Mol. Biol. 374:547–562.

171. Brown WM, Yowell CA, Hoard A, Vander Jagt TA, Hunsaker LA, Deck LM, Royer RE, Piper RC, Dame JB, Makler MT, Vander Jagt DL. 2004. Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites. Biochemistry (Mosc.) 43:6219–6229.

172. Fields PA, Houseman DE. 2004. Decreases in Activation Energy and Substrate Affinity in Cold-Adapted A4-Lactate Dehydrogenase: Evidence from the Antarctic Notothenioid Fish Chaenocephalus aceratus. Mol. Biol. Evol. 21:2246–2255.

173. Li H, Liao JC. 2013. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microb. Cell Factories 12:4.

174. Glick BR. 1995. Metabolic load and heterologous gene expression. Biotechnol. Adv. 13:247–261. 175. Zhou J, Zhang H, Meng H, Zhu Y, Bao G, Zhang Y, Li Y, Ma Y. 2014. Discovery of a super-strong

promoter enables efficient production of heterologous proteins in cyanobacteria. Sci. Rep. 4. 176. Bricker TM, Zhang S, Laborde SM, Mayer PR, Frankel LK, Moroney JV. 2004. The Malic

Enzyme Is Required for Optimal Photoautotrophic Growth of Synechocystis sp. Strain PCC 6803 under Continuous Light but Not under a Diurnal Light Regimen. J. Bacteriol. 186:8144–8148.

177. Farmer WR, Liao JC. 2001. Precursor Balancing for Metabolic Engineering of Lycopene Production in Escherichia coli. Biotechnol. Prog. 17:57–61.

178. Davies DD, Davies S. 1972. Purification and properties of L(+)-lactate dehydrogenase from potato tubers. Biochem. J. 129:831–839.

179. Kleczkowski LA, Randall DD. 1988. Purification and characterization of a novel NADPH(NADH)-dependent hydroxypyruvate reductase from spinach leaves. Comparison of immunological properties of leaf hydroxypyruvate reductases. Biochem. J. 250:145–152.

180. Meyer D, Neumann P, Parthier C, Friedemann R, Nemeria N, Jordan F, Tittmann K. 2010. Double Duty for a Conserved Glutamate in Pyruvate Decarboxylase: Evidence of the Participation in Stereoelectronically Controlled Decarboxylation and in Protonation of the Nascent Carbanion/Enamine Intermediate,. Biochemistry (Mosc.) 49:8197–8212.

181. Flamholz A, Noor E, Bar-Even A, Milo R. 2012. eQuilibrator--the biochemical thermodynamics calculator. Nucleic Acids Res. 40:D770–D775.

182. Rosgaard L, de Porcellinis AJ, Jacobsen JH, Frigaard N-U, Sakuragi Y. 2012. Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J. Biotechnol. 162:134–147.

184

Page 10: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

183. Qi F, Yao L, Tan X, Lu X. 2013. Construction, characterization and application of molecular tools for metabolic engineering of Synechocystis sp. Biotechnol. Lett. 35:1655–1661.

184. Carrieri D, Paddock T, Maness P-C, Seibert M, Yu J. 2012. Photo-catalytic conversion of carbon dioxide to organic acids by a recombinant cyanobacterium incapable of glycogen storage. Energy Environ. Sci.

185. Gründel M, Scheunemann R, Lockau W, Zilliges Y. 2012. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiol. Read. Engl. 158:3032–3043.

186. Taroncher-Oldenburg G, Nishina K, Stephanopoulos G. 2000. Identification and Analysis of the Polyhydroxyalkanoate-Specific β-Ketothiolase and Acetoacetyl Coenzyme A Reductase Genes in the Cyanobacterium Synechocystis sp. Strain PCC6803. Appl. Environ. Microbiol. 66:4440–4448.

187. Schwarz R, Forchhammer K. 2005. Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiol. Read. Engl. 151:2503–2514.

188. Wu GF, Wu QY, Shen ZY. 2001. Accumulation of poly-β-hydroxybutyrate in cyanobacterium Synechocystis sp. PCC6803. Bioresour. Technol. 76:85–90.

189. Panda B, Jain P, Sharma L, Mallick N. 2006. Optimization of cultural and nutritional conditions for accumulation of poly-beta-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresour. Technol. 97:1296–1301.

190. Schlebusch M, Forchhammer K. 2010. Requirement of the Nitrogen Starvation-Induced Protein Sll0783 for Polyhydroxybutyrate Accumulation in Synechocystis sp. Strain PCC 6803. Appl. Environ. Microbiol. 76:6101–6107.

191. Yang X, Lai Z, Lai C, Zhu M, Li S, Wang J, Wang X. 2013. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity. Biotechnol. Biofuels 6:124.

192. Ilmén M, Koivuranta K, Ruohonen L, Rajgarhia V, Suominen P, Penttilä M. 2013. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases. Microb. Cell Factories 12:53.

193. John RP, Nampoothiri KM, Pandey A. 2007. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl. Microbiol. Biotechnol. 74:524–534.

194. Datta R, Tsai S-P, Bonsignore P, Moon S-H, Frank JR. 1995. Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol. Rev. 16:221–231.

195. Joseph A, Aikawa S, Sasaki K, Tsuge Y, Matsuda F, Tanaka T, Kondo A. 2013. Utilization of lactic acid bacterial genes in Synechocystis sp. PCC 6803 in the production of lactic acid. Biosci. Biotechnol. Biochem. 77:966–970.

196. Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A. 2010. Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl. Microbiol. Biotechnol. 85:413–423.

197. Hofvendahl K, Hahn–Hägerdal B. 2000. Factors affecting the fermentative lactic acid production from renewable resources1. Enzyme Microb. Technol. 26:87–107.

198. Wang Q, Ingram LO, Shanmugam KT. 2011. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose. Proc. Natl. Acad. Sci. 108:18920–18925.

199. Stoll VS, Manohar AV, Gillon W, Macfarlane ELA, Hynes RC, Pai EF. 1998. A thioredoxin fusion protein of VanH, a D-lactate dehydrogenase from Enterococcus faecium: Cloning, expression, purification, kinetic analysis, and crystallization. Protein Sci. 7:1147–1155.

200. Heyer H, Krumbein WE. 1991. Excretion of fermentation products in dark and anaerobically incubated cyanobacteria. Arch. Microbiol. 155:284–287.

201. McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC. 2010. Redirecting Reductant Flux into Hydrogen Production via Metabolic Engineering of Fermentative Carbon Metabolism in a Cyanobacterium. Appl. Environ. Microbiol.

202. Sanchez JJ, Palleroni NJ, Doudoroff M. 1975. Lactate dehydrogenases in cyanobacteria. Arch. Microbiol. 104:57–65.

203. Ishida N, Suzuki T, Tokuhiro K, Nagamori E, Onishi T, Saitoh S, Kitamoto K, Takahashi H. 2006. D-lactic acid production by metabolically engineered Saccharomyces cerevisiae. J. Biosci. Bioeng. 101:172–177.

204. Hackenberg C, Kern R, Huge J, Stal LJ, Tsuji Y, Kopka J, Shiraiwa Y, Bauwe H, Hagemann M. 2011. Cyanobacterial Lactate Oxidases Serve as Essential Partners in N2 Fixation and Evolved into Photorespiratory Glycolate Oxidases in Plants[w]. Plant Cell 23:2978–2990.

185

Page 11: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

205. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

206. Timm S, Nunes-Nesi A, Pärnik T, Morgenthal K, Wienkoop S, Keerberg O, Weckwerth W, Kleczkowski LA, Fernie AR, Bauwe H. 2008. A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 20:2848–2859.

207. Anderson SL, McIntosh L. 1991. Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J. Bacteriol. 173:2761 –2767.

208. Wang H-L, Postier BL, Burnap RL. 2004. Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J. Biol. Chem. 279:5739–5751.

209. Eisenhut M, Huege J, Schwarz D, Bauwe H, Kopka J, Hagemann M. 2008. Metabolome phenotyping of inorganic carbon limitation in cells of the wild type and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol. 148:2109–2120.

210. Burnap RL, Nambudiri R, Holland S. 2013. Regulation of the carbon-concentrating mechanism in the cyanobacterium Synechocystis sp. PCC6803 in response to changing light intensity and inorganic carbon availability. Photosynth. Res. 118:115–124.

211. Shimakawa G, Suzuki M, Yamamoto E, Nishi A, Saito R, Sakamoto K, Yamamoto H, Makino A, Miyake C. 2013. Scavenging systems for reactive carbonyls in the cyanobacterium Synechocystis sp. PCC 6803. Biosci. Biotechnol. Biochem. 77:2441–2448.

212. McEwen JT, Machado IMP, Connor MR, Atsumi S. 2013. Engineering Synechococcus elongatus PCC 7942 for Continuous Growth under Diurnal Conditions. Appl. Environ. Microbiol. 79:1668–1675.

213. Desmarais SM, De Pedro MA, Cava F, Huang KC. 2013. Peptidoglycan at its peaks: how chromatographic analyses can reveal bacterial cell wall structure and assembly. Mol. Microbiol. 89:1–13.

214. Ferain T, Hobbs JN, Richardson J, Bernard N, Garmyn D, Hols P, Allen NE, Delcour J. 1996. Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum. J. Bacteriol. 178:5431–5437.

215. Ducat DC, Way JC, Silver PA. 2011. Engineering cyanobacteria to generate high-value products. Trends Biotechnol. 29:95–103.

216. Oliver JWK, Atsumi S. 2014. Metabolic design for cyanobacterial chemical synthesis. Photosynth. Res.

217. Varman AM, Xiao Y, Pakrasi HB, Tang YJ. 2012. Metabolic engineering of Synechocystis 6803 for isobutanol production. Appl. Environ. Microbiol.

218. Angermayr SA, Woude AD van der, Correddu D, Vreugdenhil A, Verrone V, Hellingwerf KJ. 2014. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol. Biofuels 7:99.

219. Ungerer J, Tao L, Davis M, Ghirardi M, Maness P-C, Yu J. 2012. Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energy Environ. Sci. 5:8998–9006.

220. Shen CR, Liao JC. 2012. Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy Environ. Sci. 5:9574–9583.

221. Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T. 2013. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab. Eng. 20:101–108.

222. Jacobsen JH, Frigaard N-U. 2014. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab. Eng. 21:60–70.

223. Zhou J, Zhang H, Zhang Y, Li Y, Ma Y. 2012. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab. Eng.

224. Du W, Liang F, Duan Y, Tan X, Lu X. Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab. Eng.

225. Lan EI, Liao JC. 2011. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab. Eng. 13:353–363.

226. Formighieri C, Melis A. 2014. Regulation of β-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants. Planta 1–16.

227. Halfmann C, Gu L, Zhou R. 2014. Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2 and H2O. Green Chem. 16:3175.

186

Page 12: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

228. Reinsvold RE, Jinkerson RE, Radakovits R, Posewitz MC, Basu C. 2011. The production of the sesquiterpene β-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. J. Plant Physiol. 168:848–852.

229. Zilliges Y. 2014. Glycogen, a Dynamic Cellular Sink and Reservoir for Carbon, p. 189–210. In The Cell Biology of Cyanobacteria. Caister Academic Press, Norfolk, UK.

230. Van der Woude AD, Angermayr SA, Puthan Veetil V, Osnato A, Hellingwerf KJ. 2014. Carbon sink removal: Increased photosynthetic production of lactic acid by Synechocystis sp. PCC6803 in a glycogen storage mutant. J. Biotechnol. 184C:100–102.

231. Raupach MR, Marland G, Ciais P, Quéré CL, Canadell JG, Klepper G, Field CB. 2007. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. 104:10288–10293.

232. Ge L. 2011. A New Method For Industrial Production of 2,3-Butanediol. J. Biomater. Nanobiotechnology 02:335–336.

233. Celińska E, Grajek W. 2009. Biotechnological production of 2,3-butanediol--current state and prospects. Biotechnol. Adv. 27:715–725.

234. Hieke E, Vollbrecht D. 1974. [On the formation of butanol-2 by lactic acid bacteria and yeast (author’s transl)]. Arch Microbiol 99:345.

235. Ji X-J, Huang H, Ouyang P-K. 2011. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol. Adv. 29:351–364.

236. Transparency Market Research. 2012. Global 1, 4 Butanediol, 2, 3 butanediol and 1, 3 butadiene Markets are Expected to reach 2,357.3 kilo tons, 74.4 kilo tons and 14,799.3 kilo tons respectively in 2018: Transparency Market Research.

237. Biebl H, Menzel K, Zeng A-P, Deckwer W-D. 1999. Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52:289–297.

238. De Vos WM, Hugenholtz J. 2004. Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol. 22:72–79.

239. De Vos WM. 1996. Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 70:223–242.

240. Romano P, Suzzi G. 1996. Origin and Production of Acetoin during Wine Yeast Fermentation. Appl. Environ. Microbiol. 62:309–315.

241. Snoep JL, Graef MRD, Mattos MJTD, Neijssel OM. 1992. Pyruvate catabolism during transient state conditions in chemostat cultures of Enterococcus faecalis NCTC 775: importance of internal pyruvate concentrations and NADH/NAD+ratios. J. Gen. Microbiol. 138:2015–2020.

242. Goupil-Feuillerat N, Cocaign-Bousquet M, Godon JJ, Ehrlich SD, Renault P. 1997. Dual role of alpha-acetolactate decarboxylase in Lactococcus lactis subsp. lactis. J. Bacteriol. 179:6285–6293.

243. Hugenholtz J, Kleerebezem M, Starrenburg M, Delcour J, Vos W de, Hols P. 2000. Lactococcus lactis as a Cell Factory for High-Level Diacetyl Production. Appl. Environ. Microbiol. 66:4112–4114.

244. Carroll N.M., Ross R.P., Kelly S.M., Price N.C., Sheehan D., Cogan T.M. 1999. Characterization of recombinant acetolactate synthase from Leuconostoc lactis NCW1. Enzyme Microb. Technol. 25:61–67.

245. Rostgaard Jensen B, Svendsen I, Ottesen M. 1987. Isolation and characterization of an alpha-acetolactate decarboxylase useful for accelerated beer maturation. Eur Brew Conv. 393–400.

246. Svendsen I, Jensen BR, Ottesen M. 1989. Complete amino acid sequence of alpha-acetolactate decarboxylase from Bacillus brevis. Carlsberg Res. Commun. 54:157–163.

247. Carballo J, Martin R, Bernardo A, Gonzalez J. 1991. Purification, characterization and some properties of diacetyl(acetoin) reductase from Enterobacter aerogenes. Eur. J. Biochem. 198:327–332.

248. Shin SH, Kim S, Kim JY, Lee S, Um Y, Oh M-K, Kim Y-R, Lee J, Yang K-S. 2012. Complete Genome Sequence of Enterobacter aerogenes KCTC 2190. J. Bacteriol. 194:2373–2374.

249. Nakamura Y, Gojobori T, Ikemura T. 2000. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 28:292.

250. Diderichsen B, Wedsted U, Hedegaard L, Jensen BR, Sjøholm C. 1990. Cloning of aldB, which encodes alpha-acetolactate decarboxylase, an exoenzyme from Bacillus brevis. J. Bacteriol. 172:4315–4321.

251. Zinchenko VV, Piven IV, Melnik VA, Shestakov SV. 1999. Vectors for the complementation analysis of cyanobacterial mutants. Russ J Genet 35:228–232.

252. Mellerick D, Cogan TM. 1981. Induction of Some Enzymes of Citrate Metabolism in Leuconostoc Lactis and Other Heterofermentative Lactic Acid Bacteria. J. Dairy Res. 48:497–502.

253. Voges O, Proskauer B. 1898. Beitrag zur Ernährungsphysiologie und zur Differentialdiagnose der Bakterien der hämorrhagischen Septicämie. Z. Für Hyg. Infekt. 28:20–32.

254. Yang Y-T, Peredelchuk M, Bennett GN, San K-Y. 2000. Effect of variation of Klebsiella pneumoniae acetolactate synthase expression on metabolic flux redistribution in Escherichia coli. Biotechnol. Bioeng. 69:150–159.

187

Page 13: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

255. Pinto F, Pacheco CC, Ferreira D, Moradas-Ferreira P, Tamagnini P. 2012. Selection of Suitable Reference Genes for RT-qPCR Analyses in Cyanobacteria. PLoS ONE 7:e34983.

256. Siemerink MAJ, Kuit W, López Contreras AM, Eggink G, van der Oost J, Kengen SWM. 2011. D-2,3-butanediol production due to heterologous expression of an acetoin reductase in Clostridium acetobutylicum. Appl. Environ. Microbiol. 77:2582–2588.

257. Zwietering MH, Jongenburger I, Rombouts FM, van ’t Riet K. 1990. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 56:1875–1881.

258. Lee S-C, Kim J, La I-J, Kim S-K, Yoon M-Y. 2013. Characterization of recombinant FAD-independent catabolic acetolactate synthase from Enterococcus faecalis V583. Enzyme Microb. Technol. 52:54–59.

259. Szentirmai A, Horváth I. 1976. Regulation of branched-chain amino acid biosynthesis. Acta Microbiol. Acad. Sci. Hung. 23:137–149.

260. Dyczmons N. 2006. Expression and regulation of membrane proteins: Special focus on Cytochrome bd-oxidase from Synechocystis sp. PCC 6803. PhD Thesis, Ruhr-Universität Bochum, Bochum.

261. Eisenhut M, Wobeser EA von, Jonas L, Schubert H, Ibelings BW, Bauwe H, Matthijs HCP, Hagemann M. 2007. Long-Term Response toward Inorganic Carbon Limitation in Wild Type and Glycolate Turnover Mutants of the Cyanobacterium Synechocystis sp. Strain PCC 6803. Plant Physiol. 144:1946–1959.

262. Maestri O, Joset F. 2000. Regulation by external pH and stationary growth phase of the acetolactate synthase from Synechocystis PCC6803. Mol. Microbiol. 37:828–838.

263. Hackenberg C, Huege J, Engelhardt A, Wittink F, Laue M, Matthijs HCP, Kopka J, Bauwe H, Hagemann M. 2012. Low-carbon acclimation in carboxysome-less and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiol. Read. Engl. 158:398–413.

264. Battchikova N, Vainonen JP, Vorontsova N, Keranen M, Carmel D, Aro E-M. 2010. Dynamic changes in the proteome of Synechocystis 6803 in response to CO(2) limitation revealed by quantitative proteomics. J. Proteome Res. 9:5896–5912.

265. Nogales J, Gudmundsson S, Thiele I. 2012. Toward systems metabolic engineering in cyanobacteria: Opportunities and bottlenecks. Bioengineered 4.

266. Kämäräinen J, Knoop H, Stanford NJ, Guerrero F, Akhtar MK, Aro E-M, Steuer R, Jones PR. 2012. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production. J. Biotechnol. 162:67–74.

267. Sjostrom SL, Joensson HN, Svahn HA. 2013. Multiplex analysis of enzyme kinetics and inhibition by droplet microfluidics using picoinjectors. Lab. Chip 13:1754–1761.

268. Joensson HN, Andersson Svahn H. 2012. Droplet Microfluidics—A Tool for Single-Cell Analysis. Angew. Chem. Int. Ed. 51:12176–12192.

269. Sjostrom SL, Bai Y, Huang M, Liu Z, Nielsen J, Joensson HN, Andersson Svahn H. 2014. High-throughput screening for industrial enzyme production hosts by droplet microfluidics. Lab. Chip 14:806–813.

270. Wang BL, Ghaderi A, Zhou H, Agresti J, Weitz DA, Fink GR, Stephanopoulos G. 2014. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat. Biotechnol. 32:473–478.

271. Tyo KEJ, Jin Y-S, Espinoza FA, Stephanopoulos G. 2009. Identification of gene disruptions for increased poly-3-hydroxybutyrate accumulation in Synechocystis PCC 6803. Biotechnol. Prog. 25:1236–1243.

272. Kucho K, Aoki K, Itoh S, Ishiura M. 2005. Improvement of the bioluminescence reporter system for real-time monitoring of circadian rhythms in the cyanobacterium Synechocystis sp. strain PCC 6803. Genes Genet. Syst. 80:19–23.

273. Kucho K, Okamoto K, Tsuchiya Y, Nomura S, Nango M, Kanehisa M, Ishiura M. 2005. Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 187:2190–2199.

274. Huebner A, Olguin LF, Bratton D, Whyte G, Huck WTS, de Mello AJ, Edel JB, Abell C, Hollfelder F. 2008. Development of quantitative cell-based enzyme assays in microdroplets. Anal. Chem. 80:3890–3896.

275. Markson JS, Piechura JR, Puszynska AM, O’Shea EK. 2013. Circadian Control of Global Gene Expression by the Cyanobacterial Master Regulator RpaA. Cell 155:1396–1408.

276. Johnson CH, Golden SS, Ishiura M, Kondo T. 1996. Circadian clocks in prokaryotes. Mol. Microbiol. 21:5–11.

277. Mori T, Binder B, Johnson CH. 1996. Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc. Natl. Acad. Sci. U. S. A. 93:10183–10188.

188

Page 14: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

278. Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T. 1998. Expression of a Gene Cluster kaiABC as a Circadian Feedback Process in Cyanobacteria. Science 281:1519–1523.

279. Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R. 2011. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl. Microbiol. Biotechnol. 91:471–490.

280. Nedbal L, Trtílek M, Cervený J, Komárek O, Pakrasi HB. 2008. A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol. Bioeng. 100:902–910.

281. McNeely K, Xu Y, Ananyev G, Bennette N, Bryant DA, Dismukes GC. 2011. Synechococcus sp. strain PCC 7002 nifJ mutant lacking pyruvate:ferredoxin oxidoreductase. Appl. Environ. Microbiol. 77:2435–2444.

282. Huisman J, Matthijs HCP, Visser PM, Balke H, Sigon CAM, Passarge J, Weissing FJ, Mur LR. 2002. Principles of the light-limited chemostat: theory and ecological applications. Antonie Van Leeuwenhoek 81:117–133.

283. Kim HK, Choi YH, Verpoorte R. 2010. NMR-based metabolomic analysis of plants. Nat. Protoc. 5:536–549.

284. Geromanos SJ, Vissers JPC, Silva JC, Dorschel CA, Li G-Z, Gorenstein MV, Bateman RH, Langridge JI. 2009. The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9:1683–1695.

285. McLoughlin F, Arisz SA, Dekker HL, Kramer G, de Koster CG, Haring MA, Munnik T, Testerink C. 2013. Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem. J. 450:573–581.

286. Silva JC, Gorenstein MV, Li G-Z, Vissers JPC, Geromanos SJ. 2006. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol. Cell. Proteomics MCP 5:144–156.

287. Parrou JL, François J. 1997. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal. Biochem. 248:186–188.

288. Labiosa RG, Arrigo KR, Tu CJ, Bhaya D, Bay S, Grossman AR, Shrager J. 2006. Examination of Diel Changes in Global Transcript Accumulation in Synechocystis (cyanobacteria)1. J. Phycol. 42:622–636.

289. Lea-Smith DJ, Ross N, Zori M, Bendall DS, Dennis JS, Scott SA, Smith AG, Howe CJ. 2013. Thylakoid terminal oxidases are essential for the cyanobacterium Synechocystis sp. PCC 6803 to survive rapidly changing light intensities. Plant Physiol. 162:484–495.

290. Mikkat S, Fulda S, Hagemann M. 2014. A 2D gel electrophoresis-based snapshot of the phosphoproteome in the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology 160:296–306.

291. Lindahl M, Florencio FJ. 2003. Thioredoxin-linked processes in cyanobacteria are as numerous as in chloroplasts, but targets are different. Proc. Natl. Acad. Sci. 100:16107–16112.

292. Reyes JC, Muro-Pastor MI, Florencio FJ. 1997. Transcription of glutamine synthetase genes (glnA and glnN) from the cyanobacterium Synechocystis sp. strain PCC 6803 is differently regulated in response to nitrogen availability. J. Bacteriol. 179:2678–2689.

293. Pelroy RA, Bassham JA. 1972. Photosynthetic and dark carbon metabolism in unicellular blue-green algae. Arch. Für Mikrobiol. 86:25–38.

294. Koksharova O, Schubert M, Shestakov S, Cerff R. 1998. Genetic and biochemical evidence for distinct key functions of two highly divergent GAPDH genes in catabolic and anabolic carbon flow of the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol. Biol. 36:183–194.

295. Gutekunst K, Chen X, Schreiber K, Kaspar U, Makam S, Appel J. 2014. The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions. J. Biol. Chem. 289:1930–1937.

296. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P. 2002. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol. Mol. Biol. Rev. MMBR 66:1–20, table of contents.

297. Antal TK, Lindblad P. 2005. Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J. Appl. Microbiol. 98:114–120.

298. Cournac L, Guedeney G, Peltier G, Vignais PM. 2004. Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J. Bacteriol. 186:1737–1746.

189

Page 15: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

299. Schuurmans RM, Schuurmans JM, Bekker M, Kromkamp JC, Matthijs HCP, Hellingwerf KJ. 2014. The redox potential of the plastoquinone pool of the cyanobacterium Synechocystis species strain PCC 6803 is under strict homeostatic control. Plant Physiol. 165:463–475.

300. Post AF, Loogman JG, Mur LR. 1986. Photosynthesis, Carbon Flows and Growth of Oscillatoria agardhii Gomont in Environments with a Periodic Supply of Light. J. Gen. Microbiol. 132:2129–2136.

301. Liere L van, Mur LR, Gibson CE, Herdman M. 1979. Growth and physiology of Oscillatoria agardhii gomont cultivated in continuous culture with a light-dark cycle. Arch. Microbiol. 123:315–318.

302. Scialdone A, Mugford ST, Feike D, Skeffington A, Borrill P, Graf A, Smith AM, Howard M. 2013. Arabidopsis plants perform arithmetic division to prevent starvation at night. eLife 2.

303. Yang C, Hua Q, Shimizu K. 2002. Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis. Appl. Microbiol. Biotechnol. 58:813–822.

304. Geerts D, Bovy A, de Vrieze G, Borrias M, Weisbeek P. 1995. Inducible expression of heterologous genes targeted to a chromosomal platform in the cyanobacterium Synechococcus sp. PCC 7942. Microbiol. Read. Engl. 141 ( Pt 4):831–841.

305. Marraccini P, Bulteau S, Cassier-Chauvat C, Mermet-Bouvier P, Chauvat F. 1993. A conjugative plasmid vector for promoter analysis in several cyanobacteria of the genera Synechococcus and Synechocystis. Plant Mol. Biol. 23:905–909.

306. Wang B, Wang J, Zhang W, Meldrum DR. 2012. Application of synthetic biology in cyanobacteria and algae. Front. Microbiotechnology Ecotoxicol. Bioremediation 3:344.

307. Huang H-H, Lindblad P. 2013. Wide-dynamic-range promoters engineered for cyanobacteria. J. Biol. Eng. 7:10.

308. Liu X, Fallon S, Sheng J, Curtiss R 3rd. 2011. CO2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass. Proc. Natl. Acad. Sci. U. S. A. 108:6905–6908.

309. Landry BP, Stöckel J, Pakrasi HB. 2013. Use of Degradation Tags To Control Protein Levels in the Cyanobacterium Synechocystis sp. Strain PCC 6803. Appl. Environ. Microbiol. 79:2833–2835.

310. Oliver JWK, Machado IMP, Yoneda H, Atsumi S. 2014. Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab. Eng. 22:76–82.

311. Gu W, Zhou T, Wilke CO. 2010. A Universal Trend of Reduced mRNA Stability near the Translation-Initiation Site in Prokaryotes and Eukaryotes. PLoS Comput Biol 6:e1000664.

312. Goodman DB, Church GM, Kosuri S. 2013. Causes and Effects of N-Terminal Codon Bias in Bacterial Genes. Science 342:475–479.

313. Nakahira Y, Ogawa A, Asano H, Oyama T, Tozawa Y. 2013. Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in Cyanobacterium Synechococcus elongatus PCC 7942. Plant Cell Physiol. 54:1724–1735.

314. Georg J, Voss B, Scholz I, Mitschke J, Wilde A, Hess WR. 2009. Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol. Syst. Biol. 5:305.

315. Dühring U, Axmann IM, Hess WR, Wilde A. 2006. An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc. Natl. Acad. Sci. 103:7054–7058.

316. Eisenhut M, Georg J, Klaehn S, Sakurai I, Mustila H, Zhang P, Hess WR, Aro E-M. 2012. The antisense RNA As1_flv4 in the cyanobacterium Synechocystis sp. PCC 6803 prevents premature expression of the flv4-2 operon upon shift in inorganic carbon supply. J. Biol. Chem.

317. Sakurai I, Stazic D, Eisenhut M, Vuorio E, Steglich C, Hess WR, Aro E-M. 2012. Positive regulation of psbA gene expression by cis-encoded antisense RNAs in Synechocystis sp. PCC 6803. Plant Physiol. 160:1000–1010.

318. Barten R, Lill H. 1995. DNA-uptake in the naturally competent cyanobacterium, Synechocystis sp. PCC 6803. FEMS Microbiol. Lett. 129:83–88.

319. Berla BM, Pakrasi HB. 2012. Upregulation of plasmid genes during stationary phase in Synechocystis sp. strain PCC 6803, a cyanobacterium. Appl. Environ. Microbiol. 78:5448–5451.

320. Ng WO, Zentella R, Wang Y, Taylor JS, Pakrasi HB. 2000. PhrA, the major photoreactivating factor in the cyanobacterium Synechocystis sp. strain PCC 6803 codes for a cyclobutane-pyrimidine-dimer-specific DNA photolyase. Arch. Microbiol. 173:412–417.

321. Gunnelius L. 2014. Cyanobacterial RNA polymerase: Structural features and acclimation to environmental change. PhD thesis, University of Turku, Turku.

322. Liu X, Curtiss R. 2009. Nickel-inducible lysis system in Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. 106:21550–21554.

323. Viola S, Rühle T, Leister D. 2014. A single vector-based strategy for marker-less gene replacement in Synechocystis sp. PCC 6803. Microb. Cell Factories 13:4.

324. Cheah YE, Albers SC, Peebles CAM. 2013. A novel counter-selection method for markerless genetic modification in Synechocystis sp. PCC 6803. Biotechnol. Prog. 29:23–30.

190

Page 16: UvA-DARE (Digital Academic Repository) Synthetic biology ... · References 1. Woods DR. 1995.The genetic engineering of microbial solvent production. Trends Biotechnol. 13:259–

References

325. Bhaya D, Takahashi A, Grossman AR. 2001. Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803. Proc. Natl. Acad. Sci. U. S. A. 98:7540–7545.

326. Holtman CK, Chen Y, Sandoval P, Gonzales A, Nalty MS, Thomas TL, Youderian P, Golden SS. 2005. High-throughput functional analysis of the Synechococcus elongatus PCC 7942 genome. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 12:103–115.

327. Chauvat F, Rouet P, Bottin H, Boussac A. 1989. Mutagenesis by random cloning of an Escherichia coli kanamycin resistance gene into the genome of the cyanobacterium Synechocystis PCC 6803: selection of mutants defective in photosynthesis. Mol. Gen. Genet. MGG 216:51–59.

328. Tillich UM, Lehmann S, Schulze K, Dühring U, Frohme M. 2012. The Optimal Mutagen Dosage to Induce Point-Mutations in Synechocystis sp. PCC6803 and Its Application to Promote Temperature Tolerance. PLoS ONE 7:e49467.

329. Anfelt J, Hallström B, Nielsen J, Uhlén M, Hudson EP. 2013. Using Transcriptomics To Improve Butanol Tolerance of Synechocystis sp. Strain PCC 6803. Appl. Environ. Microbiol. 79:7419–7427.

330. Wang J, Chen L, Huang S, Liu J, Ren X, Tian X, Qiao J, Zhang W. 2012. RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803. Biotechnol. Biofuels 5:89.

331. 2014. Synechococcus Engineering Kit. http://www.lifetechnologies.com/order/catalog/product/A14259. 332. 2014. Synechococcus Protein Expression Kit.

http://www.lifetechnologies.com/order/catalog/product/A24243. 333. Jones PR. 2014. Genetic instability in cyanobacteria – an elephant in the room? Front Bioeng

Biotechnol Synth. Biol. 2:12. 334. Tyo KEJ, Ajikumar PK, Stephanopoulos G. 2009. Stabilized gene duplication enables long-term

selection-free heterologous pathway expression. Nat. Biotechnol. 27:760–765. 335. Cameron AD, Roper DI, Moreton KM, Muirhead H, Holbrook JJ, Wigley DB. 1994. Allosteric

activation in Bacillus stearothermophilus lactate dehydrogenase investigated by an X-ray crystallographic analysis of a mutant designed to prevent tetramerization of the enzyme. J. Mol. Biol. 238:615–625.

336. Riquelme PT, Wernette-Hammond ME, Kneer NM, Lardy HA. 1983. Regulation of carbohydrate metabolism by 2,5-anhydro-D-mannitol. Proc. Natl. Acad. Sci. U. S. A. 80:4301–4305.

337. Goel A. 2013. Metabolic shifts in microorganisms: the case of Lactococcus lactis. PhD thesis, Wageningen University, Wageningen.

338. Knowles VL, Smith CS, Smith CR, Plaxton WC. 2001. Structural and Regulatory Properties of Pyruvate Kinase from the Cyanobacterium Synechococcus PCC 6301. J. Biol. Chem. 276:20966–20972.

339. Yang J-S, Seo SW, Jang S, Jung GY, Kim S. 2012. Rational Engineering of Enzyme Allosteric Regulation through Sequence Evolution Analysis. PLoS Comput Biol 8:e1002612.

340. Connor MR, Liao JC. 2008. Engineering of an Escherichia coli Strain for the Production of 3-Methyl-1-Butanol. Appl. Environ. Microbiol. 74:5769–5775.

341. Kallio P, Pásztor A, Akhtar MK, Jones PR. 2014. Renewable jet fuel. Curr. Opin. Biotechnol. 26:50–55.

342. Itoh K, Nakamura K, Aoyama T, Kakimoto T, Murakami M, Takido T. 2014. The influence of wavelength of light on cyanobacterial asymmetric reduction of ketone. Tetrahedron Lett. 55:435–437.

343. Kiyota H, Okuda Y, Ito M, Hirai MY, Ikeuchi M. 2014. Engineering of cyanobacteria for the photosynthetic production of limonene from CO2. J. Biotechnol.

344. Xue Y, Zhang Y, Cheng D, Daddy S, He Q. 2014. Genetically engineering Synechocystis sp. Pasteur Culture Collection 6803 for the sustainable production of the plant secondary metabolite p-coumaric acid. Proc. Natl. Acad. Sci. 201323725.

191