using fast repetition rate fluorometry to estimate psii electron flux per unit volume

45
Using Fast Repetition Rate fluorometry to estimate PSII electron flux per unit volume: A purely optical method for estimating GPP? Kevin Oxborough Principal Scientist

Upload: chelsea-technologies-group-ltd

Post on 07-Jul-2015

390 views

Category:

Science


2 download

DESCRIPTION

Chelsea's Chief Scientist, Dr Kevin Oxborough gave a presentation at an Invitational seminar at the Max Planck Institute for Marine Microbiology on 12 August 2014. The presentation was entitled "Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume: A purely optical method for estimating GPP?” http://www.mpi-bremen.de/en/Home.html

TRANSCRIPT

Page 1: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Using Fast Repetition Rate

fluorometry to estimate PSII electron

flux per unit volume: A purely optical method for estimating GPP?

Kevin Oxborough

Principal Scientist

Page 2: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Kevin Oxborough (CTG)

Mark Moore (Southampton)

Dave Suggett, Richard Geider (Essex)

Page 3: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

H2O

PQ

e-

PC

NADP

e-

PSII PSIb6f

CO2 assimilation

e-

PC

PQH2

Photosynthetic electron transport

e-PSII flux

FRRfhn hn

Page 4: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

JVPII = 𝑎PII′ ∙ 𝐸

𝜎PII′ = absorption cross section of PSII photochemistry (m2 PSII-1)

𝑎PII′ = absorption coefficient for PSII photochemistry (m-1)

𝐸 = Photon irradiance (photons m-2 s-1)

FRRf FRRf

JPII = 𝜎PII′ ∙ 𝐸

From PSII electron flux to GPP

Page 5: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

H2O

PQe-

Open RCII

Photochemistry and fluorescence

p

f

d How consistent is this relationship?

ϕ𝑓 =𝑘𝑓

𝑘𝑝 + 𝑘𝑓 + 𝑘𝑑

ϕ𝑝 =𝑘𝑝

𝑘𝑝 + 𝑘𝑓 + 𝑘𝑑

𝑃

𝐹∝𝑘𝑝

𝑘𝑓

Page 6: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Closed RCII

Photochemistry and fluorescence

f

d

H2O

PQ

ϕ𝑓 =𝑘𝑓

𝑘𝑓 + 𝑘𝑑

ϕ𝑝 = 0

Page 7: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

The FRRf technique

Page 8: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Open RCIIs

Closed RCIIs

Saturation phase:200 µs sequence of

100 x 1 µs 'flashlets' on a 2 µs pitch

Absorption cross section of

PSII photochemistry

Fo or F'

Fm or Fm'

sPII or sPII'

Single turnover (ST) FRRf measurement

Page 9: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Saturation phase100 x 1 µs flashlets

2 µs pitch

Relaxation phase40 x 1 µs flashlets

50 µs pitch

Saturation and relaxation phases

Page 10: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

100 x 1 µs flashlets

2 µs pitch

40 x 1 µs flashlets

50 µs pitch

Saturation and relaxation phases

Page 11: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Physical cross section of the PSII

light-harvesting system (LHII)

Absorption cross section of

LHII (sLHII)

Absorption cross section of

PSII photochemistry (sPII)

All unit area (m2 PSII-1)

Absorption cross section (Sigma)

Page 12: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

The FRR-ST data fit

Kolber, Prášil and Falkowski (1998)

𝐶𝑛 = 𝐶𝑛−1 + 𝑅𝜎PII ∙1 − 𝐶𝑛−1

1 − 𝐶𝑛−1 ∙ 𝑝

Fn = Fo + Fm − Fo ∙ 𝐶𝑛 ∙1 − 𝑝

1 − 𝐶𝑛 ∙ 𝑝

𝐶𝑛 = closed RCII at flashlet 𝑛𝑅𝜎PII = RCII closed by first flashlet

𝑝 = RCII connectivity

Page 13: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

RsPII

• Probability of an RCII being closed by the first flashlet in an FRR-ST sequence

• Dimensionless parameter• Workable range of 0.03 to 0.06• Can be 'set' by changing ELED

Page 14: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

RsPII – optimum ELED intensity

Super-optimalRsPII = 0.0774

Fv /Fm = 0.569

Sub-optimalRsPII = 0.0258

Fv /Fm = 0.561

OptimalRsPII = 0.0496

Fv /Fm = 0.573

Increasing ELED

Page 15: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Connectivity among RCIIs

Separate Package

Open RCII

Closed RCII

LHII

Lake

Page 16: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Open RCII

Closed RCII

LHII

Partial connectivity

Dimer model

Connectivity among RCIIs

Page 17: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Photosystem II dimer

taken from Nield & Barber (2006)

• X-ray crystallography• Core from cyanobacterium• LHCII from spinach

• Cryo-EM from spinach

Page 18: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Basic terminology

ParameterPSII photochemistry

PSII light harvesting

Absorption cross section (m-2 PSII-1) sPII(′) sLHII

Absorption coefficient (m-1) 𝑎PII(′) 𝑎LHII

Photon efficiency (dimensionless) fPII(′)

σPII′ = σLHII ∙ ϕPII′

𝑎PII′ = 𝑎LHII ∙ ϕPII′

Page 19: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Flux terminology

Flux PSII electron flux Photon flux

Defined area JPII (e- PSII-1 s-1)

Unit area E (photons m-2 s-1)

Unit volume JVPII (e- m-3 s-1)

JPII = 𝜎PII′ ∙ 𝐸

JVPII = 𝑎PII′ ∙ 𝐸

e- PSII-1 s-1 m2 PSII-1 · photons m-2 s-1

e- m-3 s-1 m-1 · photons m-2 s-1

Page 20: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

JVPII = 𝑎PII′ ∙ 𝐸

FRRf FRRf

JPII = 𝜎PII′ ∙ 𝐸

From PSII electron flux to GPP

= 𝑎LHII ∙ 𝜙PII′ ∙ 𝐸Sigma method

Absorption method

Page 21: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

JVPII = sPII' · [RCII] · (1 – C ) · E

sPII' from iterative curve fit to FRR-ST data

[RCII] from chlorophyll determination (nPSII)

(1 – C ) from light + dark FRR data

E from PAR sensor

Calculation of PSII electron flux per unit volume (JVPII) using the sigma method

Kolber, Prášil and Falkowski (1998)

Page 22: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

The sigma method (Kolber et al. 1998)

Can be applied on wide spatial and temporal scales

Can be used to probe PSII photochemistry

Provides a good estimate of PSII electron flux (JPII)

Estimate of rETR (relative electron transport rate to NADP)

• JVPII requires an independent estimate of [RCII]

• Requires an assumed level of connectivity to quantify C

Page 23: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

The absorption method (Oxborough et al. 2012)

Page 24: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

H2O

PQ

Open RCII

Basic principle of the absorption method

e-

p

f

d

dfp

f

fkkk

k

f

dfp

p

pkkk

k

f

𝑃

𝐹∝𝑘𝑝

𝑘𝑓

Absorption method requires that this is a consistent relationship

Page 25: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Consequence:

RCII =𝐹𝑜𝜎PII

∙KR

𝐸LED

Calculation of [RCII] using the absorption method

Hypothesis:

𝑘𝑝

𝑘𝑓falls within a very narrow range

Page 26: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

NIOZ PROTOOL workshop, Yerseke (2012)

12 phytoplankton speciesChaetoceros sp.

Ditylum brightwellii

Emiliania huxleyi

Nannochloropsis gaditana

Phaeocystis glabosa

Prorocentrum sp.

Skeletonema sp.

Synechococcus (red 9903 + green 0417)

Tetraselmis sp.

Thalassiosira pseudonana (-Fe / +Fe)

Thalassiosira westfloggii (-Fe / +Fe)

MethodsFast Repetition Rate fluorometers

Mk I and Mk II FASTtracka

FastOcean

Flash O2 release

Thermoluminescence

MIMS13C

Absorption spectrometry

Fluorescence excitation spectrometry

Organised by: Greg Silsbe & Jacco Kromkamp

Page 27: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

[RCII] x 1016 m-3

F o/ s

PII

NIOZ PROTOOL workshop, Yerseke (2012)

Page 28: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Implications for the sigma algorithm

JVPII = sPII' · [RCII] · (1 – C ) · E

sPII' from iterative curve fit to FRR-ST data

[RCII] from FRR-ST data

(1 – C ) from light + dark FRR data

E from PAR sensor

No longer a requirement for independent measurement of [RCII]

Page 29: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

The absorption algorithm

Consequence:

JVPII = oF′ ∙KR

ELED∙ 𝐸

Hypothesis:

𝑘𝑝

𝑘𝑓falls within a very narrow range

Where oF' is the emission from open RCII under ambient light

Page 30: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Comparing the sigma and absorption algorithms

oF′ = Fo ∙𝜎PII′

𝜎PII∙ 1 − 𝐶

oF′ =Fm ∙ FoFm − Fo

∙Fm′ − F′

Fm′

(Sigma algorithm)

(Absorption algorithm)

Absorption algorithm doesn't require sPII, sPII' or 1 – C

Page 31: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Comparing the sigma and absorption algorithmso

F' (

Ab

sorp

tio

n)

oF' (Sigma) E (µmol photons m-2 s-1)o

F' ·

E

Emiliania huxleyi Emiliania huxleyi

Slope = 1.02R2 = 0.910

Sigma

Absorption

Page 32: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Comparing the sigma and absorption algorithmso

F' (

Ab

sorp

tio

n)

oF' (Sigma)o

F'·

E

Oscillatoria sp. Oscillatoria sp.

Slope = 1.001R2 = 0.956

Sigma

Absorption

E (µmol photons m-2 s-1)

Page 33: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Comparing the sigma and absorption algorithmso

F' (

Ab

sorp

tio

n)

oF' (Sigma)

Rhodomonas sp. Rhodomonas sp.

Slope = 0.893R2 = 0.903

Sigma

Absorption

E (µmol photons m-2 s-1)o

F' ·

E

Page 34: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Instrument calibration

Oxborough et al. (2012):

RCII =𝐹𝑜𝜎PII

∙KR

𝐸LED

KR is an instrument specific constant, which cannot be used with other instruments of the same design

FastOcean calibration:

RCII =𝐹𝑜𝜎PII

∙ Ka

Ka is an instrument type-specific constant, which can be used with all FastOcean sensors

Page 35: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Practical overview of the sigma method

Ambient FRRf

Dark FRRf

Instrument calibration –

Gain against chlorophyll a

ELED (photons m-2 s-1)

GPP estimated through –

JVPII = sPII'·[RCII]·(1 – C ) · E

Each measurement requires –

sPII' (m2) from ambient FRR-ST data

[RCII] (m-3) from chlorophyll (nPSII)

1 – C (proportion) = (Fm' – F')/(Fm' – Fo')

E (photons m-2 s-1) from a PAR sensor

Fm

Fo

Fm'

F'sPII

Page 36: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Practical overview of the absorption method

Ambient FRRf

Dark FRRf

Fm

Fo

Fm'

F'

Instrument calibration –

Same as Sigma method plus:

Ka (m-1) = [RCII] · (sPII / Fo )

Derivation of Ka requires –

[RCII] (m-3) from flash O2 release

Fo (dimensionless) and…

sPII (m2) from dark FRRf data

GPP estimated through –

JVPII = aLHII · fPII' · EEach measurement requires –

aLHII (m-1) = ([Fm · Fo ] / [Fm – Fo ]) · Ka

fPII' = 1 – (F' / Fm' )

E (photons m-2 s-1) from a PAR sensor

Page 37: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

EJVPII = sPII' · [RCII] · (1 – C ) · E

RCII = Ka ∙Fo𝜎PII

𝜎PII′

1 − 𝐶 =Fm′ − F′

Fm′ − Fo′

Field measurements - sigma

Page 38: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

EJVPII = aLHII · fPII' · E

aLHII = ([Fm · Fo ] / [Fm – Fo ]) · Ka

fPII′ = 1 – (F′ / Fm′)

Field measurements - absorption

Page 39: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Baseline fluorescence

ϕPII ≈ 0.9

RCII RCII + LHII

ϕPII ≈ 0.6

Fv

Fm≈ 0.5

Fv

Fm< 0.5 due to:

• Photoinactivation of RCII (photoinhibition)

• Downregulation (non-photochemical quenching)

FRRf

Page 40: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Fb = Fm – Fv / (Fv/Fm)*

Where:• (Fv/Fm)* is the assumed 'true' Fv/Fm from

active RCII

• Fb is baseline fluorescence

Baseline fluorescence

Page 41: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Fv / Fm = 0.5Fb = 0

Fv

Fm

Fo

Baseline fluorescence = 0

Page 42: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Downregulation

Fv/Fm = 0.3Fb = 0

Fv

Fm

Fm

Fb

Photoinactivated RCII

Fv/Fm = 0.5Fb = 57% of Fo

Fo

Fb

Fv

Fo

Baseline fluorescence = 0 or Fb

Page 43: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Fe-limited, oligotrophic conditions – natural phytoplankton population

Anna Macey, Tom Bibby and Mark Moore (University of Southampton, NOC)

[RCII] from D1

F o/s

PII

Fb = Fm – Fv / 0.45

[RCII] from D1

Fv/s

PII

Page 44: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Fe-limited, oligotrophic conditions – natural phytoplankton population

𝐹𝑜

+Fe

0.6

0.45

a LHII

Fv/Fm = 0.45 gives the best fit to the +Fe points

Fv/Fm = 0.6 would give lower JVPII values than 0.45

Page 45: Using fast repetition rate fluorometry to estimate PSII electron flux per unit volume

Summary

The absorption method:• Can be used to estimate JVPII on wide spatial and

temporal scales• Provides a much better S:N than the sigma method –

particularly at high ambient photon irradiance (E )• Baseline 'correction' of data looks to be a viable method

for dealing with low Fv/Fm from dark-adapted material

• More data are required to test this idea