unl department of physics and astronomy · preliminary examination – day 2 august, 2011 this test...

35
UNL Department of Physics and Astronomy Preliminary Examination – Day 1 August, 2011 This test covers the topics of Mechanics (Topic 1) and Thermodynamics and Statistical Mechanics (Topic 2). Each topic has 4 “A” questions and 4 “B” questions. Work 2 problems from each group. Thus, you will work on a total of 8 questions today, 4 from each topic.

Upload: others

Post on 14-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

UNL Department of Physics and Astronomy 

Preliminary Examination – Day 1 

August, 2011 

 

 

This  test  covers  the  topics  of  Mechanics  (Topic  1)  and  Thermodynamics  and  Statistical 

Mechanics  (Topic 2).   Each  topic has 4 “A” questions and 4 “B” questions.   Work 2 problems 

from each group.  Thus, you will work on a total of 8 questions today, 4 from each topic.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 2: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Mechanics Group A.  Answer only 2 Group A questions. 

A1.  The trajectory of a body of mass m, measured in a frame A, is given by 

        v  , 

where v0, g, ω, x0, and y0 are constants. The force applied to the body is known to be 

        . 

Is the frame A inertial? Explain. 

 

A2.   A mass m  is  attached  to  a  spring  and  is oscillating  as  x  = Acos(ωt  +  φ).   A very  short 

impulse is to be applied to the mass to stop the motion. What is the magnitude of the impulse? 

When must it be applied? 

 

A3.  Consider two cylindrical bodies (A and B) of equal mass and dimensions with moments of 

inertia about  the cylindrical axis of IA and IB, respectively. For both bodies,  the center of mass 

coincides with  the geometric  center. Each  is  released  from  rest  and  allowed  to  roll down  an 

inclined ramp. Assuming the center of mass of each body is initially at the same location, which 

body will have the greater center of mass velocity at the bottom of the ramp. Why? 

 

A4.  A particle of mass m moves in a potential V(x) = βx4 – αx2, where α and β are constants and 

are both greater than zero. Find the equilibria and determine their stability. Find the frequency 

of small oscillations of a mass about the stable equilibria. What are the dimensions of α and β ? 

 

 

 

 

 

 

 

Page 3: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Mechani

B1.   A sa

the satell

This puts

radius r2 

 

B2.  For t

   

where k 

(a) Find t

(b) Are th

momenta

(c) Find t

 

B3.   A b

inclined 

wedge is

Find the 

 

B4.  A pa

can swin

masses a

angle θ. 

 

ics Group B

atellite is in 

lite’s engine

s  the satellit

at perigee (c

the Lagrangi

 

and m are co

the equation

here any ign

a? 

the energy o

block of mas

at an angle θ

s μ. As the su

coefficient o

air of masses

ng in the plan

are also conn

.  Answer on

a circular or

e is used to r

te  into an el

closest dista

ian 

 

onstants: 

ns of motion

norable (i.e. c

of the system

ss m  is  relea

θ to the hori

urface of the

of friction as 

s is attached 

ne as shown

nected to eac

nly 2 Group

rbit of radiu

reduce the v

lliptical orbi

ance). Find th

1

. (Don’t try t

cyclic) coord

m. Is it conser

ased  from  th

izontal. Initia

e block heats

a function o

to a pivot o

n. The shaft i

ch other by a

 

p B question

us r1 about th

velocity by a

it having rad

he ratio r1/r2

to solve the e

dinates? If so

rved? Why?

he  top of a 

ally, the coe

s up, μ decr

of the distan

n a vertical s

s rotating w

a spring as sh

ns. 

the center of

a factor s wi

dius r1 at ap

as a functio

  

equations.)

o, what are t

fixed wedg

fficient of fr

reases linearl

nce traveled b

shaft by mas

with a constan

hown. Find 

f the Earth. A

ithout chang

pogee  (farthe

on of s. 

the correspo

ge. The  face 

riction betwe

ly with the e

by the block

ssless rods o

nt angular fr

the equilibri

A short thru

ging its direc

est distance

onding conse

 of  the wed

een block an

energy abso

k. 

of length ℓ an

requency ω.

ium value o

ust of 

ction. 

) and 

erved 

dge  is 

nd the 

orbed. 

nd 

 The 

f the 

Page 4: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Thermodynamics and Statistics Group A.  Answer only 2 Group A questions. 

A1.   A  die  is  thrown N  times,  and  the  sum  of  all N  shown  numbers  is  recorded.  Find  the 

expectation value and the standard deviation for this sum. 

 

A2.    The  figure  shows  the  phase  diagram  for  a  one‐

component substance. Put labels on the graph to indicate the 

areas of the solid (S), liquid (L), and gas (G) phase. If the solid 

phase  is  in equilibrium with  the  liquid phase at pressure P1, 

will  the  solid  float or  sink?  Is  there a pressure  at which  the 

solid will neither float nor sink? Explain your reasoning. 

 

 

 

A3.  Consider a gas characterized by an unknown equation of state P=P(V,T). Express  

in terms of  and . 

 

 

A4.  Write down briefly but precisely  

    A)The Kelvin statement of the second law.           

  B)  The Clausius statement of the second law.   

      C)  The entropy statement of the second law. 

 

 

 

 

 

 

T

P

P1

Page 5: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Thermodynamics and Statistics Group B.  Answer only 2 Group B questions. 

B1.  Two copper blocks (implying constant heat capacity) at temperature Th and Tc, where Tc < 

Th, are allowed to equilibrate by means of a reversible heat engine operating between the two 

blocks.  

a) What  is  the  final  temperature  of  both  blocks  (when  the  heat  engine  stops  producing 

work) in terms of Th and Tc? 

b) What is the total change in entropy of the two blocks? 

 

B2.  A reversible heat engine extracts heat Qh from a reservoir at temperature Th and heat Qm = 

aQh, with 0 < a < 1, from a reservoir at temperature Tm < Th while rejecting heat Qc to a reservoir 

at temperature Tc < Tm. 

Derive an expression for the efficiency of this three‐reservoir heat engine in terms of a and the 

three  reservoir  temperatures  Th,  Tm,  and  Tc.  The  efficiency  is  given  by  the  produced work 

divided by the heat extracted from the two hotter reservoirs.  Check your result by showing that 

the efficiency reduces to the Carnot efficiency expression in the limits a → 0 and Tm →Tc.  

 

B3.  500 grams of ice cubes at 0C are placed in 1 liter of water at 20C. The system then comes 

to equilibrium with no heat exchange with the surroundings. 

 

(a) Does the ice melt completely? If yes, find the temperature of the water in equilibrium. If not, 

find how much ice remains in equilibrium. 

 

(b) Calculate the total change of entropy for the whole system. 

 

B4.  A certain substance in a vessel undergoes the following process: 

(a) It expands isothermally while receiving 1000 J of heat from the thermostat at 1000 K. 

(b) It is insulated and then expanded somewhat. 

(c) It is compressed isothermally while releasing 250 J to the second thermostat at 500 K. 

(d) It is insulated and then expanded somewhat. 

(e) It is compressed isothermally while releasing some heat to the third thermostat at 300 K. 

(f) It is insulated and then compressed in such a way that it ends up in the initial state. 

Given these restrictions, what is the maximum amount of work that can be done by the system 

in such a process? 

 

 

Page 6: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

General e

For a Car

becomes 

 

Clausius

  

/

 

efficiency η 

rnot cycle op

h cC

h

T T

T

’ theorem: N

i

Δ ; specif

EQUA

of a heat eng

perating as a

cT

.

 

1

0N

i

i

Q

T

 wh

fic heat of wa

ATIONS TH

gine produc

a heat engine

hich become

ater: 4186 J/(

HAT MAY B

cing work W

e between re

e 1

0N

i

i i

Q

T

 f

(kg*K);  Late

BE HELPFU

W  while taki

eservoirs at 

for a reversi

ent heat of ic

UL 

ing in heat 

hT  and at  cT

ible cyclic pr

ce melting: 3

hQ  is W

Q

cT  the efficien

rocess of N s

334 J/g 

 

h

W

Q.

 

ncy 

steps. 

Page 7: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

UNL Department of Physics and Astronomy 

Preliminary Examination – Day 2 

August, 2011 

 

 

This  test  covers  the  topics  of  Electricity  and Magnetism  (Topic  1)  and Quantum Mechanics 

(Topic 2).   Each  topic has 4 “A” questions and 4 “B” questions.   Work 2 problems  from each 

group.  Thus, you will work on a total of 8 questions today, 4 from each topic.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 8: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Electrici

A1.  A p

= d.   Ho

infinite, 

Larger, s

A2. Con

dielectri

modifies

same?  W A3. A ch

and B fie

exactly f

the parti

direction A4.  Wh

outer ra

infinites

 

 

ity and Ma

positive cha

ow does the

grounded 

smaller, or 

nsider a regi

ic is then br

s the E field

Why?  

harged part

eld.  The E 

follows the 

icle’s charg

n respective

hat is the ma

dius b, and

simally thin

gnetism G

rge q is pla

e net force a

plane cond

just the sam

ion of space

rought into 

d. Does the 

ticle with ze

field is give

E field.  W

ge?  (In this 

ely.) 

agnetic dip

d surface cu

n ring of rad

roup A.  An

ced on the 

acting on th

ductor is pla

me?  Find th

e containin

this region

electrostati

ero initial v

en by E E

What is the d

problem 

ˆ i ,

ole momen

urrent densi

dius r carry

nswer only

x‐axis at x =

he positive c

aced in the 

he ratio of t

ng an E field

n of space an

ic energy U

velocity ent

E0ˆ i  and the

direction of 

, ˆ j , ˆ k  are uni

nt of a flat c

ity K=K0? ying a curre

y 2 Group A

= 2d and a s

charge com

yz‐plane?  

the two for

d.  A Linear

nd the pres

UE increase, 

ters a region

e particle m

the B field 

it vectors al

circular disc

 Hint: the d

ent I is r2I.

A question

second cha

mpare to the

Is it in the s

ces. 

r Isotropic H

sence of the

decrease o

n containin

moves in a tr

and what i

long the x,y

c with inner

dipole mom

ns. 

rge Q = ‐2q

e case wher

same direct

Homogene

e dielectric 

or stay the 

ng both an E

rajectory th

is the sign o

y, and z 

r radius a, 

ment of a 

at x 

re an 

tion?  

ous 

hat 

of 

Page 9: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Electricity and Magnetism Group B.  Answer only 2 Group B questions. 

B1.   Consider an  infinitely  long solid cylinder of radius R along  the z axis.   A current 

flows up the wire with a volume current density given by  J J0

ˆ z .   

(a) Draw a figure indicating coordinate axes, the cylinder and the direction of current 

flow.  Explain clearly the limitations that the symmetry of this structure imposes on the 

B field as well as the limitations resulting from the Biot‐Savart Law. 

 

(b) Using Ampere’s law calculate the B field vector both inside and outside the cylinder.  

Draw and describe the Amperian loop to be used in each case. 

 

 

 

B2.  Consider two dipoles m1 and m2 a distance d apart oriented so that both are 

perpendicular to d as shown.  m1 is fixed and m2 is free to move in any fashion.   (a) Re‐draw the diagram above and indicate an appropriate choice of coordinate 

system. 

 

(b) What is the torque exerted by dipole m1 on dipole m2?  Describe the resultant motion 

of m2 under the action of this torque.   

 

(c) What is the force exerted by dipole m1 on dipole m2?  Describe the resultant motion 

of m2 under the action of this force.   

 

 

d m1  m2

Page 10: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Electrici

B3.  A cy

its axis. 

magneti

lies in th

(a) Find 

the direc

cross sec

   

(b) Find

the direc

 

(c)  The 

boundar

just with

very sm

 

B4.  The

where th

where A

(a)  Draw

direction

r=R: at th

(b) Calcu

(c)  From

say abou

density 

ity and Ma

ylinder of le

The cylinde

ization. The

he x‐y plane

the magnit

ction on the

ctional view

d the magnit

ction on the

B field ever

ry condition

hin the toru

all.  Note:  

e electric fie

hese refer to

A is a positiv

w a figure o

 and magnit

he North p

ulate the ch

m your resu

ut the volum

isotropic?  

gnetism G

ength L and

er is then b

e center of t

e.  A cut aw

tude and di

e diagram (

ws.    

tude and d

e diagram, 

rywhere in

ns, calculat

us and on th

There are t

ld in a regi

o the comp

ve constant

of a sphere 

tude of the E

ole, at the S

harge densi

ults in (ii)  a

me charge d

Justify you 

roup B (con

d radius a h

ent into a to

the torus is 

way view is 

irection of t

(which you

irection of t

on both the

side the “h

te the magn

he y axis i.e

wo tangent

on r > R is g

ponents of th

t. 

of radius r 

E field at th

South pole, 

ity in the re

and from th

density?  W

ur answers. 

ntinued).  A

has a unifor

orus of inn

at the origi

shown belo

 the bound v

 should red

the bound 

e right and 

ole” of the 

nitude and d

e. at a coord

tial directio

given by 

E

he E field in

= R, includ

hree points 

and at the 

egion r > R. 

he E field gi

Where do th

 

Answer on

rm magneti

ner radius R

in and the c

ow.   

volume cur

draw), on b

surface cur

left cross se

torus is zer

direction of

dinate point

ons‐be caref

Er 2Acos

r3

n a spherica

ding approp

at the surfa

Equator. 

 Show all w

ven in the p

he charges e

nly 2 Group

ization M0 d

R, without c

central plan

rrent densit

both the righ

rrent densit

ectional vie

ro.  Using th

f the B field

t (0, R+, 0)ful which o

,   

s

r

AE

al coordina

priate axes, 

ace of the sp

work.  

problem, w

exist?  Is the

p B questio

directed alo

changing its

ne of the to

ty, Jb.  Indic

ht and left 

ty, Kb. Indic

ews.    

he appropr

d at a point 

) where  isone you cho

3

in

r

 and

E

ate system a

 and the 

phere, i.e. w

what can yo

e charge 

ns. 

ong 

rus 

cate 

cate 

riate 

oose.    

0, 

and 

with 

Page 11: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Quantum Mechanics Group A.  Answer only 2 Group A questions. 

A1.  What is the kinetic energy of an electron that has the same momentum as an 80‐keV 

photon? 

 

A2.  A particle with mass m  is described by the normalized wavefunction 

12

cos( / ) for ( )

0 elsewhere

C x a a x ax

 , 

Where a and C are positive real‐valued constants.  If we measure the particle’s 

momentum, what is the probability that we find it moving to the left?  Explain your 

answer.  

 

A3.  This problem refers to motion in one dimension along the  x ‐axis.  Is 

, Hermitian?  Explain. 

 

A4.    A  three‐dimensional  Hilbert  space  3H   is  spanned  by  the  complete  set  of 

orthonormal kets:  1 2 3| , | , and |u u u . At some point  in time, the quantum system  is  in 

the state 

 131 1

1 32 2| e 3 | |i u u . 

 

(a) Show that  |  is normalized. 

 

At the same point in time, we do a measurement of an observable  S  with the associated 

operator S . We find the non‐degenerate value  S s , which corresponds to the eigenket  

 5 12

2 313 13| | |s i u u . 

 

(b) What was the probability to find this value  s ?    

Page 12: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Quantum Mechanics Group B.  Answer only 2 Group B questions. 

B1.   A  free particle of mass  m , moving  in a one‐dimensional space, has  the  following 

normalized wavefunction in momentum space (momentum probability amplitude): 

 

for ( is a real-valued constant)| ( ) 2

0 for all other

hK p K

p p ap

 

The eigenkets  | p  of the momentum operator p  satisfy completeness:  | |dp p p

1. 

(a)  Find the constant K, including units. 

 

(b)  Find the wavefunction  ( )x  in position space.  

 

B2.  A point particle with mass m  moves in one dimension (coordinate  x ) in the 

potential 

2 2102

( )V x m x , 

where  0  is a constant. The normalized stationary states are given by 

0 1 2( ), ( ), ( ),...x x x  for increasing eigenenergies  0 1 2, , , ...E E E , respectively. 

At time  0t  the system is described by the normalized wave function 

10 22

( , 0) 3 ( ) ( )x t i x K x , 

where K  is a positive real‐valued constant.  

(a) Give the Hamiltonian for this system. 

(b) Determine the value of K . 

(c)  If, at  0t , we measure the energy, what is the probability we find the value  0E ? 

(d) Calculate the expectation value of the energy at  0t .  

 

 

 

 

Page 13: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Quantum Mechanics Group B (continued).  Answer only 2 Group B questions. 

 

B3.  A beam of electrons (see above) with kinetic energy  10 eVE  impinges on a step 

with height  0V E . The incoming probability current is  5 1

in 4.0 10  sJ  (left to right). 

We describe the wavefunction of the incoming electrons as  in ( ) ikxx Ae . 

(a) Determine the quantities A  and  k , making sure to include units in your answers. 

(b) Demonstrate that the wavefunction  IIxBe  is the solution of the time‐inde‐

pendent Schrödinger equation in region II. Give an expression for  . 

(c) What is the probability current  IIJ  in region II? 

(d) What is the reflection coefficient R  of this potential step? 

At  the  position  Å1.4x d   (in  region  II)  the  absolute  value  of  the  amplitude  of  the 

evanescent wave has dropped to 1% of what it is at the location of the step ( 0x ).  

 

(e) What is the height  0V  of the step? Give your answer in eV. 

 

 

 

 

 

 

region I 

 

region II 

 

 

Page 14: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Quantum Mechanics Group B (continued).  Answer only 2 Group B questions. 

B4.  The wavefunction of a particle moving in one dimension ( x ) is given, at some time, 

by  

0 / 2 2 for  ( )

0 elsewhere

ip xK e b x b x bx

 

in which  0p  and the normalization constant K  are positive real numbers. 

(a) Calculate the normalization constant K . What are the units of K  (SI) ? 

(b)  For  the  given  wavefunction,  you  measure  the  particle’s  position.  Calculate  the 

probability that you find it between  12x b  and  0x . 

(c) Give a symmetry argument to explain why  0x  (no calculation). 

(d) Calculate ⟨ ⟩. 

(e) Calculate  x . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 15: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Physical Constants  

speed of light ..................  82.998 10  m/sc   electrostatic constant  ...  1 90(4 ) 8.988 10  m/Fk  

Planck’s constant  ...........  346.626 10  J sh   electron mass  ...............  31el 9.109 10  kgm  

Planck’s constant / 2π  ...  341.055 10  J s   proton mass  .................  27p 1.673 10  kgm  

elementary charge .........  191.602 10  Ce   1 bohr .............................  0 0.5292 Åa  

electric permittivity  ......  120 8.854 10  F/m   1 hartree  ........................  h 27.21 eVE  

magnetic permeability ...  60 1.257 10  H/m  

  

EQUATIONS THAT MAY BE HELPFUL 

Electrostatics:

E d

A

qenc

0A

E

0

X

E 0

E d

l V (r2)V (r1

r1

r2

) '

'

0

)(

4

1)(

rr

rqrV

Work done W q

E .d

l

a

b

q[V (b ) V (

a )]

Multipole expansion:

V (r )

1

40

1

r(r ' )d '

1

r2r ' Cos '(

r ' )d '

1

r3(r ' )2(

3

2Cos '

1

2)(

r ' )d ' ...

where the first term is the monopole term, the second is the dipole term, the third is the quadrupole term..; r and r’ are the field point and source point as usual and ’ is the angle between them.

D 0

E

P

D f b

P b

P ˆ n

The above are true for ALL dielectrics. Confining ourselves to LIH dielectrics, we also have:

D

E

P e0

E 0(1 e ) e=/0 e e 1

C(dielectric)=e C (vacuum) Boundary Conditions:

E2t E1t 0 E2n E1n 0

Page 16: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Magnetostatics: Lorentz Force

F q(

v

B ) q

E Current densities

I

J d

A

I

K d

l

Biot Savart Law

B (r )

0

4I

dl ' ˆ 2 where R is the is the vector from the source point r’ to the

field point r.

This can also be written (for surface currents) as

B (r )

0

4

K ˆ 2 d A

For a straight wire segment B 0I

4s[Sin(2) Sin(1)] where s is perpendicular distance from

the wire. For a circular loop of radius R, the B field at a point on the axis is given by

B 0I

2

R2

(R2 z2)3 / 2

For an infinitely long solenoid, the B field inside is given by B=0NI where N is the number of turns per unit length.

B 0

B 0

J Ampere’s law

B d

l 0Ienclosed

Magnetic vector potential A

B

A

2

A 0

J

A

0

4

J

r r 'd '

Also for line and surface currents

A

0

4I

r r'dl '

A

0

4

K

r r'da'

From Stokes theorem

A d

l

B .d

a

For a magnetic dipole m ,

A dipole

0

4

m ˆ r

r2

Magnetic dipoles Magnetic dipole moment of a current distribution is given by m=Ida Torque on a magnetic dipole in a magnetic field =mXB Force on a magnetic dipole

F (

m

B )

B field of a magnetic dipole

B (r )

0

41

r3[3(

m ˆ r )ˆ r ˆ m ]

Dipole-dipole interaction energy is given by

UDD

0

4R3(m 1

m 2) 3(

m 1 ˆ R )(

m 2 ˆ R ) where R=r1-r2

Page 17: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Material with magnetization M produces a magnetic field equivalent to that of (bound)volume and surface current densities

J b

X

M and

K b

M ˆ n .

H d

l I freeenclosed

H

B

0

M

For linear magnetic material M=mH and B=0(1+m)H or B=H Boundary Conditions: B2n-B1n=0 B2//-B1//=0K Maxwell’s Equations in vacuum:

1.

E

0

Gauss’ Law

2.

B 0

3.

E

B

t Faradays law

4.

B 0

J 00

E

t Ampere’s Law with Maxwell’s correction

Maxwell’s Equations in LIH media :

1.

E

f

Gauss’ Law

2.

B 0

3.

E

B

t Faradays law

4.

B

J f

E

t Ampere’s Law with Maxwell’s correction

Alternative ways of writing Faraday’s Law

E d

l

ddt

Mutual and self inductance: 2=M21I1 and M21=M12

=LI

Energy stored in a magnetic field: W

1

20

B2

V

d 1

2LI2

1

2

A I dl

 

 

 

 

Page 18: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

 

Page 19: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

 

( )

2

/

2

x

K

a h

 

/

|

2sin

ipx

x

he

ix

h h

x

/ 2

/ 2

|

2/

h a

p h a

dp x p

x a

|

2

sin2

/

p p

K h

ix

x

x aa

/ 2

2

/ 2

ipx

ihx a

edp

e e

a

a a

/

/ 2

( )

sin

ihx a

p

e

c /x

 

/

/2

2

2

h

h

K

K h

x

.a

/ 2/

/ 2

/

2

aipx

a

ix a

dp e

e e

i

/ix a

Page 20: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Mechanics Group A. Solutions:

A1.

v

v ,

Since , then it is not inertial. A2. To stop the motion, we need to apply the pulse when the mass arrives at the equilibrium position, where all the potential energy converts onto kinetic energy. Then we have:

212

12

The impulse is given by . To find the time, it is necessary to choose 0, then:

0

, with n an integer.

Thus we get time as:

2 12

A3. Suppose the total kinetic energy at the end of the ramp is , and the radius of both cylinders is , then:

12

12

12

12

With . Then we have:

Then, if we know the relation between and , we can figure out the relation between its velocities.

Page 21: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

A4.

a) The equilibria occur when 0.

4 2 0

There exist three equilibrium points:

0, and

The stability is determined by , then:

12 2

To 0:

2 0

Then, 0 is an unstable equilibrium point.

To :

,

4 0

Then, the stable equilibrium occurs at

b) The frequency of small oscillations is given by:

1

,

2

c) Dimension for and are:

∗ ∗ ∗

Page 22: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Mechanics Group B. Solutions: B1. Before of thrust:

12

12

ϵ 12

0

After of thrust →

12 2

12

ϵ 12

1

Then,

1 ϵ1 ϵ

1 11 1

2

B2. 1

(a) Equations of motion are given by:

0

Then:

: 1 0

Page 23: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

: cos 0

⇨ cos 0

(b) Yes, is cyclic. The conserved momentum is 1 (c) Hamiltonian is obtained by:

1 ⇨ 1

Then,

2 1 2 3

H is independent of time, thus energy is conserved. B3. We have the relation between and heat as , where is the constant for this linear relation. Then . According to the conservation of total energy, the gravitational potential energy will be converted into kinetic energy and heat, which is

This can be interpreted as:

sin cos ⇨ sin cos cos

Also

sin1

Thus we get: 1

cos cos

⇨ cos1

cos

⇨coscos 1

cos 1

Page 24: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

B4.

Accor

Then,

rding to the f

we get

c

force balance

:

:

cos2

e, we get:

sin2co

sin

s

⇨ 2 ar

n2

sin

rccos

n2

Page 25: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Thermodynamics and Statistics Group A. Solutions: A2. At the solid float. A3. ,

Now, using the relations:

1

And 1

⇨ 1

A4. A) The Kelvin statement of the second law. “It is impossible to construct an engine that, operating in a cycle, will produce no effect other than the extraction of heat from a reservoir and the performance of an equivalent amount of work”. (Zemanzky-Thermodynamics) B) The Clausius statement of the second law.

G T

P

P1

S

L

Page 26: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

“It is impossible to construct a refrigerator that, operating in a cycle, will produce no effect other than transfer of heat from a lower-temperature reservoir to a higher-temperature reservoir”. (Zemanzky-Thermodynamics) C) The entropy statement of the second law. For any kind of process the entropy of the Universe follows∆ . Always the entropy increase or at least keep constant, but never decrease (Universe is the whole system). In some parts of the system the entropy can decrease, but for the whole system increase or keep constant.

∆ reversible process ∆ irreversible process

(Zemanzky-Thermodynamics)

Page 27: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Thermodynamics and Statistics Group B. Solutions: B1.

a) At the equilibrium, the two blocks reach the same temperature . For the heat engine we have:

Also ,

Then we get: 2

b) ∆ ∆ ∆ 0 B2.

⇨ ⇨

1 1

Since , then

1 11

1 11

For limits → 0 and → , we have:

1

B3. (a) No

Cooling of water = melted amount of ice Then,

4186 x1 x20 x334 ⇨ 250.66

(b) ∆ ∆ ∆ ln

∆ 1 x4186 x ln273293

4186x1x20273

10.713

Page 28: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

ElectrSoluti A1. Ca

Case 2

A2.

Then, Now,

ricity and Mions:

ase 1: charg

2: An infinite

, b

the electric

∝ | | ⇨

Magnetism G

e Q at

e, grounded

both have th

field is decr

⇨ decre

Group A.

14

2

plane condu

14 4

he same direc

eased.

eases.

- - - - - - - -

4

uctor is place

4

ction.

14 2

14

116

++++++++

12

ed in the xy-

14

116

32

plane

Page 29: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

A3. We have:

According with the Lorentz force:

Then:

And the charge is positive. A4.

12

and K Then:

12

K 2

k

k3

Page 30: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

ElectrSoluti B1.

(a)

(b)

B2. (a

(b)

No rot(c)

ricity and Mions:

) Cylindricamagnitude

) The AmpeInside (

Outside (

a)

tation of ∙

Magnetism G

al symmetry for the samre loop is co

):

):

due to |

Group B.

requires Be distance fr

oaxial with th

41

4

B–field in throm the z–axhe cylinder.

2

2

3 ∙

4

4

he direction xis.

2

2

of and

0

has the samme

Page 31: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

is B3. (a)

No bo (b)

(c)

s repelled by

und volume

|| ||

alon

y

current, sin

ng axis of cyl

ce

linder

434

34

0

4

0

Page 32: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

B4. (

(b)

(c) On

(a)

n the surface

: 0

:

:2

1

1

of the spher

2⇨

2 cos

re, surface ch

,

2

,

2,

0,

ε ∙ 1sin

sin

s 1sin

0 harge densit

, antisotropic

0, 0

0,

,

n

2 sin

ty , no volu

c

0 ↑

0 ↑

0 ↓

1sin

n

ume charge ddensity

Page 33: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Quantum Mechanics Group A. Solutions:

A1. For photon , then for the electron

80x10 x1.602x102x9.109x10 x 2.998x10

1.003x10 J 6.262

A2. , because of the symmetry of the wave function.

A3.

, , , , , , , , , ,

, 2 ħ 2 ħ 2 ħ Thus, it is not Hermitian A4. (a)

|⟩12

√3| ⟩12| ⟩

⟨|⟩12

√3⟨ |12⟨ |

12

√3| ⟩12| ⟩

⟨|⟩34

14

1

⇨|⟩ is normalized. (b)

| ⟩513

| ⟩1213

| ⟩

|⟨ |⟩| 513

⟨ |1213

⟨ |12

√3| ⟩12| ⟩

1226

36169

Page 34: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

Quantum Mechanics Group B. Solutions:

B1. (a) According to normalization ∗ 1, we get:

1 ⇨

(b)

⟨ |⟩ ⟨ | ⟩⟨ | ⟩ħ

√2 ħ

sin√

sin

B2. (a) ħ2

12

(b) Normalization:

⟨|⟩ 1 ⟨12√3

12√3 ⟩

34

Then,

(c) Since → , then 0, √3

(d) ⟨ ⟩ ħ ħ ħ

B3. (a)

2x9.109x10 x10x1.602x10 1.055x10

1.6193x10 m

ħ2

∗ ∗ħ

⇨ ħ

9.109x10 x4.0x10 1.6193x10 m x1.055x10

0.462

(b) ħ

and . Then we get:

2

ħ

⇨ ,2

ħ

(c) The boundary conditions are at 0

Page 35: UNL Department of Physics and Astronomy · Preliminary Examination – Day 2 August, 2011 This test covers the topics of Electricity and Magnetism (Topic 1) and Quantum Mechanics

, ⇨ ,

2,⇨ 0

(d)

, ⇨ | || |

1

(e)

1%, ⇨ 2ħ

10 51.265

B4. (a) Normalization ⟨|⟩ 1

⇨ 1 ⇨ 12

3

(b)

∗3

1132

(c) is an even function which is symmetrical about 0, then is an odd function which is antisymmetrical.

(d) ⟨ ⟩

(e) ∆ ⟨ ⟩ ⟨ ⟩√