university of ostrava · hilfer, application of fractional calculus in physics (singapore: world...

50
Hilfer-Prabhakar derivatives and applications International Conference on Fractional Calculus 9–10 June 2020 Ghent Analysis & PDE Center Ghent University, Belgium Æivorad Tomovski University of Ostrava Ostrava June 9, 2020

Upload: others

Post on 22-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

Hilfer-Prabhakar derivatives and applications

International Conference on Fractional Calculus 9–10 June 2020 GhentAnalysis & PDE Center Ghent University, Belgium

Æivorad TomovskiUniversity of Ostrava

Ostrava June 9, 2020

Page 2: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Introduction and preliminariesGosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

Complete Monotonicity of the Mittag-Le✏er functionsComplete monotonicityFractional relaxation equationFractional oscillation equation

Hilfer-Prabhakar derivativeHilfer-Prabhakar derivativesCauchy problemsFree electron laser equation

Fractional Poisson ProcessFractional generalization of Poisson renewal processWaiting time densityFractional Poisson process - Hilfer-Prabhakar derivative

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 3: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

Gosta Mittag-Le✏er

I Gosta Mittag-Le✏er

(1846 - 1927)

- Swedish mathematician

- founder of the famous journalActa Mathematica (1882)

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 4: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

Mittag-Le✏er (M-L) functions

I One parameter M-L functionMittag-Le✏er, C.R. Acad. Sci. Paris 137 (1903) 554

E↵(z) =1X

n=0

zn

�(↵n + 1)(z 2 C,<(↵) > 0) (1)

I Two parameter M-L functionWiman, Acta Math. 29 (1905) 191

E↵,�(z) =1X

n=0

zn

�(↵n + �)(z ,� 2 C,<(↵) > 0) (2)

- entire functions of order ⇢ = 1/<(↵) and type 1

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 5: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

I Two parameter M-L function (cont.)- generalization of the exponential, hyperbolic and trigonometricfunctions

E1,1(z) = ez , E2,1(z2) = cosh(z)

E2,1(�z2) = cos(z), E2,2(�z2) = sin(z)/z

E1/2,1(z) = ez2

erfc(�z)

- Miller-Ross functionMiller, Ross, An Introduction to Fractional Calculus and FractionalDi↵erential Equations (1993)

Et(⌫, a) = t⌫1X

k=0

(at)k

�(⌫ + k + 1)= t⌫E1,⌫+1(at) (3)

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 6: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

Graphical representations

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 7: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

Graphical representations

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 8: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

Integration of M-L functions

Z t

0⌧↵�1E↵,↵ (�a⌧↵) (t � ⌧)��1E↵,� (�b(t � ⌧)↵) d⌧

=E↵,� (�bt↵)� E↵,� (�at↵)

a� bt��1, a 6= b

Z t

0⌧↵�1E↵,↵ (�a⌧↵) (t � ⌧)��1E↵,� (�a(t � ⌧)↵) d⌧

= t↵+��1E↵,� (�at↵)

- Laplace transformPodlubny, Fractional Di↵erential Equations (1999)

L⇥t��1E↵,�(±at↵)

⇤(s) =

s↵��

s↵ ⌥ a, <(s) > |a|1/↵

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 9: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

I Three parameter M-L functionPrabhakar, Yokohama Math. J. 19 (1971) 7

E�↵,�(z) =

1X

n=0

(�)n�(↵n + �)

· zn

n!(z ,�, � 2 C,<(↵) > 0) (4)

- entire function of order ⇢ = 1/<(↵) and type 1

Lht��1E�

↵,� (!t↵)i(s) =

s↵���

(s↵ � !)�, |!/s↵| < 1

- Asymptotic expansionSaxena et al., Astrophys. Space Sci. 209 (2004) 299

E �↵,�(z) =

(�z)��

�(�)

1X

n=0

�(� + n)

�(� � ↵(� + n))· (�z)�n

n!, |z | > 1

E �↵,�(z) ⇠ O

�|z |��

�, |z | > 1

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 10: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

I Four parameter M-L functionSrivastava, Tomovski, Appl. Math. Comput. 211 (2009) 198

E�,↵,� (z) =

1X

n=0

(�)n�(↵n + �)

· zn

n!(5)

(z ,�, � 2 C,<(↵) > max{0,<()� 1},<() > 0)

- entire function: order ⇢ = 1<(↵�)+1 , type � = 1

⇣<(↵)<()

<(↵)<(↵)

⌘⇢

Lht⇢�1E�,

↵,� (!t�)i(s) =

s�⇢

�(�)· 2 1

(⇢,�), (�,)

(�,↵)

����!

s�

! 2 C, min{<(�),<(),<(⇢),<(�)} > 0

p q

(ap,Ap)(bq,Bq)

���� z�=P1

k=0�(a1+A1k)···�(ap+Apk)�(b1+B1k)···�(bp+Bpk)

· zk

k! - Wright

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 11: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

Graphical representations

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 12: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

Fractional calculus

I Integral operators

- Riemann-Liouville (R-L) fractional integral

�Iµa+f

�(t) =

1

�(µ)

Z t

a

f (⌧)

(t � ⌧)1�µd⌧, t > a, <(µ) > 0.

(6)

I 0a+f (t) = f (t), (identity operator)

I �a+I�a+ = I �+�

a+ = I �a+I�a+, (semi-group property)

I �a+(t � a)s =�(s + 1)

�(s + 1 + �)(t � a)s+� , � � 0, s > �1

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 13: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

Generalized integral operator

Srivastava, Tomovski, Appl. Math. Comput. 211 (2009) 198

(E!;�,a+;↵,�')(t) =

Z t

a(t � ⌧)��1E �,

↵,� (!(t � ⌧)↵)'(⌧)d⌧ (7)

E�,↵,� (z) - four parameter M-L function (5)

- integral operator (7) appears in the solution of fractional di↵usion -

wave equations with a source term

Tomovski, Sandev, Appl. Math. Comput. (2012)

Tomovski, Sandev, Comput. Math. Appl. 62 (2011) 1554

Sandev, Metzler, Tomovski, J. Phys. A: Math. Theor. 44 (2011) 255203

Sandev, Tomovski, J. Phys. A: Math. Theor. 43 (2010) 055204

Sandev, Tomovski, Proc. Symp. Frac. Sig. Systems (Lisbon, 2009)

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 14: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

Generalized integral operator. Properties

Srivastava, Tomovski, Appl. Math. Comput. 211 (2009) 198

kE!;�,a+;↵,�'k1 Mk'k1, 8' 2 L(a, b)

M = (b � a)<(�)1X

n=0

|(�)kn|(<(↵)n + �) |�(↵n + �)|

|!(b � a)<(↵)|n

n!

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 15: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

I Open problem

Srivastava, Tomovski, Appl. Math. Comput. 211 (2009) 198

Lemma

The following inequality holds true⇣E!;�,k0+;↵,�E

!;�,k0+;↵,µ'

⌘(x)

⇣E!;�+�,k0+;↵,�+µ'

⌘(x) (8)

↵,�, �,!, �, µ 2 R+, 0 < k 1,↵ > k� 1

for any positive Lebesgue integrable function ' 2 L(a, b). In (8) equalityholds true when k = 1

- Open problem: Is it possible that relation in (8) holds true alsofor 0 < k < 1?

If it is, find necessary and su�cient conditions such that (8) holds

true for 0 < k < 1

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 16: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

Integral operators. Examples

Srivastava, Tomovski, Appl. Math. Comput. 211 (2009) 198

⇣I�a+

h(t � a)��1E �,

↵,� (!(t � a)↵)i⌘

(x)

= (x � a)�+��1E �,↵,�+� (!(x � a)↵)

I�a+

⇣E!;�,a+;↵,�'

⌘= E!;�,

a+;↵,�+�' = E!;�,a+;↵,� I

�a+'

- Hardy-type inequality: Tomovski, Hilfer, Srivastava, Integral

Transform. Spec. Funct. 21 (2010) 797

�R10 x�↵p|

�I↵0+f

�(x)|pdx

�1/p �(1/p0)�(↵+1/p)

�R10 |f (x)|pdx

�1/p

1p + 1

p0 = 1

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 17: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

I Fractional derivatives

- R-L fractional derivative

�Dµ

a+f�(t) =

✓d

dt

◆n �I n�µa+ f

�(t), <(µ) > 0, n = [<(µ)] + 1

- Examples:Srivastava, Tomovski, Appl. Math. Comput. 211 (2009) 198Tomovski, Hilfer, Srivastava, Integral Transform. Spec. Funct. 21(2010) 797

⇣D�

a+

h(t � a)��1E�,

↵,� (!(t � a)↵)i⌘

(x)

= (x � a)����1E�,↵,��� (!(x � a)↵)

D�a+

⇣E!;�,a+;↵,�'

⌘= E!;�,

a+;↵,���' = E!;�,a+;↵,�D

�a+'

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 18: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

I Composite fractional derivative

- order 0 < µ < 1 and type 0 ⌫ 1Hilfer, Application of Fractional Calculus in Physics (Singapore:World Scientific, 2000)

�Dµ,⌫

a+ f�(t) =

✓I ⌫(1�µ)a+

d

dt

⇣I (1�⌫)(1�µ)a+ f

⌘◆(t) (9)

- The Hilfer-composite time derivative was used by Hilfer tosuccessfully describe the dynamics in glass formers over anextremely large frequency window

- From a practical point of view the description in terms ofcomposite-fractional operators increases the versatility of thesolution of the dynamic equation in the description of complexexperimental data over than ten orders of magnitude with lessparameters than traditional fit functions such as Havriliak-Negami

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 19: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

I Composite fractional derivative

Hilfer, Application of Fractional Calculus in Physics (Singapore:World Scientific, 2000)- Examples:

�Dµ,⌫

a+

⇥(t � a)��1

⇤�(x) =

�(�)

�(�� µ)(x � a)��µ�1

(x > a, 0 < µ < 1, 0 ⌫ 1,<(�) > 0)

⇣Dµ,⌫

a+

h(t � a)��1E�,

↵,� (!(t � a)↵)i⌘

(x)

= (x � a)��µ�1E�,↵,��µ (!(x � a)↵)

Dµ,⌫a+

⇣E!;�,a+;↵,�'

⌘= E!;�,

a+;↵,��µ'

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 20: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

Composite fractional derivative

- Hardy-type inequality: Tomovski, Hilfer, Srivastava, Integral Transform.Spec. Funct. 21 (2010) 797

✓Z 1

0x�↵p|

⇣D↵,�

0+ f⌘(x)|pdx

◆1/p

�(1/p0)

�(�(1� ↵) + 1/p)

✓Z 1

0|⇣D↵+��↵�

0+ f⌘(x)|pdx

◆1/p

1

p+

1

p0= 1

- Laplace transform: Hilfer, Application of Fractional Calculus in Physics(Singapore: World Scientific, 2000)

L⇥Dµ,⌫

0+ f (t)⇤= sµL [f (t)]� s⌫(µ�1)

⇣I (1�⌫)(1�µ)0+ f

⌘(0+) (10)

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 21: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

I Fractional derivatives

⌫ = 0, a = 0: classical R-L fractional derivative

�RLD

µ0+f�(t) =

d

dt

⇣I (1�µ)0+ f

⌘(t). (11)

- ⌫ = 1, a = 0: Caputo fractional derivativeCaputo, Elasticita e Dissipazione (Bologna: Zanichelli, 1969)

�CD

µ0+f�(t) =

✓I (1�µ)0+

d

dtf

◆(t). (12)

�CD

µ0+f�(t) =

�RLD

µ0+f�(t)� f (0+) · t�µ

�(1� µ), (13)

where 0 < µ < 1

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 22: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

Fractional oscillation-relaxation di↵erential equations

I Fractional relaxation-oscillation

Mainardi, Gorenflo, J. Comput. Appl. Math. 118 (2000) 175

d↵u(t;↵)

dt↵+ c↵u(t;↵) = 0, c > 0, 0 < ↵ 2

u(0;↵) = u0, 0 < ↵ 1, fractional relaxation

u(0+;↵) = u0, u(0+;↵) = 0, 1 < ↵ 2, fractional oscillation

- solution

u(t;↵) = u0E↵ (�(ct)↵)

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 23: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

I Abel-Volterra integral equation of a second kind

u(t) +�

�(↵)

Z t

0

u(⌧)

(t � ⌧)1�↵d⌧ = f (t)

- solution represented via M-L function E↵ (��t↵)

- relaxation-oscillation phenomena (papers by Mainardi andGorenflo)

CD↵0+u(t) = D↵

u(t)�

m�1X

k=0

tk

k!u(k)(0+)

!= �u(t) + q(t)

m � 1 < ↵ m, uk(0+) = ck , k = 0, 1, 2, ...,m � 1u = u(t) - field variable; q(t) - given function

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 24: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

I Some fractional di↵erential and integral equations withcomposite fractional derivative

Srivastava, Tomovski, Appl. Math. Comput. 211 (2009) 198

�Dµ,⌫

0+ y�(x) = �

⇣E!;�,0+;↵,�

⌘(x) + f (x)

⇣I (1�⌫)(1�µ)0+ y

⌘(0+) = c

- solution

y(x) = cxµ�⌫(1�µ)�1

�(µ� ⌫ + µ⌫)+ �xµ+�E�,

↵,�+µ+1 (!x↵)

+1

�(µ)

Z x

0(x � t)µ�1f (t)dt

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 25: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Gosta Mittag-Le✏er, Mittag-Le✏er functionsFractional calculusFractional oscillation-relaxation di↵erential equations

I Some fractional di↵erential and integral equations withcomposite fractional derivative

Srivastava, Tomovski, Appl. Math. Comput. 211 (2009) 198

x�Dµ,⌫

0+ y�(x) = �

⇣E!;�,0+;↵,�

⌘(x)

⇣I (1�⌫)(1�µ)0+ y

⌘(0+) = c1

- solution

y(x) = c2xµ�1

�(µ)+ c1

xµ�⌫(1�µ)�1

�(µ� ⌫ + µ⌫)

� �

�(µ)

Z x

0tµ�1(x � t)��1E�,

↵,�+1 (!(x � t)↵) dt

- c1 and c2 are arbitrary constants

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 26: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Complete monotonicityFractional relaxation equationFractional oscillation equation

I e�↵,� (t,�) function

e�↵,� (t,�) = t��1E �↵,� (��t

↵)

e↵,� (t,�) = t��1E↵,� (��t↵)

e↵ (t,�) = E↵ (��t↵)

↵,�, � > 0,� 2 C

e�↵,� (t) ⌘ e�↵,� (t; 1)

e↵,� (t) ⌘ e↵,� (t; 1)

e↵ (t) ⌘ e↵ (t; 1)

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 27: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Complete monotonicityFractional relaxation equationFractional oscillation equation

Complete monotonicity

- A function f : [0,1) ! [0,1) is completely monotone (CM) iff 2 C [0,1), f is infinitely di↵erentiable on (0,1) and

(�1)m f (m) (x) � 0 (x > 0,m = 0, 1, 2, ..)

- Bernstein interpretation of CM function:

f (s) =

1Z

0

e�stK (t) dt

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 28: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Complete monotonicityFractional relaxation equationFractional oscillation equation

I Complete monotonicity

Pollard (1948): Bull. Am. Math. Soc. 54.

E↵ (�x) , x > 0 is CM if 0 < ↵ 1

E↵ (�x↵) , x > 0 is CM if 0 < ↵ 1

e↵ (x ;�) , x > 0 is CM if 0 < ↵ 1, � > 0

Schneider (1996): Exposition.Math. 14; Miller (1997/98): RealAnal. Exchange 23

E↵,� (�x) , x > 0 is CM if 0 < ↵ 1,� � ↵

e↵,� (x ;�) , x > 0 is CM if 0 < ↵ � 1, � > 0

Hanyga-Seredynska (2008): J. Stat. Phys. 131

E�↵,1 (�x↵) , x � 0 is CM i↵ ↵, � 2 (0, 1) .

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 29: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Complete monotonicityFractional relaxation equationFractional oscillation equation

I Complete monotonicity

Gorenflo-Mainardi (1996): PreprintA-14/96, FachbereichMathematik and Informatik,Free University, Berlinhttp://www.math.fu-berlin.de/publ/index.html(1997) Fractals and Fractional Calculus in Continuum Mechanics,Springer-Verlag, Wien, Berlin, New York

e↵ (t) =

8>><

>>:

1R

0e�rtK↵ (r) dr ,↵ 2 (0, 1]

1R

0e�rtK↵ (r) dr + 2

↵et cos( ⇡

↵ ) cos⇥t sin

�⇡↵

�⇤,↵ 2 (1, 2]

K↵ (r) =r↵�1

sin (⇡↵)

r2↵ + 2r↵ cos (⇡↵) + 1> 0,↵ 2 (0, 1]

limt!0+

e↵ (t) = 1

1Z

0

K↵ (r) dr =

⇢1, 0 < ↵ 1

1� 2↵ , 1 < ↵ 2

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 30: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Complete monotonicityFractional relaxation equationFractional oscillation equation

I Complete monotonicity

e↵,� (t) =

1Z

0

e�rtK↵,� (r) dr , (0 < ↵ < � 1)

K↵,� (r) =r↵��

r↵ sin (⇡↵) + sin [⇡ (� � ↵)]

r2↵ + 2r↵ cos (⇡↵) + 1> 0

e↵,� (t) =

1Z

0

e�rtK↵,� (r) dr+2

↵et cos(

⇡↵ ) cos

ht sin

⇣⇡↵

⌘� ⇡

↵(� � 1)

i,

↵ 2 (1, 2] , � > 0

Tomovski, Pogany, Srivastava (2014), J. Franklin Institute

e↵,� (t) , t > 0 is CM if ↵ 23

2, 2

◆,� 2

1,↵+

3

2

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 31: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Complete monotonicityFractional relaxation equationFractional oscillation equation

Fractional relaxation equation (Gorenflo-Mainardi)

du

dt+ a

d↵u

dt↵+ u (t) = q (t) , u (0+) = c0, 0 < ↵ < 1

u (t) = c0u0 (t) +

tZ

0

q (t � ⌧) u� (⌧) d⌧, u� (t) = �u00 (t)

u0 (t) =

1Z

0

e�rtK↵ (r ; a) dr

K↵ (r ; a) =1

ar↵�1 sin (↵⇡)

(1� r)2 + a2r2↵ + 2 (1� r) ar↵ cos (↵⇡)> 0, u0 (t) is CM.

u� (t) =

1Z

0

e�rtrK↵ (r ; a) dr , u� (t) is CM.

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 32: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Complete monotonicityFractional relaxation equationFractional oscillation equation

Fractional oscillation equation (Gorenflo-Mainardi)

d2v

dt2+ a

d↵v

dt↵+ v (t) = q (t) , 0 < ↵ < 2

v (0+) = c0, v 0 (0+) = c1.

(a) v (t) = c0v0 (t)� c1v00 (t)�

tZ

0

q (t � ⌧) v 00 (⌧) d⌧ (0 < ↵ < 1)

(b) v (t) = c0v0 (t) + c1

tZ

0

v0 (⌧) d⌧ �tZ

0

q (t � ⌧) v 00 (⌧) d⌧, (1 < ↵ < 2)

v0 (t) = f↵ (t; a) + g↵,� (t; a)

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 33: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Complete monotonicityFractional relaxation equationFractional oscillation equation

f↵ (t; a) =

1Z

0

e�rtH↵ (r , a) dr

H↵ (r , a) =1

ar↵�1 sin (↵⇡)

(r2 + 1)2 + a2r2↵ + 2 (r2 + 1) ar↵ cos (↵⇡)

H↵ (r , a) > 0 (0 < ↵ < 1) , r > 0

H↵ (r , a) < 0 (1 < ↵ < 2) , r > 0

In case (a) : f↵ (t) is CM; In case (b) : � f↵ (t) is CM

- Oscillatory character

g↵,� (t) = 2<(

⇢e i� + a�⇢e i�

�↵�1

2⇢e i� + a↵ (⇢e i�)↵�1 e(⇢ei�)t

),⇣⇢ > 0,

2< � < ⇡

g↵,� (t) > 0 (0 < ↵ < 1)

g↵,� (t) < 0 (1 < ↵ < 2)

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 34: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Complete monotonicityFractional relaxation equationFractional oscillation equation

I Tomovski, Pogany, Srivastava (2014): J. Franklin Inst.

e�↵,� (t) =

1Z

0

e�rtK�↵,� (r) dr , (↵ 2 (0, 1] ,� > 0, � > 0)

K�↵,� (r) =

r↵���

sinh�arctg r↵ sin(⇡↵)

r↵ cos(⇡↵)+1 + ⇡ (� � ↵�)i

[r2↵ + 2r↵ cos (⇡↵) + 1]�/2> 0

✓↵ 2

✓0,

1

2

�,� 2 (0, 1) , � > 0,� � ↵�

en↵,� (t) =

1Z

0

e�rtK n↵,� (r) dr +

2 (�1)n�1

↵n (n � 1)!et cos(⇡/↵)

cosht sin

⇣⇡↵

⌘� ⇡

↵(� � 1)

i n�1X

l=0

(1� n)l cl(↵n � � � n + 2)l

(↵ 2 (1, 2] ,� > 0, � = n 2 N)Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 35: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Complete monotonicityFractional relaxation equationFractional oscillation equation

e↵,� (t) t > 0 is CM if ↵ 23

2, 2

◆,� 2

1,↵+

3

2

◆.

e�↵,� (t) t > 0 is CM if ↵ 2✓0,

1

2

�, � 2 (0, 1) , � > 0, ↵� �.

Wright function:

� (⇢,�↵; z) =1X

n=0

1

� (⇢� n↵)

zn

n!

↵ 2 (0, 1) , ⇢ 2 C

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 36: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Complete monotonicityFractional relaxation equationFractional oscillation equation

Stankovic (1970): Publ. Inst. Math. (Beograd)

(↵,�, �; u) = u��↵��1��� � ↵�,�↵;�u�↵

�> 0

u > 0,↵ 2 (0, 1) ,� � ↵�

e�↵,� (t;�) =1

� (�)

1Z

0

e��xK (↵,�, �; x) dx

K (↵,�, �; x) = x (��1)/↵�1 ⇣↵,�, �; tx�1/↵

⌘> 0

↵,� 2 (0, 1) , �,� > 0, � � ↵�

Tomovski, Pogany, Srivastava (2014), J. Franklin Institute

e�↵,� (t;�) is CM if ↵,� 2 (0, 1) , �,� > 0,� � ↵�.

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 37: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Complete monotonicityFractional relaxation equationFractional oscillation equation

Stankovic (1970): Publ. Inst. Math. (Beograd)

��x�p�1���p,�↵;�x�↵

��� 1

↵⇡

�� p+1

�cos ↵⇡

2

� p+1↵

(p > �1)

Tomovski, Pogany, Srivastava (2014), J. Franklin Institute

���e�↵,� (t;�)���

�⇣� � ��1

⌘�⇣

��1↵

⇡↵���1↵ � (�)

⇥cos�⇡↵2

�⇤��((��1)/↵)(t > 0)

↵ 2 (0, 1) ,� > 1, �,� > 0, ↵� > � � 1

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 38: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Hilfer-Prabhakar derivativesCauchy problemsFree electron laser equation

Hilfer-Prabhakar derivatives

I Prabhakar integral operator

Prabhakar (1971): Yokohama Math. J. 19

⇣E�↵,�,�,a+'

⌘(t) =

tZ

a

(t � ⌧)��1 E�↵,� (� (t � ⌧)↵)' (⌧) d⌧

⇣E�↵,�,�,0+'

⌘(t) =

⇣' ⇤ e�↵,�

⌘(t)

E�↵,�,�,0+E

�0

↵,�0,�,0+ = E�+�0

↵,�+�0,�,0+

Sobolev space

Wm,1 [a, b] =

⇢f 2 L1 [a, b] :

dm

dtmf 2 L1 [a, b]

�, m = 1, 2, ..

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 39: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Hilfer-Prabhakar derivativesCauchy problemsFree electron laser equation

I Prabhakar derivativeGarra, Gorenflo, Polito, Tomovski (AMC, 2014)

D�↵,�,�,0+f (x) =

dm

dxmE��↵,m��,�,0+f (x)

f 2 L1 [0, b] , f ⇤ e��↵,m�� 2 Wm,1 [0, b] , m = [�]

↵,�, �,� 2 C, < (↵) ,< (�) > 0

I Hilfer-Prabhakar derivativeGarra, Gorenflo, Polito, Tomovski (AMC, 2014)

⇣D�,µ,⌫

↵,�,0+f⌘(t) =

✓E��⌫↵,⌫(1�µ),�,0+

d

dt

⇣E��⌫↵,(1�⌫)(1�µ),�,0+f

⌘◆(t)

µ 2 (0, 1) , ⌫ 2 [0, 1] , f 2 L1 [a, b] , f ⇤ e��(1�⌫)↵,(1�⌫)(1�µ) 2 AC 1 [0, b]

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 40: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Hilfer-Prabhakar derivativesCauchy problemsFree electron laser equation

I Regularized version of Hilfer-Prabhakar derivative⇣CD�,µ

↵,�,0+f⌘(t) =

✓E��⌫↵,⌫(1�µ),�,0+E

��(1�⌫)↵,(1�⌫)(1�µ),�,0+

d

dtf

◆(t)

=

✓E��↵,1�µ,�,0+

d

dtf

◆(t)

I Laplace transform of the Hilfer-Prabhakar derivative

LhD�,µ,⌫

↵,�,0+fi(s) = sµ

�1� �s�↵

�� L [f ] (s)

�s�⌫(1�µ)�1� �s�↵

��⌫ hE��(1�⌫)↵,(1�⌫)(1�µ),�,0+f (t)

i

t=0+

I Laplace transform of the regularized version ofHilfer-Prabhakar derivative

LhCD�,µ

↵,�,0+fi(s) = sµ

�1� �s�↵

�� L [f ] (s)� sµ�1�1� �s�↵

��f (0+)

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 41: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Hilfer-Prabhakar derivativesCauchy problemsFree electron laser equation

I Caputo-Fabrizio, Progr. Fract. Di↵. Appl. (2015)

CFD↵a+f (t) =

M(↵)

1� ↵

Z t

aexp

✓� ↵

1� ↵(t � ⌧)

◆f 0(⌧) d⌧

I Attangana-Baleanu, Thermal Science (2016)

ABCD↵a+f (t) =

M(↵)

1� ↵

Z t

aE↵

✓� ↵

1� ↵(t � ⌧)↵

◆f 0(⌧) d⌧

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 42: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Hilfer-Prabhakar derivativesCauchy problemsFree electron laser equation

Cauchy problems

8>>>><

>>>>:

D�,µ,⌫↵,�,0+u (x , t) = K @2u(x,t)

@x2 , t > 0, x 2 RE��(1�⌫)↵,(1�⌫)(1�µ),�,0+u (x , 0+) = g (x)

limx!±1

u (x , t) = 0

µ 2 (0, 1) , ⌫ 2 [0, 1] ,� 2 R, K ,↵ > 0, � � 0

u (x , t) =1

2⇡

+1Z

�1

^g (k)

1X

n=0

��Kk2

�ntµ(n+1)�⌫(µ�1)�1E�(n+1�⌫)

↵,µ(n+1)�⌫(µ�1) (�t↵)

!e�ikxdk

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 43: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Hilfer-Prabhakar derivativesCauchy problemsFree electron laser equation

I Cauchy problems8>>><

>>>:

CD�,µ↵,�,0+u (x , t) = K @2u(x,t)

@x2 , t > 0, x 2 Ru (x , 0+) = g (x)lim

x!±1u (x , t) = 0

µ 2 (0, 1) , � 2 R, K ,↵ > 0, � � 0

u (x , t) =1

2⇡

+1Z

�1

^g (k)

1X

n=0

��Kk2tµ

�nE�n↵,µn+1 (�t

↵)

!e�ikxdk

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 44: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Hilfer-Prabhakar derivativesCauchy problemsFree electron laser equation

Free electron laser equation

8<

:

dydx = �i⇡g

xR

0(x � t) e i⌘(x�t)y (t) dt, g , ⌘ 2 R, x 2 (0, 1]

y (0) = 1(

D�,µ,⌫↵,!,0+y (x) = �E$

↵,µ,�,0+y (x) + f (x) , x > 0, f (x) 2 L1 (0,1)

E��(1�⌫)↵,(1�⌫)(1�µ),�,0+y (0+) = k

y (x) = k1X

n=0

�nx⌫(1�µ)+µ+2µn�1E�+n($+�)��⌫↵,⌫(1�µ)+2µn+µ (!x

↵)

+1X

n=0

�nE�+n($+�)↵,µ(2n+1),!,0+f (x)

� = 0, ⌫ = 0, µ ! 1, f ⌘ 0, � = �i⇡g , ! = i⌘, ↵ = $ = k = 1

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 45: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Fractional generalization of Poisson renewal processWaiting time densityFractional Poisson process - Hilfer-Prabhakar derivative

Fractional Poisson process

- Poisson process - renewal process with waiting time pdf of exp. type

� (t) = �e��t , � > 0, t � 0

with moments: hT i = 1

�,⌦T 2↵=

1

�2, ...., hT ni = 1

�n

- Survival probability:

(t) = P (T > t) = e��t , t � 0

d

dt (t) = �� (t) , t � 0, (0+) = 1

Khintchine (1960): Mathematical Methods in the Theory of Queuing

p0 (t) = e��t ,d

dtpk (t) = � (pk�1 (t)� pk (t)) , pk (0) = 0, k = 1, 2, 3, ..

pk (t) = P (N (t) = k) =(�t)k

k!e��t , t � 0, k = 0, 1, 2, ..

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 46: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Fractional generalization of Poisson renewal processWaiting time densityFractional Poisson process - Hilfer-Prabhakar derivative

I Fractional generalization of Poisson renewal processBeghin-Orsinher (2009): Electronic Journ. Prob. 14

⇤D�t (t) = � (t) , t > 0, 0 < � 1; (0+) = 1

(t) = P (T > t) = E�

��t�

�, 0 < � 1.

p0 (t) = E�

��t�

�, ⇤D

�t pk (t) = pk�1 (t)� pk (t) , k = 1, 2, 3, ..

pk (t) = P (N (t) = k) =tk�

k!E (k)�

��t�

�, k = 0, 1, 2, ..

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 47: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Fractional generalization of Poisson renewal processWaiting time densityFractional Poisson process - Hilfer-Prabhakar derivative

Waiting time density

I Mittag-Le✏er waiting time density (CTRW)Hilfer, Anton (1995), Phys. Rev. E 51.

fµ (t) = � d

dtEµ (�tµ) = tµ�1Eµ,µ (�tµ) , µ > 0

1Z

0

e�st fµ (t) dt =1

1 + sµ(|sµ| < 1)

I Prabhakar-Mathai waiting time density Mathai, 2006: FCAA

gµ,⌫ (t) = tµ⌫�1E⌫µ⌫,µ (�tµ) , µ, ⌫ > 0

1Z

0

e�stgµ,⌫ (t) dt =1

(1 + sµ)⌫(|sµ| < 1)

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 48: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Fractional generalization of Poisson renewal processWaiting time densityFractional Poisson process - Hilfer-Prabhakar derivative

I Fractional Poison Process associated with regularizedversion of Hilfer-Prabhakar derivativeGarra, Gorenflo, Polito, Tomovski (2014): Appl. Math. Comput.

8<

:

cD�,µ⇢,��,0+pk (t) = ��pk (t) + �pk�1 (t) , k � 0, t,� > 0

pk (0) =

⇢1 : k = 00 : k � 1

(� > 0, � � 0, 0 < ⇢ 1, 0 < µ 1)

- Define probability generating function of the counting numberN (t) , t � 0 :

G (v , t) =1X

k=0

vkpk (t)

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 49: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Fractional generalization of Poisson renewal processWaiting time densityFractional Poisson process - Hilfer-Prabhakar derivative

I (cont.)⇢

cD�,µ⇢,��,0+G (v , t) = �� (1� v)G (v , t) , |v | 1

G (v , 0) = 1

G (v , t) =1X

k=0

(��tµ)k (1� v)k E�k⇢,µk+1 (��t

⇢) , |v | 1

G (v , t) =1X

k=0

vk1X

r=k

(�1)r�k✓r

k

◆(�tµ)r E�r

⇢,µr+1 (��t⇢)

pk (t) =1X

r=k

(�1)r�k✓r

k

◆(�tµ)r E�r

⇢,µr+1 (��t⇢) , k � 0, t � 0

� = 0, pk (t) =1X

r=k

(�1)r�k✓r

k

◆(�tµ)r

� (µr + 1)= (�tµ)k E k+1

µ,µk+1 (��tµ)

v = 1,1X

k=0

pk (t) = 1.

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications

Page 50: University of Ostrava · Hilfer, Application of Fractional Calculus in Physics (Singapore: World Scientific, 2000) Dµ, ⌫ a+ f (t)= I (1 µ) a+ d dt ⇣ I (1 ⌫)(1 µ) a+ f ⌘

OutlineIntroduction and preliminaries

Complete Monotonicity of the Mittag-Le✏er functionsHilfer-Prabhakar derivativeFractional Poisson Process

Fractional generalization of Poisson renewal processWaiting time densityFractional Poisson process - Hilfer-Prabhakar derivative

I How to evaluate the mean value of N (t)?⇢

cD�,µ⇢,��,0+EN (t) = �, t > 0EN (t) |t=0 = 0, t > 0

EN (t) = �tµE�⇢,1+µ (��t⇢) , t � 0.

Zivorad Tomovski Hilfer-Prabhakar derivatives and applications