university of naples federico ii, academic year 2011-2012 istituzioni di astrofisica ·  ·...

45
Lecture 6 The equations of stellar structure University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica, read by prof. Massimo Capaccioli Karl & Martin Schwarzschild

Upload: ngohanh

Post on 17-Apr-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

Lecture 6

The equations of stellar structure

University of Naples Federico II, Academic Year 2011-2012Istituzioni di Astrofisica, read by prof. Massimo Capaccioli

Karl &

Martin Schwarzschild

Page 2: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

Learning outcomes

The student will :

• see the first two basic equations of stellar structure (the hydrostatic

equation and the conservation of the mass);

• analyze the hydrostatic and the spherical symmetry assumptions;

• get in touch with the Virial Theorem;

• evaluate the minimum pressure and temperature at the Sun’s center;

• discuss the mean molecular weight;

• consider the physical state of the stellar material;

• know pressures other then thermal.

Page 3: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

A star is: a huge mass of gas

self-gravitating

self-luminous

supported by internal pressure

supplied by central energy source or by its own potential

Some questions:source of pressure ?

source of energy ?

why a gas ?

how long do they live ?

What is a star ?

Page 4: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

Ideal stars are:

– isolated

– spherical

– non-rotating

– steady

Real stars may be:

– embedded in gas and/or dust

– in a double or multiple star system

– connected to surrounding gas by magnetic field lines

– rotating rapidly

Real versus ideal star ?

Page 5: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

5

To get started

What are the main physical processes determining the structure of stars ?

• Stars are held together by their gravitation: each mass element of a star exerts

an attraction on all the other mass elements [Why so?].

• The gravitational collapse is opposed by the internal (thermal) pressure.

• Being the principal forces acting on the stellar structure, these two forces must

be in balance. But how finely? And for how long?

• Stars are continually radiating into space, thus they loose energy.

• Thus, if thermal properties are constant, a continual energy source must exist.

Theory must describe: 1. the origin of this energy &

2. the way it is transported to the surface.

Page 6: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

6

Basic (temporary) assumptions

two fundamental assumptions

rate of change constant

For now we make :

1) the of properties is assumed : ;

2) al

with time

spherical symmetrl stars are & about their centers: .

We will

0ic

0

t

θ φ

∂ ≡∂

∂ ∂= ≡∂ ∂

start with these assumptions and later reconsider their validity.

Page 7: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

7

For our star models, which are isolated, static, andspherically symmetric, there are four basic equations to describe the structure.

Spherical symmetry implies that all physical quantities depend on the distancerfrom the center of the star alone.

1) Equation of hydrostatic equilibrium: at each radius r, the forces due to

pressure differences balance the gravity.

2) Conservation of mass: in particular, since the models are static, ∂ρ(r)/∂t ≡ 0.

3) Conservation of energy: at each radius, the change in the energy flux equals

the local rate of energy release.

4) Equation of energy transport: relation between the energy flux and the local

gradient of temperature.

Four basic equations

Page 8: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

8

These era three additional equations to be considered:

1) Equation of state: pressure of a gas as a function of its density and temperature;

2) Opacity: how hard is for the radiation field to travel across the stellar material;

3) Core nuclear energy generation rate: rate at which energy is generated at the center in oder to compensate the energy losses.

Four basic equations’ supplements

Page 9: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

9

Equation of hydrostatic support

DomenicoFetti, 1620 Archimedes Thoughtful

The balance between gravity and internal pressure is known as

. Consider the forces acting on

an elementary

hydrostatic

equilibrium radially

density

outwar

mass: ,

where is t( h

d

e t :)

a

m (r) s r

r r

δ ρ δ δρ

=

: pressure exerted by the stellar

material on the : .

: pressure exerted by the stellar materi

force

lower face

inward force

upper face gravitational

al

attron the plu actions of

(

all t

)

h

P r sδ

2 2

e stellar material lying within .

By equation the inward and outward components, one get

( ) ( )( ) ( )

:

( )

s

.

r

GM r GM rP r r s m P r r s r s r

r rδ δ δ δ δ ρ δ δ+ + = + +

r

rδsδ

Page 10: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

10

2

2

In hydrostatic equilibrium:

For a infinitesimal elemn it is:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

e

l

nt

etting

Hence, rearrangin

( ) 0

g ab

GM rP r r s r s r P r s

rGM r

P r r P r r rr

P r r P r dP rr

r dr

δ δ ρ δ δ δ

δ ρ δ

δ δδ

+ + =

⇒ + − = −

+ − = →

2

hydrostatic support

ove we get:

the equa

tion

( ) ( ) (

of

.

)

dP r GM r r

dr r

ρ= −

2

( )( ) ( )

GM rP r r s r s r

rδ δ ρ δ δ+ +

( )P r sδ

( )

( )

r V

r s r

ρ δρ δ δ

=

r

Why d ?

Equation of hydrostatic support

Star centre

Page 11: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

11

2

Inside the star consider a thin shell with radius and outer radius .

The contained within the is

determined by th

( )

( )e density .

mass

4

stellar radius

r r r

M r r

r

V r r

M

δ

ρ

δ π δδ δ⇒

+

== 2

2

in the limit where

mass con

.

T

( ) 4 ( )

( )4 (

his the e servatquatio ionn of .

0

)

V r r r r

dM rr r

dr

r

ρ π δ ρ

π ρ

δ

=

=

Equation of mass conservation

r

r rδ+

Page 12: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

2

0

2 20

What is the total mass, and what the average den

sphere of gas outer radius densi

sity within r

4

a

Imagine a with and e:

.

d

iu

4

t

y p

s ?

rof

il

r

r

RR

r

r

dMr R

dr

ρ ρ

ρ

π ρ πρ

=

= =

2 30 0 00

3

22 3

0 00

,

where is the .

For the within

total volume

average density

decrease in the local densi

4 4 3

4

3

( ) 4 4 3 ( )

:

.

that is, the t

R

R R

R

r

r

M R dr R V

V R

r

RM r R dr r r

r

πρ πρ ρ

π

πρ πρ ρ ρ

= = =

=

= = =

is compensated exactly by increase in vo

y the lume.

Example: compute mass from density

Page 13: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

( ) ( )

33

2 20 0

0 20

central solar pressure the density

is constan3

1410 kg m

Make a crude estimate of the , assumi

4

( ) ( ) ( ) ( ) ( )

ng tha

( )

( ) (

t

:t

)

.-

R R

R

M

R

dP r GM r r GM r rdP r dr

dr r r

GM r rP R P dr

r

ρ ρπ

ρ ρ

ρ

= = =

= − ⇒ = −

− = −

∫ ∫⊙ ⊙

⊙ ⊙⊙

( )

( )

2 2 2

0

2 2 100

4 2

3 3

0

21.34 1

Assume the to be , :

.

Thi

outer pressure negligible

grosss is a since t underestima he density increases strongly toward the centre. The

0 Pa

pre

3

t

RG rdr G R

P R

P G R

πρ πρ

πρ

= − = −

=

= = ×

∫ ∫⊙

⊙ ⊙ ⊙

⊙ ⊙

⊙ ⊙⊙

( ) 16

5

1160 2.5 10 Pa 2.5 10 at

[

oper value is 10 times

Remember that: 1 Pa 10

hi

bar 101.325 at

mgher:

]

.m

ρ = × = ×= =

Important example: the pressure at Sun’s center

34

3Rπρ⊙ ⊙

Page 14: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

14

We have assumed that the d.

Consider the cas an

gravity and pressure forces are balance

the outward inward forces not equal.resulta

How v

nt fo

alid is tha

e where The acting on the ele

d amerce nt

r

e

t ?

of s

( ) ( )

( )

( )

2

2

2

and will give rise to an :

urface thicknessacceleration

acceleration due to gravity

Since is ,

( )

( )(

( ) ( ) ( )

( )

) ( ) ( ) ( )

t

GM rP r r s r s r P r s r s r a r

r

s ra

dP r GM rr r a r

dr r

g r GM r r

δ δ ρ δ δ δ

δ δ

ρ ρ

ρ δ δ+ + −

+ =

=

=

( ) ( )

hen:

whi generalised fch is the of the equati

( )( )

on oorm hydrostatic suppo

( )

f r . t

,dP r

g r r r a rdr

ρ ρ+ =

Accuracy of hydrostatic assumption

Page 15: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

Accuracy of hydrostatic assumption

15

( ) ( )

a small fraction of gravitatiAssume that the resultant force on a mass element of the star is not zero, but rather ( ):

onal term

0 1

( ) ,

so that: )

( )

(

r g r r a r

dP r d

β

βρ ρ

<

=

( )

( ) ( )2 2

,

Thus there is an : .

Assuming the motion begins , then

( ) ( ) 0

the spatial displacement after a time is

inward acceleration

at rest

1 1

:

2 2

r g r r a

a g

dt

d a t g t t

ρ ρ

β

β

+ = ≠

=

∆∆

∆ →∆ = ∆ = ∆ 2 d

gβ∆=

Page 16: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

16

Class Tasks

8

1. Estimate the timescale for the by an observable amount (as a function of ). Assume is small. Is the timescale likely ? (for the Sun

Sun's

: 7 10 m 2.

radius to c a

n

;

ge

h

R g

ββ

= × =⊙ ⊙

2 2

9

)

2. We know from geological and fossil records that it is unlikely to have changed its

5 10 m s

10 y flux output significantly over the last . Hence find an upper limit for . What doe

r

β

−×

s this imply about the assumption of hydrostatic equilibrium ?

( ) ( )2 2

3

4

9 9 15

21 2

2

1 2.4 10 s

1" 1 5.6 10 56.6

30 60"

1 10 10 56.6

Assu

me:

I =3.f: 2 0 1

R R Rd g t R t R t

R g g R

Rt

R

Rt

R

t

ββ β

β

β

ββ

∆∆ = ∆ = ∆ ∆ = ∆ ∆ =

∆∆ = ×

⇒ ⇒ ⇒

= = × ∆ =×

∆ = = ×⇒

⊙ ⊙ ⊙

⊙ ⊙

⊙ ⊙

Page 17: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

17

The dynamical timescale

2* *

13 2

*

13 2

If we allow the star to collapse, set and substitute

in .

.

is known as the What is

(no pressure

Assuming :

22 1

2=

dynamical tim

e.

1 )

d

d

d r g GM r

rdt t

g GM

rt

GM

i e.

t

.

β β

β

∆ = =

∆∆ = ∆ =

=

( )8

30

11

7 10 m

1.99 10 kg 38 hours

6.660 10 MKS

it a measure of ?

For the Sun

:

d

r

M t

G −

= × =

×

⇒× = =

⊙ ⊙

Page 18: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

18

Accuracy of spherical symmetry assumption

To what extent are they flattened at the poles ? Shall we account for the departures from the spher

Stars are rotating gaseous bodies.

Consider a star of mass radius,

ic

,

al symmetr

and angul ve

y ?

ar M r

2

locitymass

no departurespherical symmetry

gravitational force larg

. A

.There will be f

near the surface at the equat

rom provide

or feel

d thatt

s a centrifugal force (where it is largest):

he e

mm r

ωδ

δ ω

( )2 2 2 3

2

:

1

ly exceed the centrifugal force

dimesions of a tid

.

Notice that has the .e

GMGM mm r

r r

δδ ω ω

ω

→≪ ≪

mδr

ω

Page 19: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

19

32 2

3

23 2 2

2

2 2

2

2 2

,

spherical

, ,

.

Note the RHS of equation: is similar to the inverse of:

or:

a 2 = rotation pe

nd, a riods4 2

where

I

sy

:

2

m

f

d

d d

dd

GM rt

r GMGM

r t t

P P

P tP t

ω

ω

ω ππ π

=

=

=

≪ ≫

6

is to hold, then .

For the majo

metry

departure

~ 2000s

s from

For example

spherical sy

~ 3 10 s 1 mont

mmetry can be rity of stars,ignored

.

Some s

for the

tarsd

Sun, wh

o rotat

ile .h

e an rapidly d

d

d

P t

t P ×

rotational effects must be included in the structure equations; this can change the output of models.

Accuracy of spherical symmetry assumption

dynamical time

Page 20: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

20Equatorial velocity (lower limit) for giant stars

Stellar rotation

rotational ax

is the angle between the theand

isline of sigh

Why we use

th

vsie .

t

n ?

i

i

Page 21: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

21

Minimum value for the central pressure of star

2 of the 4 equations material

composition physic

We have only , and no knowledge yet of the

and of the of the star.

T

al state

minimum central press

Wh

hough we can deduce a

y, in principle, do y

.

o

ure

u thi

22

Divide the

nk there need

hydrostatic e

s to be a minimum value ?

Given what we know, what is thi

quation:

s likel

( ) ( ) ( ) ( ) 4 ( )

( )

by ,

to ge( )

y to depend upon

t

?

:

dP r GM r r dM rr r

dr r drdP GdP r dM r

dr dr dM

ρ π ρ= − =

≡ = −4

40

2

4 4 40 0

.

Integrating over the whole star it is: .

The lower limit to

stell

4

4

4

ar radius

the RHS is: ,

where is

4 8

the

.

s

s s

M

c s

M MS

s s

s

M

rGM

P P dMr

GMGM GMdM dM

r r r

r r

π

π

π π π

− =

> =

∫ ∫

max of r

Page 22: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

22

( )

( )

( )

2

4

2

4

pressure at the surface of the star to be zero

.Hence it is:

A

For example,

pproxima

ting the

,

for the S

8

0

un:

8

:

sc s lower

s

s

sc lower

s

c lower

GMP P

r

P

GMP

r

P

π

π

− >

=

>

13 8

to be a gaThis value seems rather large .We shall see that the material of stars

= 4.5 10 Pa = 4.5

is not

s

ord

10

inaan . ry

t .a m

gas

× ×

Minimum value for central pressure of star

Hannes Alfvén (1908–1995)

Page 23: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

23

The Virial Theorem

4

33

mass

conservation

( ) ( )

hydrostatic eqAgain le

ts take the two equations of and

and divide them:

.

Now multiply both sides by :

uilibrium

4

4 34

dP GMdP r dM r

dr dr dM

r

r

r dPπ

π

π

≡ = −

=

3

0

where contained within radius 4

= volume 3

and integrateover the whole sta :

.

Use integration by parts to integ

r

rate S

,

3

LH

s s

c

P M

P

V r r

GMVdP dM

r

GMVdP dM

r

π=

= −

= −∫ ∫

[ ]0

at centre , and at surfa

:

3 3

0 0e c .

s s

c

V Ms

c V

c s

GMPV PdV dM

rV P

− = −

= =

∫ ∫

Page 24: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

24

0 0

RHS = total gravitational potential energy of the star

Hence we have:

.

Now the or energy

released

it is the

in forming the star from its components dis

3 0s sV M GMPdV dM

r− =∫ ∫

0

Class task:

Can you show this to be true ? Note that

work done = force distance = mass a

persed to infinity.

Thus we can write t Virial Th

ccel. d

eorehe : 3

s .

m

i t

sVPdV

× × ×

+∫ .

This is of great importance in astrophysics and has many applications.

We shall see that it relates the gravitational energy of a star to its thermal

ener .

0

gy

Ω =

The Virial Theorem

Rudolf Clausius (1822–1888)

Page 25: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

25

( ) 84.5 10 atm

We have seen that the is an important term in the equation of the

hydrostatic equilibrium and in the Virial Theorem.

We derived a minimum value for the Solar central pr

pr

essur

essure

e c

P

P

> ×⊙

What physical processes giv

gas press

e rise to this pressure? Which is th

e most importan

ure

radia

.

tion pressure

t ?

gP

P

We shall show that is in the stellar interiors and that pressure is

dominated by .

To do this we first need to estimate the minimum mean temperature of a star.

Consider t

negl

he

igible

,

whicterm

r

r

g

P

P

Ω

0

h is the :

gravitation

al po

tential energ

.

y

sM GMdM

r− Ω = ∫

Two types of pressure

Minimum mean temperature of a star

Page 26: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

26

2

0 0

We can obtain a lower bound on the RHS by noting that at all points inside

the star it is , and hence ,

.

Now , and the can be writ

1 r 1

2

Virial Theor m te

s s

s s

M Ms

s s

r r r

GMGM GMdM dM

r r r

dM dVρ

< >

− Ω =→ > =

=

∫ ∫

0 0

sum of radiation pressure gas pr

en

.

The pressure is and : .

Assume, for now, that stars are composed of an

essure

ideal gas

3 3

and that i

negligi ,ble

s

s sV

r

r

M

g

PPdV dM

P P P

P

ρ− Ω = =

= +

∫ ∫

3number of particles per m average mass of particles, Boltzmann'

w

s constant.

here

equation of state of

,

anso that: , , ideal ga s

nmk

k TP nkT

m

ρ

===

= =

Minimum mean temperature of a star

Note that this is the minimum value for the potential (maximun for the potential energy)

Page 27: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

27

For useful pages on the ideal gas laws, consult the links listed at:

http://heybryan.org/~bbishop/search/AP_Physics_C/ideal%20gas%20law.html

Aid

Page 28: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

28

0 0

2 2

0 0

Hence it is:

.

We may use the inequality derived above to

3 3

3

write:

The LHS may be thought a um

2 6

s the s o

s s

s s

M M

M Ms s

s s

P kTdM dM

m

GM GM mkTdM TdM

m r kr

ρ− Ω = =

− Ω = > >→

∫ ∫

∫ ∫

of all the mass

elements which make up the star.

The of the star is then just the integral divided by the

f the temperatures

mean temperature total

m of the star :

ass

s

s

dM

T

M

M T T→ =0

6

sMs

s

GM mdM T

kr>→∫

Minimum mean temperature of a star

Page 29: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

29

Minimum mean temperature of the Sun

6 27

As an example, for the Sun we have:

, where .

Now we know that H is the most abundant element in stars and for a fully

ionised hydrogen star (as there are tw

4 10 K 1.6

o part

7 10 kg

1 2 i

HH

H

mT m

m

m m

−> × = ×

= +

6

numb

cles,

er of

and ,

f

e 1

or each H atom).

And for is 1 ion and

Thus:

.

p e

any other elem

e

nt greater

2 10 K

. Hm m

T

> ×

Page 30: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

The mean molecular weight is an important quantity, because

the pressure support against gravity

A sudden changes in the ionization state or chemical c

number of depends on the .

free particl

esH

m

mµ ≡

In general, the value of

omposition of the star

solv

can lead t

ing the Saha eq requires to determin

o sudden chang

uationionizati

es in the pre

on state

the of everye

ssure

ato

.

m.

m

We can derive two useful expressions for the cases of or

gasses.Define: , are the s of H, He, and metals, resp

fully neutralfully ionized

mass fraction

Neutral:

ectiv

ely1 1

.

1

,

4

,nn

X Y Z

X Y ZAµ

≅ + +

1 1For So

Ioni

lar

zed:

abundances: 1

.

5

1 32

4

5

1

2

..

i

n

X

A

Y Zµ

≈ + +

Minimum molecular weight

Page 31: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

By how much does the pressure increase following complete ionization, for a neutral gas with the foll

owing compos

ition (typical of young

0.70

star

s) ?

X =

Remember

1 1

N

eutral:

0.28 = 15.5

0.02

1 Ionized:

1 1 1 3 1 2

4 4 2

1 0.28 0.020.70 0

4 15

tha

.5

so:

t:

, ,

n

nn i

n

YA

Z

X Y Z X Y ZAµ µ

µ

=

=

≅ + + ≈ + +

≅ + + =

1

3 0.02.771

2 0.70 0.28 = 1.624 2

= =2. 0

,

.1

,i

i n

n i

P

P

µµµ

≈ × + × +

Example

Page 32: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

32

( )

For a fully neutral gas: .

For a fully ionized gas: .

1

total mass of Hydrogen

total masstotal mass of Helium

to

Let's define:

j j j jj j

n nj j

j j

j jj

n

j jj

N m N A

mN N

N A

N z

X

Y

µ

µ

= =

=+

∑ ∑

∑ ∑

( )n

n

For a gas:neutr

1tal mass

total mass of metals

total mass1 1 1

al 1 4

1 3

1/15.

For

fully ionized 1

2a ga s 4

:

5

nn

n

X Y Z

Z

X Y ZA

ZX Y

A

ZA

µ

µ

+ + =

+ +

++ +

⊙∼≃

≃ ( )1 1/ 2n

A⊙∼

number of free electron resulting from the complete ionization of the atomic species j

j j HA m m=

Mean molecular weights: recap

Page 33: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

33

Physical state of stellar material

3 33

3 1.4 10 k

Th

mean densit

e mean dens

The is simply

ity of the Sun

computed:

is only a little higher tha

n water and o

y of t

ther

o

he Su

rdina

g m4

ry l .iquids

ow

n

H

M

π−= = ×⊙

( )

ever, we know such liquids become gaseous at much lower than .

Also the of particles at is much larger than thaverage kinetic energy

ionisation pote 13.6 eV= 3 2 kTn

e

of H .

Thus the gas

tia

co

l

T T

T

highly intitutin onisedg the Sun must be , a . p. l i as .smai e

Page 34: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

34

A stellar plasma can therefore withstand greater compression

.

There is in fact ample room for individual particles when atoms feel

without d

already

eviating

from an i

too crowded: remem

deal

ber

gas

tha

15 10

an ideal gas distances between particles

the order of their sizes nuclear di

t demands

to be of . Now, are of the order of

, and those of of the o

10 m 10

me

mrder of .

Let's re

n

v

s

i

ions

atom

sit th s

s

e i

− −

sue of radiation gas pressure.

We assumed that the .

The pressure exert

radiation pressure was

ed by photons on the pa

negligible

rticles in

vs

4

16 3 4

3

7.55 10 J m K

a gas is: ,

radiatiwhere on densit .y constant

rad

aTP

a − − −

=

= × =

Physical state of stellar material

Page 35: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

35

A

p

dx

z

yx θ

θ

m

mfp

ip

Let's consider a box (conveniently oriented) containing a system of equal

particles subject to

mass

elastic collisions

normal to the -axi

only

Bouncing on the wall , each particle s momentumof

.

c m

o

x

m

p

municates an : , where .

Therefore, the applied by th

impulse

force collie of one parsio

2 2v

2 vn ticle is: .

xx

x x x

xf t p p i t

p pf

t x

∆∆ = −∆ = ∆ =

= =∆ ∆

Ideal gas: state equation review

Page 36: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

36

2 2 2

contribution to the pressure

Since is proportional to and, on average: , then .

The by a momll the particles with

between and is thus

e

1 v v v v

ntum

:

v3

1

3

x x x y z P

p

pP p p

pp f

xN dN dp

Np p dp dF f N dp

x

= = =∆

=

+ = =∆

0

0

v

1v

3

1v

3

surf

.

By integr

ace

number of particles per unit

momentum

ating over all particles: .

Dividing each member by the : ,

and noting that: , where is a

,

sinc

p

p

pp p

p dp

NF p dp

x

NFA p dp

A A xN

n dp dp nV

=∆

=∆

=

0

e and , then:

, , valid for mass or masintegral so

the pressure the volume eleme

l

n

f e p ss particleressure s1

v3

.

t

p

F A P A x dV

P n p dp∞

= ∆ =

= ∫

Ideal gas: state equation review

Page 37: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

37

2

2

2v0

v

3 2 5 2v

v

2 43 20

3 2v 2 2

v

In the classical case: , and .

Taking from the Maxwellin distribut

v v

v 4 v v2

1v v

3

4 4 2v v

io

3 2 3 2

n: ,

m k

p

m T

T

k

P mn d

n

m

p m n dp n d

mn d n e d

kT

kT mP mn e d mn

kT m kTπ π

π π

ππ

=

= =

= =

=

∫2

2

2

v 2 4

0

1 24

0

27

41 2 0

.

Since (integrate by parts): ,

where ( is the , that is

3

8

1.6

v

7

the mean mass of all pa

4 10 kg mean molecola

r

r weig

v

8

)

t

3

ht

m kT

x

H

H

x

H

e d

nkT e x dx

P nkT kT kTmm

m m

e x dx

m

πρ ρ

µµ

π

∞ −

∞ −

∞ −

=

=

=

= = =

= = ×

This is a very important fact to be kept well in mind!

For instance, if a neutral

icles present,includi

gas of hydrogen is f

ng electron

ully ionize

s if the matter is io

d and for some reaso

niz

n

ed.

its

temperature remains constant, then the pressure must reduce by 1 2.

2

2

2v v0

3 2v 2 2

v v

3 2 5 2v 2 4

3 20

Maxwellin distribut

In the classical case: ,

ion

and .

Taking from the :

1v v v v

3

v 4 v v2

4 4 2v v

3 2 3 2

,

p

m kT

m kT

p m n dp n d P mn d

mn n d n e d

kT

m kT mP mn e d mn

kT m kT

ππ

π ππ π

∞ −

= = =

=

= =

∫2

2

2

v 2 4

0

41 2 0

1 2

27

4

0

.

Since ( ):

mean molecolar

,

where ( ) is the ,

i

that is

the mean mass of all par

ntegrate by parts

1.674 10

v v

8

3

3

8

weig th

t

gk

m kT

x

x

H

HH

e d

nkT e x dx

e x dx P nkT kT kTmm

m m m

ππ ρ ρ

µµ

∞ −

=

=

= =

= ×

= =

=

This is a very important fact to be kept well in mind!

For instance, if a neutral

icles present,includi

gas of hydrogen is f

ng electron

ully ionize

s if the matter is io

d and for some reaso

niz

n

ed.

its

temperature remains constant, then the pressure must reduce by 1 2.

Ideal gas: state equation review

Page 38: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

38

Let's consider a . Being , there is no limit

to their . The energy of a single photon with

is , th

gas

e

of photons bosons

density frequency

m , the velocity .

Replacing these valu

omentum vE h p E c h c cν

νν ν= = = =

3

3

total pressure momentum distribution fun

es into the general equation giving the by a system of particles with ,

where is given by th

ction

Planck equatie : , we g8

n t:o e1

p

h kT

rad

n h u

h du u d

c e

P

ν

ν ν ν

νπ ν νν

=

=−

34

30 0 0 0

15 3 4

1 1 1 1 8 1v

3 3 3 3 1 3

47.566 10 erg cm

,

with .K

p h kT

h h dn p dp n cd u d aT

c c e

ac

ν ν νν π ν νν ν

σ

∞ ∞ ∞ ∞

− − −

= = = = =−

= = ×

∫ ∫ ∫ ∫

4The total pressure (gas + radiation): 3

.1

totH

kTP aT

m

ρµ

= +

Radiation pressure review

no need to integrate: use Stafan-Boltzmann law.

Page 39: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

39

Physical state of stellar material

4 3

276 3 3

Now compare gas and radiation pressure at a typical point in the Sun:

.

With ,

3 3

1.67 10~ 2 10 K ~ 1.4 10 kg m kg , and ,

on

2

r

g

P aT kT maT

m kP

T T m

ρρ

ρ ρ−

= =

×= × = × =⊙ ⊙

4

averag

e gets: for the Sun.

Hence radiation pressure appears to be negligible at a typical ( )

In summary, with no knowledge of how energy is gene

~ 1

ra

point

ted in

in the Sun.

stars we h

ave

e n

e

b e

0 r

g

P

P−

able to derive a value for the Sun's internal temperature and deduce that

it is composed of a near ideal gas plasma with negligible radiation pressure.

Page 40: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

40

Mass dependency of radiation to gas pressure

3

3

However we shall later see that does become

.

To give a basic idea of this dependency, replace in the ratio equation

abov

significant in highe

e :

r

mass stars

r

g

r

P maT

P k

P

ρ

ρ =

3 33

3

2

and from the Virial theorem:

more significant

higher mass

4

be sco tm a

933

4

~

. .

s n rsie .

sr

g ss

s

s rs

s g

r

r TP maT ma

P k MMk

r

M PT M

r P

Pi e

π

π

= =

∝→

Page 41: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

The ideal gas law neglects both special relativity and quantum mechanics. It therefore breaks down at high velocities (temperatures) and at high densities.

The Fermi-Dirac distributionis a modification of the Maxwell-Boltzmann distribution, accounting for the Heisenberg uncertainty principleand the Pauli exclusion principle.

Essentially, the Pauli exclusion principlestates that no two fermions (e.g. electrons and protons) can occupy the same quantum state.

This provides an extra source of pressure when densities get high.

Non-ideal gases

Page 42: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

The Bose-Einstein distributionfunction applies to bosons(such as photons).

In this case, the presence of a particle in a quantum state enhancesthe probability that another particle will occupy the same state

Both the Fermi-Dirac and the Bose-Einstein distribution functions approach the Maxwell-Boltzmann distribution at high energies.

Non-ideal gases

The ideal gas law neglects both special relativity and quantum mechanics. It therefore breaks down at high velocities (temperatures) and at high densities.

Page 43: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

43

Electrons degeneracy

It occurs when the temperature , and is a of:

, stating th only one fermion may coexist within a given quant

consequence

Pauli's exclusion principle

Heisenber

um

g'

sta

s indetermination p

at , dt ane

0T →

⊳ : , which requires to particles densely confined ( ) to have a high momentum: .

Let's concentrate on a .

r

inciplevery small

gas of electro

ir

ns

all parealistiAssu call ry ticleming ( ) that

x px

p p

∆ ∆ ≈∆

> ∆

0

1 1v v

3

have s sam

3electron

e momentu

densit

the ,

from the : , on

m

pressure int e gets: ,

with

e ral

y

g

.

p e

e

P n p dp P n p

n

∞= ≈

=∫

Page 44: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

44

Electrons degeneracy: first approach

1

1 3 1 3

completely ionized system

mean volumes

average separ

In , electrons are highly packed

within .

The is thus: , implying: .

For complete ionizati proton density elec

ation

o

tn:

e

e e

e

n

x n p p nx

n

∆ ≈ ≈ ∆ ≈ ≈∆

= ×

ℏℏ

1 3

1 3

1 3non relati

rons number per

vistic electrons

then: .

For (

proton

,

v): .v

H H

ee e H

ee

Z Zp

A m A m

p Zn

m m m A mp m

ρ ρ

ρ

= = ≈

= = =

=

ℏ ℏ

x∆

e

Page 45: University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica ·  · 2017-04-12University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica,

45

( )

5 32

2 3 5 32 2

pressure complete degenera

By combining the various parts:

we obtain the approximate expression: .

The exact e

1v

3

1

3

3

5xpression is: .

The f t o a

e

e H

e H

P n p

ZP

m A m

ZP

m A m

ρ

π ρ

5 3

ed electron gas density

not on tempe

Why protons degenerate

ratur

at hi

depends on

but

gher temperatur ?

.e

es

ρ

eH

Zn

A m

ρ =

1 3

H

Zp

A m

ρ ≈

1 3

ve H

Z

m A m

ρ =

Electrons degeneracy