university of nigeria koko s_86...university of nigeria research publications author tamunoiyala,...

120
University of Nigeria Research Publications TAMUNOIYALA, Koko S. Author PG/M Engr./84/2489 Title Analysis of Rectangular Plates on Elastic Foundations by the Method of Initial Functions Faculty Engineering Department Civil Engineering Date July, 1986 Signature

Upload: ngokhuong

Post on 30-Mar-2018

219 views

Category:

Documents


2 download

TRANSCRIPT

University of Nigeria Research Publications

TAMUNOIYALA, Koko S.

Aut

hor

PG/M Engr./84/2489

Title

Analysis of Rectangular Plates on Elastic Foundations by the Method of Initial

Functions

Facu

lty

Engineering

Dep

artm

ent

Civil Engineering

Dat

e

July, 1986

Sign

atur

e

ANALYSIS OF RECTANGULAR PLATES ON ELASTIC FOUNDATIONS

BY THE METHOD OF INITIAL FUNCTIONS

TAMUNOIYALA S. KOKO

( ~ ~ / ~ . E n g r . / 8 4 / 2 4 8 9 )

A Thes i s

0 f

submi t ted t o the ~ e ~ a r i m e n ' t

C i v i l Engineering

I n P a r t i a l Fu l f i lment of t h e Requirements for t h e

Degree o f Master of Engineering

i n C i v i l Engineering

Univers i ty of Nigeria

Nsukka

J u l y 1986

Dedicated

To my brother

Anthony S . Koko

WLC a u t l m r wishes t o e x p r e s s h i s s i n c e r e g r a t i t u d e t o

D r . V.K. S c b a s t i a n f o r a n w t i c u l o u s s u p e r v i s i o n and f o r making

a v a i l a b l e r c l n v a n t l i t e r a t u r e .

The invnlunb1.e c o n t r i b u t i o n o f M r . l?.C .Nu O j i a k o whose

e a r l i e r work w a s frequently rc fc , r red t o ancl wlio also gave u s e f u l

a d v i c e is acknowledged. The c o n t r i b u t i o n s o f t h e a u t h o r ' s c o l l e a -

y u e s E.C. O g u c j i o f o r , M r . Mbajiorgu and O.A. Olukayode a t v a r i o u s

s t a g e s o f tlie p r o j e c t a r e a l s o a p p r e c i a t e d .

ML. V.O. Ekechukwu, M i s s R,O. Onuchukwu, M r s . C. Kalu

Mr , 13. Al\ancnw and Lhc F e d e r a l U n i v e r s i t y 01 Technology, O w e r r i ' s

Cornputcr C c r i L r c were ve ry h e l p f u l d u r i n g t h e p r o d u c t i o n of t h e

n u m e r i c a l r e s u l t s .

F i n a l l y , t h e a u t h o r wishes t o t h a n k Plrs E,C. Chinwuba f o r

t y p i n g t i i j s t h e s i s .

PAGE

ACKNOWLEDGEMENT

NOTATIONS

L I S T OF FIGURES

I t I S T OF TABLES

ABSTRACT

CHAPTER ONE: INTRODUCTION . ,

1.1 GENERAL BACKGROUND

1.2 O B J F C T I V E S AND SCOPE , .

CHAPTER TWO: LITERATURE REVIEW

2 - 1 THEORIES OF PLATE BENDING

2.1.1 C l a s s i f i c a t i o n of P l a t e s

2 . 1 . 2 . T h i n P l a t e T h e o r y

2.1.2.1 S i m p l i f y i n g a s s u m p t i o n s s G

2,1.2.2. S o l u t i o n s by t h e C l a s s i c a l theory

2.1,2.3 L i m i t a t i o n s of t h e C l a s s i c a l T h e o r y

2.1.3 H i g h e r O r d e r P l a t e T h e o r i e s .

2.2 PLATES ON ELASTIC FOUNDATIONS .

2.3 FOUNDATION MODELS

1 - 3 . 1 O n e - P a r a m e t e r ( W i n k l e r ) Foundation Model

2,3.1.1 C o n s i d e r a t i o n s of t h e F o u n d a t i o n M o d u l u s

2.3.1.2 L i m i t a t i o n s of t h e Winkler Foundation

2,3.2 T w o - P a r a m e t e r Foundation M o d e l s

2.3.2.1 F i l o n e n k o - B o r o d i c h F o u n d a t i o n

, 2.3.2.2 P a s t e r n a k Foundation

iii

vi

viii

X

xii

2 -3.2.3 G e n e r a l i s e d F o u n d a t i o n 17

2.3.2.4 H e t e n y i Foundation 18

2 -3 .2 .5 V l a s o v F o u n d a t i o n 18

2,3.2.5* n c i s s n e r F o u n d a t i o n 2 0

2 ,4 CI<NEIlAL RI31AT?!'.3 2 1

CHAPTER THREE : DKVE1,Ol3MCNT OF T I E GOVERNING EQUATIONS

3 . 1 L I!!? I D O F I N I T I A L FUNCTIONS ( M I F ) 2 3

I n t r o d u c t i o n

D e r i v a t i o n of t h e B a s i c E q u a t i o n s

A P P L I C A T I O N O F M I F TO PLATE ON WINKLEK FOUNDA- FOUNDATION

S y n u n e t r i c ( o r E x t e n s i o n ) P r o b l e m

A n t i - s y m m e t r i c ( o r B e n d i n g ) P r o b l e m

A l l r o u n d S i m p l y Supported P l a t e

L e v y T y p e S o l u t i o n

APP1,ICATION O F M I F TO PLATE ON TWO-PARAMETER

E L A S T I C FOUNDATIONS

S y m m e t r i c P a r t

A n t i - S y m m e t r i c Part

A l l r o u n d S i m p l y Supported Plate

L e v y T y p e S o l u t i o n for P la te on T w o - P a r a m e t e r

Foundat ion

A NEW FOUNDATION MODEL

S y m m e t r i c P a r t

A n t i - S y n ~ r n e t r i c P a r t

A p p l i c a t i o n t o A l l r o u n d S i m p l y Supported P l a t e

CHAPTER FOUR: NUMERICAL RESULTS

4 , 1 ALLROUND S I M P L Y SUPPOKTED PLATE ON WINKLER

FOUNDATION

4 , l . l P l a t e Subjected t o U n i f o r m L o a d

4.1,2 P l a t e Subjected t o P a r t i a l L o a d

4.2 UNIP'C)RI4LY LOADED ALLROUND SIMPLY SUPPORTED

PLATES ON VLASOV FOUNDATION

4 o 3 -. UNIF'ORJIT,Y L0N)ED ALLROUND SIMPLY SUPPORTED

PLA'I'E ON NEW FOUNDATION

CHAPTER F I V E : CONCLtlS I O N S

APPENL) I X A b

APPENDlX I3

APPENDIX C

REFEIZENC'!.:!:

NO'l'n'l'T ONS

b

cxd

D

E

f mn

F

G

h

k

1

m,n

P

q

qmn

r

UP'J ,w

U

v

w

X l Y l Z

S

- l e n g t h of p l a t e

- 3x3 ma t r i ce s

- width of p l a t e

- a r e a over which p a r t i a l l o a d a c t s

- F l e x u r a l r i g i d i t y o f p l a t e

- Young's modulus of p l a t e

- C o e f f i c i e n t s i n a u x i l l i a r y func t i on , F

- a u x i l l i a r y func t i on f o r ant isymmetr ic p a r t

- R i g i d i t y modulus o f p l a t e

- h a l f o f p l a t e t h i c k n e s s

- Winkler foundat ion modulus

- Second foundat ion parameter

- number of terms of double summation s e r i e s

- foundat ion r e a c t i o n

- a p p l i e d s u r f a c e l oad

- Four i e r c o e f f i c i e n t of a p p l i e d l oad

a - p a r t i a l d i f f e r e n t i a l w i th r e s p e c t t o z (-) a z

- displacement components i n x-, y-, z- d i r e c t i o n s

r e s p e c t i v e l y

- d i s t a n c e s a long x- ,y-, z- d i r e c t i o n s respec : t i v e ly

of Ca r t e s i an coo rd ina t e system

- p a r t i a l d e r i v a t i v e s wi th r e s p e c t t o x , y r e s p e c t i v e l y

- Po i s son ' s r a t i o

- C h a r a c t e r i s t i c r o o t (= -yZ )

- d i r e c t s t r e s s e s i n x-,y-,z- d i r e c t i o n s r e s p e c t i v e l y

- shear s t r e s s components

- C o e f f i c i e n t s i n a u x i l l i a r y func t ion , 4

- a u x i l l i a r y func t ion f o r symmetric p a r t

- shear func t ion

F i g 2.1

F i g 3.1

F i g 4 - 1

F i g 4.2

F i g 4 . 3

LIST O F FIGURES

D e f l e c t i o n o f f o u n d a t i o n s u r f a c e : ( a ) Winkler

f o u n d a t i o n ( b ) r e a l f o u n d a t i o n

( a ) Coord ina te System; ( b ) P l a t e on e l a s t i c

f o u n d a t i o n ; ( c ) Symmetric P a r t ; ( d ) anti-symme-

t r ic p a r t 34

Non-dimensional stress (0 /q) a c r o s s c e n t r e o f X

uni fo rmly l o a d e d s q u a r e p l a t e s on Winkler founda-

t i o n (k=54311.132 k ~ / r n ~ , fi=0.3) 62

Non-dimensional stress (0 /q ) a c r o s s c e n t r e o f X

uni fo rmly l o a d e d s q u a r e p l a t e on Winkler founda-

t i o n f o r v a r i o u s v a l u e s o f f o u n d a t i o n modulus

(;1/211 = 2 0 ) 6 3

Non-dimensional s h e a r stress (T /q) across edge X Z

o f un i fo rmly l o a d e d s q u a r e p l a t e s on Winkler

f o u n d a t i o n (k=54 3 1 1 . 1 3 2 k ~ / m ~ , y=0.3)

Non-dimensional s h e a r stress ( T /q) a c r o s s edge X Z

o f un i fo rmly loaded s q u a r e p l a t e on Winkler

f o u n d a t i o n f o r v a r i o u s v a l u e s o f f o u n d a t i o n

modulus (a/2h=20)

Non-dimensional t r a n s v e r s e d e f l e c t i o n a c r o s s

c e n t r e o f u n i f o r m l y loaded s q u a r e p l a t e s on

Winkle1 f o u n d a t i o n ( k = 5 4 3 1 1 . 1 3 2 k ~ / m ~ , p=0,3)

Non-dimensional d e f l e c t i o n a c r o s s c e n t r e o f

u n i f o r m l y loaded p l a t e on Winkler f o u n d a t i o n

f o r v a r i o u s v a l u e s o f f o u n d a t i o n modulus

(a /2h=20) 68

v i i i

PAGE

15

F i g 4.4

F i g 4.5

F i g 4 -6

F i g 4,7 Non-dimensional f o u n d a t i o n r e a c t i o n a l o n g

c e n t r e l i n e of un i fo rmly loaded s q u a r e p l a t e

r e s t i n g on Winkler f o u n d a t i o n s 69

F i g 4 .8 Non-dimensional s t r e s s (0 /q) a c r o s s c e n t r e o f X

p a r t i a l l y l o a d e d p l a t e s on Winkler founda t ion

F i g 4.9 Non-dimensional s h e a r s t r e s s (T /q) a c r o s s edge X z

of p a r t i a l l y l o a d e d s q u a r e p l a t e on Winkler

f o u n d a t i o n (k=54311. 132 k ~ / m ' , p=0.3) 74

F i g 4.10 Comparison on non-dimensional bending s t r e s s

(0 /q) a c r o s s c e n t r e o f s q u a r e p l a t e s on Winkler X

and Via:-,m:v f o u n d a t i o n s (a/2h=2.5 & 5 ) 7 9

F i g 4.11 Compa'rison o f non-dimensional bending s t r e s s

(ax/q) a c r o s s c e n t r e of s q u a r e p l a t e s on Wink]-er

and Vlasov f o u n d a t i o n s (a/2h=10 a 20)

F i g 4-12 Comparison of non-dimensional s h e a r s t r e s s

( ~ ~ = / q ) a c r o s s edge o f s q u a r e p l a t e s on Winkler

and Vlasov f o u n d a t i o n s 8 1

Table 3.1

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4 -6

LIST O F TABLES

X

L i s t of d i f f e r e n t i a l ope ra to r s L uu I

Luv.. .L XX

Comparison of non-dimensional maximum

t r ansve r se d e f l e c t i o n s of uniformly loaded

square p l a t e s r e s t i n g on Winkler founda-

t i o n s (p=0.3) 59

Non-dimensional maximum s t r e s s e s i n uni-

formly loaded square p l a t e s r e s t i n g on

Winkler foundat ions (p=0.3) 60

Maximum foundation r eac t ion a t bottom of

uniformly loaded square p l a t e s r e s t i n g on

Winkler foundat ions (fi=O. 3) 6 1

Comparison of non-dimensional maximum

t r ansve r se d e f l e c t i o n of p a r t i a l l y loaded

square p l a t e s on Winkler foundat ion (fi=0.3,

k=54311.133 kN/m3 7 1

Non-dimensional maximum s t r e s s e s i n

p a r t i a l l y loaded square p l a t e s r e s t i n g on

Winkler foundation (p=0.3, k=543ll .I32

k ~ / m ~ , c=d) 7 2

Comparison of non-dimensional maximum

t r ansve r se d e f l e c t i o n of uniformly loaded

square p l a t e s r e s t i n g on Vlasov foundat ions

(fi=0.3) 7 7

PAGE

32

Table 4.7 Comparison of non-dimensional maximum s t r e s s e s

i n uniformly loaded square p l a t e s on Vlasov

foundat ions

Table 4.8 Comparison of non-dimensional maximum t r ans -

verse d e f l e c t i o n and s t r e s s e s i n uniformly

loaded square p l a t e s on t h e Winkler and new

foundat ions (p=0,3, k=543111.32kN/m3

ABSTRACT

A mixed method i n e l a s t i c i t y , f i r s t suggested by Vlasov i n 1957,

and a l s o c a l l e d method of i n i t i a l func t ions (MIF), i s used t o ana lyse

r ec t angu la r p l a t e s r e s t i n g on the Winkler and var ious two parameter

e l a s t i c foundat ions. A new foundation model i n which t h e Winkler founda-

r i o n r e a c t i o n i s modified by t h e inc lus ion of l a t e r a l displacements ,is

suggested and t h e method of i n i t i a l func t ions i s used t o ana lyse p l a t e s

r e s t i n g on t h i s foundation model.

Numerical s o l u t i o n s a r e presented f o r uniformly loaded a l l -

round simply supported square p l a t e of various l eng th t o th i ckness r a t i o s

r e s t i n g on t h e Winkler, Vlasov and new foundat ions and t h e r e s u l t s a r e

compared with those obta ined by t h e c l a s s i c a l and Reissner t h e o r i e s .

So lu t ions have a l s o been given f o r p a r t i a l l y loaded p l a t e s r e s t i n g on t h e

Winkler foundation.

I t is shown t h a t Navier and Levy type s o l u t i o n s a r e poss ib l e i n t h e

a n a l y s i s of p l a t e s on e l a s t i c foundat ions using t h e MIF. I t is a l s o seen

t h a t t h e MIF is more adequate than t h e c l a s s i c a l theory i n t h e a n a l y s i s

of t h i c k p l a t e s r e s t i n g on e l a s t i c foundat ions and i n gene ra l t h e MIF and

Reissner theory s o l u t i o n s a r e c lose . This work has a l s o revea led t h a t

" t h e MIF can-be convenient ly employed t o ana lyse p l a t e s on a foundation

model i n which t h e foundation r eac t ion i s defined i n terms of t r ansve r se

a s well a s l a t e r a l displacements.

*

x i i

CHAPTER ONE

INTRODUCTION

1.1 GENERAL BACKGROUND

The a n a l y s i s of va r ious s t r u c t u r a l forms r e s t i n g on e l a s t i c founda-

t i o n s and sub jec t ed t o va r ious t y p e s of load ing has wide a p p l i c a t i o n s i n

c i v i l , mechanical, marine and a e r o n a u t i c a l engineer ing. Areas of app l i ca -

t i o n i n c i v i l engineer ing inc lude f o o t i n g s under column loads , airway and

road pavements sub jec t ed t o wheel l oads , bur ied p i p e l i n e s and ra i lway

t r a c k s . The compression o f a l i q u i d i n a c y l i n d e r by a p i s t o n , t h e deve-

lopment of so l id -p rope l l an t r o c k e t motors, t h e use of s o f t f i l a m e n t s i n

aerospace s t r u c t u r e s and s h i p b u i l d i n g a c t i v i t i e s a r e some of t h e a r e a s

of a p p l i c a t i o n i n mechanical, a e r o n a u t i c a l and marine engineer ing .

I n t h e a n a l y s i s of p l a t e s r e s t i n g on e l a s t i c foundat ions , t h e

c l a s s i c a l theory f o r t h i n p l a t e f l e x u r e is modified by t h e i nc lu s ion of

t h e foundat ion r e a c t i o n i n t o t h e governing d i f f e r e n t i a l equa t ion . The

foundat ion r e a c t i o n included depends on t h e foundat ion model employed.

Usual ly , t h e one-parameter Winkler foundat ion model is used and here it

is assumed t h a t t h e foundat ion r e a c t i o n a t any p o i n t is p ropor t i ona l t o

t h e d e f l e c t i o n a t t h a t p o i n t . The phys i ca l i n t e r p r e t a t i o n of t h i s model

i s seen t o d e v i a t e much from t h e r e a l s i t u a t i o n and t h i s ha s l e d t o t h e

development of more r e a l i s t i c two-parameter models.

Due t o t h e approximations made i n i t s d e r i v a t i o n t h e c l a s s i c a l

t h e o r y r i s unsu i t ab l e f o r t h e a n a l y s i s of t h i c k p l a t e s and i n r e c e n t

y e a r s many r e s e a r c h e r s have proposed h ighe r o rde r t h e o r i e s f o r t h i c k

p l a t e s . To so lve t h e problem of t h i c k p l a t e s on e l a s t i c foundat ions ,

such h ighe r t h e o r i e s have e q u a l l y been modif ied by t h e i n c l u s i o n o f

t h e founda t ion r e a c t i o n i n t o t h e governing equa t i ons .

I n 1957, a mixed method i n e l a s t i c i t y , a l s o c a l l e d method o f

i n i t i a l f u n c t i o n s , was proposed by Vlasov f o r t h e a n a l y s i s o f t h i c k

p l a t e s . By t h i s method, t h e governing e q u a t i o n s a r e de r i ved from t h e

th ree-d imens iona l e l a s t i c i t y equa t i ons and t h e unknowns a r e expanded

i n MacLaurin s e r i e s i n t h e t h i c k n e s s coo rd ina t e so t h a t t h e s o l u t i o n

is ob t a ined i n t e rms of unknown i n i t i a l f u n c t i o n s . The method h a s been

a p p l i e d t o v a r i o u s problems i nc lud ing e l a s t o - s t a t i c and elasto-dynamic

a n a l y s e s o f t h i c k p l a t e s . However, t h e ex t ens ion o f t h e method t o t h e

a n a l y s i s o f p l a t e s r e s t i n g on e l a s t i c f ounda t i ons h a s n o t been r epo r t ed

i n t h e l i t e r a t u r e .

1.2 OBJECTIVES AND SCOPE

The o b j e c t i v e s o f t h i s work a r e ,

(i) t o use t h e method o f i n i t i a l f u n c t i o n s t o deve lop t h e

govern ing equa t i ons f o r t h e bending o f r e c t a n g u l a r p l a t e s

on e l a s t i c f ounda t i ons and t o produce numerical s o l u t i o n s

t o c e r t a i n problems

(ii) t o develope a new founda t i on model i n which t h e founda-

t i o n r e a c t i o n is d e f i n e d i n t e rms of t r a n s v e r s e a s wel l

a s l a t e r a l . d i sp l acemen t s and t o u se t h e method o f i n i -

, t i a l f u n c t i o n s t o ana ly se p l a t e s r e s t i n g on t h i s new

founda t ion .

CHAPTER TWO

LITERATURE REVIEW

2.1 THEORIES OF PLATE BENDING

2.1.1. C l a s s i f i c a t i o n of P l a t e s

The a n a l y s i s of var ious types of p l a t e s under d i f f e r e n t loading

and boundary cond i t ions has been widely repor ted i n t h e l i t e r a t u r e

and only a summary can be given i n t h i s review. P l a t e s are c l a s s i f i e d

according t o th i ckness , shape, boundary cond i t ions and p r o p e r t i e s of

t h e p l a t e ma te r i a l . The th i ckness c r i t e r i o n i s most commonly used and

p l a t e s a r e defined according t o how t h e th i ckness compares with t h e

l e a s t of t h e o the r dimensions of t h e p l a t e . On t h i s b a s i s t w o types

of p l a t e s d i s c e r n i b l e :

( i) t h i n p l a t e s

( ii) t h l c k p l a t e s

Depending on t h e asaumptions made, var ious p l a t e t h e o r i e s have

been developed and some of these a r e discussed below.

2.1.2 Thin P l a t e Theory

Thin p l a t e bending theory has been e s t a b l i s h e d s ince 1811 when

Lagrange obtained t h e d i f f e r e n t i a l equat ion governing t h e bending of a

t h i n p l a t e under t r ansve r se loading f ~ i m o s h e n k o and Woinowsky-Krieger,

IS'',^^\ . \ \ l l . l l < * t . . , . . I \ \ I ( $ 9 I l l l l l l < l 1 < ~ 1 1 I I :. I l l l ~ ~ l , l l , ~ : ~ : ~ I : : : ~ l l l . l l I ~ . L j l l l -

p.11 C ' L ~ w i l 11 i ( :. I .11 ~~r , I 1 ~1 1 1 l 1 1 . n : ; ~011:; (W,111g, 1353) . 'I'hin p l a t c s a r e

f u r t h e r classified i n t o two kinds by t h e e x t e n t t o which they d e f l e c t .

This g ives r i s e t o two t h e o r i e s namely,

(i) small d e f l e c t i o n theory

4

(ii) large def lec t ion theory,

Norris e t a1 (1976) and Timoshenko and Woinowsky-Krieger (1959)

have described the small-deflection theory a s being applicable t o t h i n

p l a t e s t h a t a re primari ly subjected t o t ransverse loading. The e f f e c t

of in-plane o r membrane forces is neglected and the ac tua l de f lec t ions

a r e small compared t o t he thickness of the p la te . On the other hand

the large-deflect ion theory appl ies when the e f f e c t of t he membrane

forces becomes important. The def lec t ions a re l a rge compared with the

p l a t e thickness but s t i l l small compared with the other dimensions and

the p l a t e edges tend t o move p a r a l l e l t o i t s i n i t i a l plane o orris e t

a1 1976; Williams and Aalami,1979). The large-deflect ion theory is

nonlinear i n character and d i f f i c u l t t o apply. The discussion w i l l be

r e s t r i c t e d t o the small-deflection theory.

2.1.2.1 Simplifying assumptions

In the small-deflection theory, the three-dimensional e l a s t i c i t y

problems a r e reduced t o two-dimensional ones by the imposition of the

following assumptions:

(i) the p l a t e is f l a t , of a small thickness and of homo-

geneous i so t rop ic material

(ii) p l a t e i s of uniform thickness but i f not uniform, the

r a t e of change of thickness is very small

( i i i l t he t ransverse def lec t ions a re small compared with the

' p l a t e thickness

(iv) loads and react ions a r e normal t o the plane of the

p l a t e

(v ) normals t o t h e middle plane before bending remain

normal t o t h e middle plane a f t e r bending

( v i ) t h e middle plane i s unstrained before and a f t e r

bending

( v i i ) t h e v e r t i c a l s t r e s s Gz is small compared with t h e

o the r s t r e s s components

( v i i i ) t h e p l a t e is not s t r e s s e d beyond t h e e l a s t i c l i m i t .

These c o n s t i t u t e t h e c l a s s i c a l theory (Wang, 1953; Timoshenko and

Woinowsky-Krieger, 1959; Bares, 1969; Roark and Young, 1975; Norris

e t a l , 1976 and Nwoji, 1985)

2.1.2.2 Solut ions by t h e c l a s s i c a l theory

The d i f f e r e n t i a l equation governing t h e t ransverse de f l ec t ion ,

w of a t h i n p l a t e i s given by

v 4 w = q / ~ . . . (2.1)

where v4 is t h e bi-harmonic operator which depends on t h e coordinate

system used, q i s t h e appl ied t ransverse load and D is t h e p l a t e

f l e x u r a l r i g i d i t y given by

where E i s Young's modulus of p l a t e , H is t h e p l a t e th ickness and

t h e Poisson ' s r a t i o .

The so lu t ion of equation (2.1) depends on t h e coordinate system

used. For axi-symmetric c i r c u l a r p l a t e s Polar coordinates a r e used

and t h e so lu t ion has been given by Timosheno and Woinowsky-Hrieger

(1559) , Roark and Young (1975) , and Lancaster and Mitchell (1980) . The

6

Cartesian coordinate system i s used f o r rectangular p l a t e s and by

t h i s system t h e Laplace operator is given by

where x, y a r e t h e two perpendicular axes. Thus i n Cartesian coordinates,

the governing d i f f e r e n t i a l equation (2.1) is given by

This equation has been solved f o r p l a t e s with various edge condit ions

subjected t o d i f f e r e n t types of loading. For al lround simply supported

p l a t e s a Navier type so lu t ion is employed, where t h e de f lec t ion and

load a r e expressed i n double trigonometric s e r i e s . Levy type so lu t ions

a r e a l s o ava i l ab le f o r p l a t e s with various edge condit ions (Wang, 1953;

Timoshenko and Woinowsky-Krieger , 1959; McFarland e t a l , 1972)

2.1.2.3 Limitat ions of the c l a s s i c a l theory

The bas ic d i f f e r e n t i a l equation of t h e c l a s s i c a l theory is of

four th order and hence requires four boundary condit ions f o r complete

solut ion. However, f o r a f r e e edge the re a r e too many ( s i x ) condit ions

a s pointed ou t by Kirchkoff i n 1850. This controversy was l a t e r resolved

by Kelvin and T a i t i n 1883 (Timoshenko and Woinowsky-Krieger, 1959).

Ho,wever, the approximations inherent in the der ivat ion of the

c l a s s i c a l theory r e s t r i c t i t s appl ica t ion t o very t h i n p l a t e s and it

cannot be applied with a reasonable degree of accuracy t o th ick p l a t e s

o r problems where shear o r l o c a l e f f e c t s such a s s t r e s s concent ra t ion

predominate. This has l e d t o t h e use of more r e f i n e d t h e o r i e s and i n

r e c e n t y e a r s many s i g n i f i c a n t c o n t r i b u t i o n s have been made i n t h e

f i e l d of a n a l y s i s of t h i c k p l a t e s .

2.1.3 Higher Order P l a t e Theories

he shear deformation theory o f Reissner (1945) i s by for t h e

most widely accepted c o n t r i b u t i o n t o the improvement of t h e c l a s s i c a l

t h i n p l a t e theory . By t h i s theory , it is assumed t h a t t h e bending

s t r e s s e s 0 0 and T vary l i n e a r l y a c r o s s t h e th i ckness of t he p l a t e X I Y XY

and t h a t a t an edge t h e displacements u and V a l s o vary l i n e a r l y a c r o s s

t h e p l a t e t h i ckness while t h e t r ansve r se d e f l e c t i o n i s cons tan t over

equat ions . However, Green (1949) has shown t h a t t he Reissner equat ions

can be ob ta ined d i r e c t l y from t h e t h r e e - dimensional e l a s t i c i t y equa-

t i o n s without t h e use of v a r i a t i o n a l techniques.

Seve ra l i n v e s t i g a t o ~ s have d iscussed t h e a p p l i c a t i o n of t h e

Reissner t heo ry t o var ious problems. Herrmann (1967) has included

t h e e f f e c t of t r a n s v e r s e shear deformation by employing a v a r i a t i o n a l

' p r i n c i p l e . -.The a n a l y s i s i s -appl ied t o simply supported c i r c u l a r p l a t e s

and c x c e l l e n t agreement e x i s t s with an e x a c t t h i c k p l a t e s o l u t i o n .

Carley and Langhaar (1968) have employed R e i s s n e r ' s theory t o s tudy

t h e behaviour of t r a n s v e r s e shear s t r e s s e s i n a l l round simply supported

p l a t e s sub jec t ed t o uniformly d i s t r i b u t e d loads . The study shows

genera l agreement between t h e Reissner and Kirchhoff t h e o r i e s i n r eg ions

away from t h e edges b u t a s h a r p disagreement a t t h e edges . Smith

(1968) h a s a p p l i e d R e i s s n e r ' s t h e o r y t o moderate ly t h i c k p l a t e s wi thout

cons ide r i ng deg ree s o f freedom a s s o c i a t e d w i th s h e a r deformat ions .

Aderheggen (1969) ha s used a complementary energy approach i n which t h e

d i sp lacement paramete rs a r e Lagragean m u l t i p l i e r s . Pryor e t a1 (1970)

have used a f i n i t e e lement which c o n s i d e r s deg ree s of freedom a s s o c i a t e d

w i th shea r deformat ions and t h r e e boundary c o n d i t i o n s on an edge. Deshmukh

and Robert (1974) employ t h e edge f u n c t i o n method t o s o l v e f l e x u r a l pro-

bleme of moderate ly t h i c k p l a t e s . The b a s i c e q u a t i o n s a r e t aken from t h e

Re i s sne r t h e o r y u s ing t h e two v a r i a b l e approach. Speare and :Kemp (1977) ,

and Vay i ad j i s and Baluch (1979) have g iven a one v a r i a b l e fo rmula t ion o f

t h e Re issner equa t i ons .

Donne11 (1954) h a s g iven a h ighe r o r d e r p l a t e i n which t h e s o l u t i o n

is i n t h e form o f an i n f i n i t e s e r i e s where t h e c l a s s i c a l t h i n p l a t e

t h e o r y is r ep re sen t ed by t h e f i r s t t e rm and a l l t h e o t h e r t e r m s a r e made

t o approach t h e three-dimensional s o l u t i o n . T h i s method h a s been a p p l i e d

t o s imply suppor ted r e c t a n g u l a r p l a t e s by Lee (1967) . P o n i a t o v s k i i (1962)

ha s used a Legendre polynomial expansion i n t h i c k n e s s c o o r d i n a t e t o o b t a i n

a system of two-dimensional e q u a t i o n s whi le Lur ' e (1964) u se s a g e n e r a l

power s e r i e s method o f s o l u t i o n o f t h e e l a s t i c i t y equa t i ons .

F r i e d r i c h s and D r e s s l e r ( 196 1 ) and Goldenweizer (1962) have g iven

a n approximate s o l u t i o n by t h e method o f asympto t ic i n t e g r a t i o n of t h e

gove rn ing equa t i ons . Bache and Hegemier (1974) have employed asympto t ic

expansion t o s o l v e e las to-dynamic p l a t e problems. J i a - r ang (1982) h a s

so lved t h e problem o f p l a t e s o f va ry ing t h i c k n e s s by t h e use of double

Four i e r t r an s fo rma t ions and two t r a n s c e n d e n t a l f u n c t i o n s .

S r i n i v a s e t a 1 (1969) have developed a three-dimensional so lu -

t i o n f o r r e c t a n g u l a r p l a t e s i n which t h e s o l u t i o n f o r d i sp lacements

a r e t aken i n t h e form o f double t r i gonome t r i c s e r i e s s a t i s f y i n g t h e

e q u a t i o n s o f e q u i l i b r i u m i n t e r m s o f d i sp lacements . S e b a s t i a n (1983)

h a s a l s o o b t a i n e d a s o l u t ~ ~ ; n f o r r e c t a n g u l a r p l a t e s based on t h e

Gala rk in v e c t o r s t r a i n f u n c t i o n approach of e l a s t i c i t y .

Vlasov (1957) , u s ing a mixed method i n e l a s t i c i t y has developed

a t h i c k p l a t e t heo ry t h e governing e q u a t i o n s o f which a r e ob t a ined

from t h e th ree-d imens iona l e l a s t i c i t y equa t i ons . The unknowns o f t h e

problem a r e expanded i n MacLaurin s e r i e s i n t h e t h i c k n e s s coo rd ina t e

and t h e s o l u t i o n i s o b t a i n e d i n terms o f unknown i n i t i a l f u n c t i o n s on

t h e r e f e r e n c e p l ane and fo l l owing Vlasov, t h e method is r e f e r e d t o as

t h e method o f i n i t i a l f u n c t i o n s (MIF). By p r o p e r l y t r u n c a t i n g t h e

s e r i e s approximate t h e o r i e s o f any d e s i r e d o r d e r are e a s i l y ob t a ined .

D a s and S e t l u r (1970) , Rao and Das (1977) , Bahar (1977) and Iyengar

and Roman (1980) have employed t h e method t o s o l v e e las todynamic p ro-

blems. Bahar (1972) and Oj iako (1985) have a p p l i e d t h e method t o

l a y e r e d systems whi le Iyengar e t a1 (1974, 1974) have used t h e same

method t o , a n a l y s e t h i c k r e c t a n g u l a r p l a t e s and.beams.

2.2 PLATES ON ELASTIC FOUNDATIONS

A survey of t h e l i t e r a t u r e shows t h a t i n t h e a n a l y s i s o f v a r i o u s *

s t r u c t u r a l forms r e s t i n g on e l a s t i c f ounda t i ons , t h e r e l e v a n t governing

e q u a t i o n s a r e o n l y modif ied t o t a k e t h e e f f e c t o f t h e founda t ion re-

a c t i o n p i n t o account . The work o f ~ e ' t e n ~ i (1946) is one o f t h e

10

formost i n the s tudy of s t r u c t u r a l forms on e l a s t i c Foundations.

H i s work cons iders various types of beams r e s t i n g on e l a s t i c foundations

and s e v e r a l techniques inc luding t h e use of s e r i e s so lu t ions (Hetenyi,

1977) have been employed t o solve t h e governing d i f f e r e n t i a l equat ions.

Hetenyi ' s work has been extended t o p l a t e s by seve ra l i nves t iga to r s .

McFarland e t a 1 ( 1972) , Timoshenko and Woinowsky-Krieger ( 1959) ,

S c o t t (1981) have d iscussed t h i n p l a t e s on e l a s t i c foundat ions. The

b a s i c d i f f e r e n t i a l equat ion of t h e c l a s s i c a l t h i n p l a t e theory i s

modified by adding t h e

rec tangular p l a t e s t h e

e f f e c t of t h e foundation r eac t ion p. Thus f o r

equat ion becomes

The form of t h e foundation r eac t ion p depends on t h e foundation model

empl~yed. This is d iscussed i n d e t a i l i n sec t ion 2.4. Navier and

Levy type so lu t ions a r e a v a i l a b l e f o r equat ion (2 .5 ) . Livesely (1953)

has given a mathematical t rea tment of e l a s t i c p l a t e s on e l a s t i c founda-

t i o n s under s t a t i c and dynamic loads. Sonoda and Kobayash (1980), have

i n l i n e with P i s t e r and Williams (1960) s tudied t h i n rec tangular p l a t e s

on Reissner type v isco e l a s t i c foundations. Brown e t a 1 (1977) have

a l s o s tud ied beam-plate systems r e s t i n g on e l a s t i c foundat ions. Many

con t r ibu t ions have a l s o been made i n t h e a n a l y s i s of t h i n c i r c u l a r

p l a t e s bn e l a s t i c foundations. The works of Krajcinovic (19761, Sonoda

6

e t a 1 (1978) , Gazetas (1982) and Kamal and Durvasula (1983) (Ire some

of t h e con t r ibu t ions i n t h i s a rea .

The a n a l y s i s of t h i c k p l a t e s on e l a s t i c foundat ions has been

made poss ib l e by t h e in t roduc t ion of t he foundation r e a c t i o n i n t o t h e

equat ions of t h e r e l e v a n t t h i c ~ p l a t e t h e o r i e s . Freder ick (1957) ,

using t h e b a s i c equa t ions of t h e Reissner theory ana lysed t h i c k p l a t e s

on e l a s t i c foundat ions by inc luding t h e e f f e c t of t h e foundat ion i n t o

t h e equa t ions . I t is shown t h a t s o l u t i o n s of t h e Levy and Navier t ypes

can be used. Svec (1976) and Vykuti l (1982) have used f i n i t e e lements

t o ana lyse t h i c k p l a t e s r e s t i n g on e l a s t i c foundat ions. Shear e f f e c t s

a r e considered and Re i s snc r ' s theory is b a s i c a l l y app l i ed . V o y i a d j i ~

and Baluch (1979) have used a one-variable formulat ion o f t h e Reissner

theory and employed a success ive approximation technique t o t h e a n a l y s i s

of t h i c k p l a t e s on e l a s t i c foundat ions.

2.3 FOUNDATION MODELS

A d e t a i l e d review of t h e va r ious foundat ion models a v a i l a b l e has

been made by Kerr (1964) and Zhaohua and Cook (1983). I t i s seen t h a t

t h e va r ious models can be c l a s s i f i e d broadly i n t o one-and two-parameter

foundakion models depending on t h e number of cons t an t s used i n d e f i n i n g

t h e r e a c t i o n of t h e foundat ion t o load. F l e t c h e r and Herrmann (1971)

have desc r ibed a three-parameter model b u t a s S c o t t (1981) p o i n t s o u t ,

it is very u n l i k e l y f o r a case t o be made f o r t h e use of a three-para-

meter model and hence it w i l l n o t be d i s cus sed f u r t h e r i n t h i s r e ~ i e w .

The va r ious foundat ion models w i l l now be d i scussed .

2.3.1 One-Parameter (Winkler) Foundation Model

The s imp le s t and most widely accepted r e p r e s e n t a t i o n of a con- b

t i nuous e l a s t i c foundat ion under va r ious s t r u c t u r e s was given by

Winkler i n 1867. H e assumed t h a t t h e r e a c t i o n o f t h e foundat ion a t

a given p o i n t is d i r e c t l y p ropor t i ona l t o t h e d e f l e c t i o n a t t h a t po in t .

12

Mathematically, t h i s means t h a t t h e r e a c t i o n p ( x , y ) and the d e f l e c t i o n

w(x ,y) bo th i n t h e t r ansve r se z -d i r ec t ion a r e r e l a t e d by t h e expression

p ( x , y ) = k w(x,yl . . . (2.6)

where k is t h e foundat ion parameter o r modulus. The phys i ca l meaning

is t h a t t h e foundat ion c o n s i s t s of c l o s e l y spaced, indepeddent l i n e a r

s p r i n g s and it is a one-parameter foundat ion s i n c e only one modulus is

used t o de f ine t h e behaviour of t h e foundat ion.

By s u b s t i t u t i n g equat ion (2.6) i n t o equat ion (2.5) w e ob t a in t h e

d i f f e r e n t i a l equat ion f o r t he bending of a r ec t angu la r p l a t e on t h e

one-parameter Winkler foundat ion:

Navier and Levy type s o l u t i o n s havc been given t o t h i s equat ion

(Timoshenko and Woinowsky-Krieger, 1957, McFarland e t a l , 19?2)

2.3.1.: C o n s i 6 e r a t i ~ n s of t h e foundat ion moduius

In any a n a l y s i s o r des ign of any s t r u c t u r a l form on t h e Winkler

foundat ion, t h e foundation modulus K must be known. Unfortunately, due

t o t h e n a t u r e of most foundat ion m a t e r i a l s which a r e n e i t h e r homogeneous

nor i s o t r o p i c ( s o i l s f o r example), t h e d e t e r ~ u n a t i o n of t h e parameter k

i s n o t an easy matter . I t has u n i t s of KIV/rn3 and what is mostly seen

i n t h e l i t e r a t u r e a r e ranges of va lues f o r var ious s o i l types (Timoshenko

and Woinowsky-Krieger, 1959, McFarland e t a l , 1972)

However, some experimental i n v e s t i g a t i o n s i n t o t h e value of k

have been c a r r i e d o u t by V e s i c (1961) and F le t che r and Herrmann (1971).

Vesic , working on beams r e s t i n g on i s o t r o p i c e l a s t i c s o l i d chose a r e l a -

t i o n between k and t h e m a t e r i a l p r o p e r t i e s a s

0 . 65E E. B~ 6 S

k = . . . (2 .8 ) 1 -p2 s 124"'

where E and p a r c t h c Young's msdulus and Po i s son ' s r a t io o f t h e S S

s&grzde, B is t h e width o f t h e beax and E , I a r c t h e Young's modulus,

moment o f i n e r t i a of t h e beam. I n o r d e r t o match v a l u e s o f v a r i a b l e s

between t h e Winkler and continuum s o l u t i o n s some m o d i f i c a t i o n s have

been made t o e q u a t i o n (2.8) a s r e p o r t e d by S c o t t (1981) . The modifica-

t i o n s made by Vesic i n o b t a i n i n g t h e subgrade r e a c t i o n f o r s l a b s o r

p l a t e s on Winkler founda t ion have a l s o been r e p o r t e d by S c o t t (1981).

The modif ied va lue k is g iven by 0

where H = p l a t e t h i c k n e s s and y i s P o i s s o n ' s r a t i o o f p l a t e . Thus

k depends on t h e r e l a t i v e p r o p e r t i e s of t h e s l a b and subgrade and 0

a l s o v a r i e s i n v e r s e l y a s t h e t h i c k n e s s o f t h e slab. F l e t c h e r and

Herrmann (1971), r e s t r i c t i n g t h e r a t i o o f subgrade Young's modulus,

E t o beam modulus E t o l e s s t han 0.01 ob t a ined c u r v e s f o r t h e selec- s

t i o n o f t h e founda t ion modulus. I t should b e no ted t h a t i n a l l t h e s e

i n v e s t i g a t i o n s , t h e founda t ion r e a c t i o n i s d e f i n e d on ly i n terms of

t r a n s v e r s e d e f l e c t i o n . The g r e a t e s t asset o f t h e Winkler model is

t h e s i h p l i c i t y o f i t s mathemat ical r e p r e s e n t a t i o n .

2.3.1.2 Limi ta t ions of t h e Winkler foundation

Fig 2 . l ( a ) shows the deformations of the Winkler foundation

su r face f o r a uniform load. I t is seen t h a t t h e displacements i n

t h e loaded a r e a a r e cons tant while o u t s i d e t h i s region t h e d isp lace-

ments a r e zero. This does not r ep resen t t h e a c t u a l foundation be-

haviour a s t h e displacement of t h e foundation sur face f o r most ma te r i a l s

is a s shown i n f i g 2.1 (b ) (Kerr, 1964 . Vesic (1961) has found t h a t t he Winkler model r ep resen t s t h e

behaviour of beams on s o i l s f a i r l y wel l b u t Jones and Xenophontos

(1377) have s t a t e d t h a t t h e model is less s a t i s f a c t o r y when app l i ed

t o p l a t e s . Due t o these s h o r t comings seve ra l foundat ion models

have been suggested, i n r ecen t yea r s , i n an at tempt t o g ive phys ica l ly

c l o s e r ep resen ta t ions . I n these models t h e foundation is descr ibed

by two p r o p e r t i e s and they a r e thus r e f e r r e d t o a s two-parameters

models.

2.3.2 Two-Parameter Foundation Models

I n o rde r t o desc r ibe models t h a t c l o s e l y r ep resen t r e a l founda-

t i o n s some i n v e s t i g a t o r s have assumed some kind of i n t e r a c t i o n between

t h e Winkler s p r i n g s while o t h e r s s t a r t i n g from continuum equat ions

have introduced s impl i fy ing assumptions with r e s p e c t t o displacements

and/or s t r e s s e s . The assumptions made have l e d t o many two-parameter

models which a r e now discussed . 6

2.3.2.1 Filonenko-Borodich foundation

This model, developed i n 1940, is due t o Filonenko-Borodich who

s t a r t e d from t h e Winkler model and assumed some degree of i n t e r a c t i o n

Fig. 2.1 Deflection of foundation surface (a) Winkler foundation

(b) real foundation

between t h e s p r i n g elements (Kerr , 1964). I t i s assumed t h a t t h e t o p

ends of t h e s p r i n g s a r e connected t o an e l a s t i c membrance which is

s t r e t c h e d by a c o n s t a n t t en s ion f i e l d T. By t h i s model, t h e r e l a t i o n -

s h i p between t h e foundat ion r e a c t i o n p ( x , y ) due t o a given l o a d and t h e

d e f l e c t i o n w(x,y) is given by

where k i s t h e Winkler foundat ion modulus and VZ is t h e Laplac ian opera-

t o r i n x and y. The e v a l u a t i o n of t h e second parameter T is n o t r e p o r t e d

i n t h e l i t e r a t u r e a v a i l a b l e t o t h i s Gtudy.

2 .3 .2 .2 Pas te rnak foundat ion

The Pas te rnak founda t ion model w a s developed i n 1954 and it assumes

t h e e x i s t e n c e o f s h e a r i n t e r a c t i o n s between t h e s p r i n g elements o f t h e

Winkler model. The t o p ends of t h e s p r i n g s a r e connected to a beam o r

p l a t e c o n s i s t i n g of incompress ib le v e r t i c a l e lements , which deform on ly

by t r a n s v e r s e shea r (Jones and Xenophon t o s , 1977) . To d e r i v e t h e load-

d e f l e c t i o n r e l a t i o n t h e v e r t i c a l equ i l i b r i um of an e lement of a shea r

l a y e r is cons ide red and assuming t h e founda t ion m a t e r i a l t o be homogeneous

and i s o t r o p i c , t h e foundat ion r e a c t i o n p ( x , y ) , due t o a g iven l oad , is

g iven byp-

p ( x , y ) = kw(x,y) - G v2w(x ,y) S

... (2.11)

where G i s t h e s h e a r modulus o f t h e foundat ion m a t e r i a l and i s given by 6

17

Thus G can be eva lua ted i f Young's modulus and Poisson ' s r a t i o of t h e s

foundat ion ( E ,ps) a r e known. The curves given by F le t che r and Herrmann S

(1971) can a l s o be used t o determine t h e parameters i n t h i s model.

Von Mises ha.s obta ined , f o r t h e two-dimensional case an expression

of t h e form given i n equat ion (2.11) by expanding Wieghardt's i n t e g r a l

r e l a t i o n f o r load and d e f l e c t i o n s (Kerr, 1964). This confirms equat ion

(2.11) a s a c o r r e c t approximation of t h e foundation response. This

argument, a s wel l a s t h e mechanical behaviour of t h e model and t h a t of

t h e r e a l medium has made Kerr t o s t a t e t h a t t he Pasternak model i s t h e

most n a t u r a l ex tens ion of t h e Winkler model of a l l t h e models t h a t

s t a r t e d wi th t h e Winkler foundation. The bending of p l a t e s r e s t i n g on

Pasternak-type foundat ions has been d iscussed i n d e t a i l by Kerr (1964)

2.3.2.3 General ised foundation

This model is a l s o an extens ion t o t h e Winkler hypothesis . An

a r b i t r a r y assumption is made t h a t a t each po in t where t h e foundation

r e a c t i o n i s propor t ional t o t h e d e f l e c t i o n w, t h e r e is a l s o a moment

m(x,y) which i s propor t ional t o t h e angle of r o t a t i o n . This a d d i t i o n a l

assumption can be expressed mathematically a s

where n is any d i r e c t i o n a t a po in t i n t h e p lane of t h e foundation

su r face and K is t h e p r o p o r t i o n a l i t y f a c t o r . By conver t ing m(x,y) 0

i n t o r a n equiva lent su r face load we ob ta in t h e foundation r e a c t i o n

p ( x , y ) due t o a given p res su re a s

p ( x , y ) = I w(x,y) - K v2w(x,y) 0

Although t h e genera l i sed foundation i s r e l a t i v e l y a r b i t r a r y , it

has been shown by Kerr (1964) t h a t t h e Pasternak foundation i s a p o s s i b l e

model f o r t h e gene ra l i s ed foundation, hence g iv ing it a phys ica l meaning,

2.3.2.4 Hetenyi foundation

Hetenyi has a l s o suggested a modif icat ion t o t h e Winkler model. H e

assumes i n t e r a c t i o n between t h e sp r ing elements by imbedding an e l a s t i c

beam i n t h e two-dimensional case and a p l a t e i n t h e three-dimensional case ,

The fondat iDnreact ion i s expressed as

where D i s t h e f l e x u r a l r i g i d i t y of t h e p l a t e

2.3.2.5 Vlasov foundation

Vasov s t a r t e d from a continuum p o i n t of view. He assumed t h e founda-

t i o n as a semi - in f in i t e e l a s t i c medium, imposed c e r t a i n r e s t r i c t i o n s on

t h e poss ib l e deformations of an e l a s t i c l aye r and used a v a r i a t i o n a l

method t o ob ta in a load-def lec t ion r e l a t i o n t h a t is given by

p (x ,y ) = kw(x,y) - 2 t V2w(x,y) . . . (2.16)

where k and 2 t a r e parameters i n terms of e l a s t i c cons tan t s and dimensions

of p l a t e and foundation i n v e s t i g a t o r s and is being used i n t h e design

of s t r u c t u r e s on s o i l foundations. I t has t h e advantages of being

derived-from a continuum approach and i s a l s o a simple coupled sp r ing

model. The model is, however, s t rong ly dependent on t h e assumed

form o f t h e v e r t i c a l deformation and a good choice must be made t o b

ob ta in good r e s u l t s . Jones and Xenophontos (1977) using a d i f f e r e n t

v a r i a t i o n a l p r i n c i p l e have obtained t h e Vlasov model and provided a

r igorous t h e o r e t i c a l b a s i s for t he form of t h e v c r t i c a l deformation

p r o f i l e . They have found a good agreement between t h e t h e o r e t i c a l l y

p r e d i c t e d and exper imenta l ly determined v e r t i c a l deformation p r o f i l e s .

The func t ion desc r ib ing t h e v e r t i c a l deformation p r o f i l e g(Z)

is s e l e c t e d t o f i t t h e boundary cond i t i ons namely, u n i t value a t ground

s u r f a c e and zero a t dep th H i n a f i n i t e l a y e r o r a t i n f i n i t y f o r a f

ha l f - space . For t h e f i n i t e l a y e r Vlasov assumes

where $ is an unknown cons t an t determining t h e v a r i a t i o n of t h e v e r t i c a l

d i sp lacements wi th depth. However, S c o t t ( 1981 ) has used t h e fol lowing

express ion :

- 1 f o r t h e ha l f space where V is a cons t an t with dimension L express ing

t h e r a t e a t which v e t t i c a l displacement decays with z and

f o r t h e f i n i t e l a y e r .

The parameters k and 2 t of t h i s foundat ion model a r e ob t a ined

r a t i o n a l l y . k c h a r a c t e r i s e s t h e compressive s t r a i n i n t h e foundat ion

and..is e q u i v a l e n t t o t h e Winkler modulus while t c h a r a c t e r i s e s t h e

shear ing s t r a i n i n t h e foundat ion. They a r e given f o r t h e h a l f space

20

where E and p a r e t h e Young's modulus and P o i s s o r . ' ~ r a t i o of t h e S s

f o m d s t i o n medium i n a plan€ s t r a i c problem. In q plane s t r e s s con-

d i t i o n they a r e rep laced by En and p where - 0

Taking t h e v a r i a t i o n of t h e v e r t i c a l d e f l e c t i o n i n t h e form given bj

equat ion (2.18) t h e i n t e g r a l s i n equat ions (2.20) and (2.21) a r e eva-

lua t ed and t h e foundat ion parameters a r e thus given by

f o r t h e p lane s t r a i n case and

f o r t h e plane s t r e s s c a s e ,

f o r both plane s t r a i n and plane s t r e s s except t h a t f o r plane s t r e s s ,

pc a r c rep laced by Eo, Eg,

pa (Sco t t , 1381; Jones and Xenophontos,

1977)

2.3.2.6 Reissner foundation

Reissner a l s o s t a r t e d from t h e equat ions of a continuum and

a.ssumed t h a t t h e in-plane s t r e s s e s throughout the foundation l aye r a r e

neg l ig ib ly smal l : = 0 = T = 0 and t h a t ho r i zon ta l displacements Ox Y XY

a t t o p and bottom of tlic foundation a r c zero. I l e obtained t h e r e l a t i o n

where

For a cons t an t o r l i n e a r l y varying load , a f t e r r ede f in ing c o n s t a n t s

( C =k and c = G 1 eqca t ion (2.26) f s i d e n t i c a l t o equat ion (2.11) 1 2 S

The assumptions t h a t t h e in-plane s t r e s s e s a r e n e g l i g i b l e l e a d s

t o t h e f a c t t h a t t h e shear s t r e s s e s T and T are independent of z X z YZ

and hence cons t an t throughout t h e depth of t h e foundat ion. This i s

u n r e a l i s t i c e s p e c i a l l y f o r t h i c k foundat ion l a y e r s . However, t h i s

de f i c i ency is of no s e r i o u s consequence s i n c e foundat ion models study

t h e response of t h e foundat ion t o loads and n o t t h e stresses wi th in

t h e foundat ion.

In gene ra l , t h e r eac t ion of a two-parameter foundat ion t o a

given load is given by

p (x ,y ) = k w(x,y) - kl VZw(x,y)

g iv ing t h e d i f f e r e n t i a l equat ion of a t h i n p l a t e r e s t i n g on a two-para-

meter foundat ion a s

2.4 GENERAL REMARKS

From t h e l i t e r a t u r e it i s seen t h a t t h e behaviour of t h i n and

t h i c k p l a t e s r e s t i n g on e l a s t i c foundat ions has been widely t r e a t e d .

T$e c l a s s i c a l t h i n p l a t e theory i s modified by inco rpora t ing t h e founda-

t i o n r e a c t i o n i n t h e a n a l y s i s of t h i n p l a t e s on e l a s t i c foundat ions. In

t h e case of t h i c k p l a t e s , Re i s sne r ' s o r o t h e r h igher o rde r t h e o r i e s a r e

s i m i l a r l y modified t o take t h e e f f e c t of t h e foundation i n t o considera-

t i o n . However, t h e l i t e r a l ru rc shows t h a t Vlasov' s ~ricthod of i n i t i a l

2 2

f u n t i o n s has not been a p p l i e d t o p l a t e s on e l a s t i c foundat ion.

It i s a l s o observed t h a t t h e Winkler foundat ion i s s t i l l widely

used t o r e p r e s e n t t h e behaviour o f e l a s t i c foundat ions under load

d e s p i t e i t s depa r tu re from r e a l i t y . However, many models have been

proposed i n o r d e r t o b r i n g t h e t h e o r e t i c a l formula t ions c l o s e t o

r e a l i t y . I n t h i s connection t h e model proposed by Pasternak has been

accepted a s a very n a t u r a l ex tens ion t o t h e Winkler model. The Vlasov

foundat ion model i s seen a s a r a t i o n a l model s i n c e it is de r ived from

a continuum p o i n t view and i t s v a l i d i t y has been confirmed by r igo rous

mathematical d e r i v a t i o n s .

CHAPTER THREE

DEVELOPMENT OF THE GOVERNING EQUATIONS

3.1 THE METHOD OF INITIAL FUNCTIONS (MIF)

3.1 .1 I n t r o d u c t i o n

The method of i n i t i a l f u n c t i o n s (MIF) , proposed by Vlasov i n

1957, is a mixed method i n e l a s t i c i t y . I n o b t a i n i n g t h e s o l u t i o n s ,

no p r e f e r e n c e i s g iven t o s t r e s s e s o r d i sp l acemen t s as i n t h e s t r e s s

o r d i sp lacement approach.

Vlasov h a s s t a r t e d wi th t h e three-dimensional e q u a t i o n s o f e l a s -

t i c i t y and e l i m i n a t e d t h e in-plane s t r e s s e s o ,o and -r t o reduce x Y XY

t h e nanber o f equa t i ons . The unknowns o f t h e problem a r e expanded i n

Mac-Laurin s e r i e s i n t h e t h i c k n e s s c o o r d i n a t e s o t h a t t h e s o l u t i o n is

ob t a ined i n t e rms of unknown i n i t i a l f u n c t i o n s on t h e r e f e r e n c e p l ane .

He obse rve s t h a t t h e i n f i n i t e s e r i e s i n t h e d i f f e r e n t i a l o p e r a t o r can

be w r i t t e n i n c l o s e d form. By p rope r t r u n c a t i o n o f t h e s e r i e s , approx i -

mate t h e o r i e s of any d e s i r e d o r d e r a r e ob t a ined . The fo rmula t ion of

t h e MIF is now p r e s e n t e d as g iven by Iyenqar e t a 1 (1974) , Rao and

Das (1977)

3.1.2 De r iva t i on of t h e Basic Equat ions

For a homogeneous, i s o t r o p i c and l i n e a r l y e l a s t i c s o l i d , t h e

equa t i ons o f e q u i l i b r i u m i n t h e absence of body f o r c e s a r e :

and the stress-displacement equations a re

where (5 , u y~ uZI T xy' ' xzl T~~ a re the s t r e s s components in the

X

respective direct ions , u,v,w are the displacements components in the

x ,y ,z direct ions , p is ~ o i s s o n ' s r a t i o and G the modulus of r i g id i ty .

Using the following symbols:

and eliminating the in-plane s t resses 0 0 T between equations x' y' xy

( 3 . 1 ) and ( 3 - 2 ) since 'they. do-not 'appear in the surface conditions a t the

top and bottom faces , the following equations a re obtained:

The in-plane stresses a r e given by

Vlasov has assumed t h e so lu t ions of equations (3.4) i n t h e

form of in£ i n i t e MacLaurin s e r i e s i n z as

where a l l the higher de r iva t ives a r e obtained from equations (3 .4 ) .

Rao and Das (1977) have used matrix no ta t ion t o solve t h e equations

(3.4) and 6ollowing t h e i r method equations (3.41 a r e r e c a s t i n matrix

hota t ion as

and

where

and 1'-

The d i f f e r e n t i a l operators a,B follow the ru les of algebra. Vlasw 's

suggested form of the general solutions of equations (3.4) can now be

put i n matrix form a s

2 7

where U o, Vo, ... X a r e t h e respect ive values of U, V, ... X on the 0

i n i t i a l plane Z=0 and a r e c a l l e d the i n i t i a l functions. In general ,

any plane Z = constant can be taken a s t h e i n i t i a l plane and t h e

above expressions can be modified appropriately.

The higher order de r iva t ives of t h e funct ions with respect t o

Z a r e obtained by repeated operat ion of r on equations (3.7). For

example, by opera t ing r once on equations (3.7) we obta in higher-

order even d e r i v a t i v e s i n t h e form

where [Cl = [A] [B l o r

and

*

I t is s e e n from e q u a t i o n s (3 .12) a n d ' (3 .13) t h a t m a t r i x [R] can b e

o b t a i n e d by t r a n s p o s i n g t h e e l e m e n t s o f m a t r i x [CI a b o u t t h e secondary

d i a g o n a l . Higher even o r d e r d e r i v a t i v e s can b e o b t a i n e d by r e p e a t e d

u s e o f e q u a t i o n s (3.11) w h i l e h i g h e r o r d e r odd d e r i v a t i v e s c a n be

o b t a i n e d by u s i n g e q u a t i o n s ( 3 . 7 ) and

1:7 - - LC' J

L z J

( 3 . 1 1 . Thus w e have

By g r o u p i n g cvcn and odd powers o f r , and also s u b s t i t u t i n g e q u a t i o n s

( 3 . 7 ) , (3 .11) and ( 3 . 1 4 ) i n e q u a t i o n s (3 .19) t h e r e s u l t i n g e x p r e s s i o n s

are

where I i s a 3x3 i d e n t i t 1 m a t r i x .

E q u a t i o n s ( 3 . 1 5 ) c o n t a i n f u n c t i o n s o f t h e m a t r i c c z [C] and [R]

a n d S y l v e s t e r ' s and Cay ley -Hami l ton ' s t heo rems , which depends on t h e

characteristic r o o t s o f t h e m a t r i c e s [C] and [ t i ] , h a v e been u s e d t o

s o l v e t h e e q u a t i o n s , A s m a t r i x [ R ] i s o b t a i n e d by t r a n s p o s i n g t h e

e l e m e n t s o f m a t r i x [C] a b o u t i t s secondary d i a g o n a l , it f o l l o w s t h a t

t h e two matrices have i d e n t i c a l c h a r a c t e r i s t i c r o o t s . The t h r e e

c h a r a c t e r i s t i c r o o t s o f t h e m a t r i c e s IC] and [ R ] are g i v e n by

= = < = c = - 2 3 Y . . . (3 .16a)

as shown i n Appendix A i n which

Applying Sy l v c s t s r ' s and Cay ley-Hamilton ' s theorems equations (3.15)

can be wr i t t en as

Z S i n yz = [ C o s y2.c - ,(------)C 1

1 ,.. Y 2

where

(See Appendix A )

The c l o s e d form e x p r e s s i o n s observed i n e q u a t i o n s (3.17) f o r two

d imens iona l c a s e have been o b t a i n e d d i r e c t l y by Bahar (1975) who

used a s t a t e space approach. From e q u a t i o n s (3.17) t h e s t r e s s e s and

d i s p l a c e m e n t s a t any p o i n t i n t h e body a r e e x p r e s s e d i n t e r m s o f

t h e i n i t i a l f u n c t i o n s as

where L L ..., L a r e l i n e a r d i f f e r e n t i a l o p e r a t o r s . They uu' uv' XX

a r e l i s t e d i n Tab le 3.1.

3.2 APPLICATION OF MIF TO PLATE ON WINKLER FOUNDATION

The a p p l i c a t i o n o f t h e MIF t o t h e a n a l y s i s o f t h i c k r e c t a n g u l a r b

p l a t e s h a s been d i s c u s s e d by Vlasov (1957) and Iyengar e t a 1 (1974) .

Proceeding on s i m i l a r . l i n c s t h e method i s now a p p l i e d t o t h e a n a l y s i s

o f p l a t e s r e s t i n g on a Winklcr foundclt ion

Fig 3 , l ( a ) shows t h e coo rd ina t e system adopted i n t h e a n a l y s i s

of a r ec t angu la r p l a t e of dimensions axbx 2h. The p l a t e is sub jec t ed

t o a su r f ace load of q kN/m2 a s shown i n F ig 3 . l ( b ) . The foundat ion

r e a c t i o n p (x ,y ) i s given by equat ion (2.6). Using t h e n o t a t i o n s of

equat ions (3.3') t h e foundat ion r e a c t i o n can be expressed a s

k ~ ( X I Y ) = F Wh(x1y) . . . (3.20)

where t h e t r a n s v e r s e d e f l e c t i o n , W component i s taken a t z = h. To h '

s impl i fy t h e d e r i v a t i o n , t h e problem is d iv ided i n t o symmetric and a n t i -

symmetric p a r t s as i n Fig 3.1 (c) and (dl and these w i l l be d iscussed

sepa ra t e ly .

3.2.1 Symmetric (o r Extension) Problem-

The middle p lane of t h e p l a t e i s taken a s t h e r e f e rence ( o r

i n i t i a l ) p lane and due t o symmetry Wo, Xo, Y a r e a l l zero. The a p p l i e d 0

loads a r e Z = ~ C ~ ~ ( X , ~ ) + ~ ( X , ~ ) } , Y = 0 and X = 0 on z = +h and by us ing

them i n p l a c e of t h e stress components Z,Y,X i n equat ions (3.19) t h e

fol lowing d i f f e r e n t i a l equat ions a r e obta ined f o r t h e s o l u t i o n of t h e

unknown i n i t i a l func t ions :

Fig, 3.1 (a) Coordinate

part , ( d l system, (b) Plate on elastic foundation (c) Symmetric

anti-symmetrlc part

The l a s t two of equat ions (3.21) are s a t i s f i e d i f a funct ion $'

is chosen such t h a t

- Vo - - (Lxu L yz - Lyu L x z h 1 $ ' . . . (3.22)

Bp expanding t h e o p e r a t o r s using Table 3.1 t h e f i r s t of equat ions

(3.21) becomes

2

2 Sinyh (yh + Sinyh Cosyh)$' = - fq (x ,y ) - tp (x ,y ) . . . (3.23) 1 -B

Pu t t ing

Y (- Sinyh)$ ' = $ 1 -B

equat ion (3.23) can be w r i t t e n as

y (yh + Sinyh Cosyh)$ = -fq (x,y) - tp (x ,y) . . . (3.25)

where 4 i s a new funct ion . S u b s t i t u t i n g f o r p ( x , y ) from equat ion

(3.201, t h e d i f f e r e n t i a l equat ion (3.25) becomes

K y ( y h + Sinyh Cosyh)$ + -

2G Wh(x,y) - - tq (x ,y ) . . . (3.26)

Now, by expanding equat ions (3.22) us ing Table 3.1 and s u b s t i t u t i n g

(3.241, t h e i n i t i a l func t ions becomes

a , uo = - [ ( I - 2 ~ ) - -

2 hcosyh] @

Y B S inyh

Vo = - [ ( I - 2 ~ ) - - hCosyh1 $ 2 Y

b

Using equat ions (3.19) t h e d e f l e c t i o n W a t t h e bottom of t h e p l a t e

(z=h) i s g'iven by

which on e x p a n s i o n and s i m p l i f i c a t i o n , u s i n g Tab le 3.1 and e q u a t i o n s

(3.271 a r e o b t a i n e d i n t e r m s o f t h e f u n c t i o n (i, a s

s u b s t i t u t i n g e q u a t i o n (3 .29) i n e q u a t i o n (3 .26 ) t h e g o v e r n i n g d i f f e r e n -

t i a l e q u a t i o n i s g i v e n by

[y2 h i -ys inyh Cos yh + X ~ i n ' y h ] @ = - $ q ( x , y ) . . . (3 .30)

where

3.2.2 Anti-Symmetric ( o r Bending) Problem

The midd le p l a n e (z=O) is s t i l l t a k e n as t h e i n i t i a l p l a n e and

as t h e l o a d i n g is a n t i - s y m m e t r i c , "0

Vo, Z a r e z e r o on t h i s p l a n e . 0

The a p p l i e d l o a d s are X = \r = 0 , Z = l : f q ( x , l r ) - p ( x , y ) ) on Z = th.

Using t h e s e i n e q u a t i o n s (3 .19 ) t h e f o l l o w j n g d i f f e r e n t i a l e q u a t i o n s

are o b t a i n e d :

The f i r s t two o f e q u a t i o n s ( 3 . 3 2 ) are s a t i s f i e d i f a f u n c t i o n F ' is

chosen s u c h thl:

This reduces t o

where

F = (Cosyh) F' . . . (3.36)

By expanding equat ions (3.33) using Table 3.1 and s u b s t i t u t i n g equation

(3.36) t h e i n i t i a l funct jons i n terms o f F a r e given by

xo = - a h Sinyh . F

1 -P

From equat ions (3.19) t h e d e f l e c t i o n W a t t he bottom of t h e p l a t e '

(z=h) is given by

Wh(x,y) = (L 1 W + (LwyIh Yo+(LWX X . . . (3.38) ww h o

Using Table 3.1 and equations (3.37) t h i s s i m p l i f i e s t o

wh(x1y) = ( c o s 2 y h ) ~ . . . (3.39)

Subs tu t ing equation (3.39) i n equation (3.35 ) t he governing d i f f e r e n t i a l

equat ion becomes

which i n expanded form i s given by . .

b

where is given by equation (3.31).

To ob ta in t h e so lu t ion of the problem i n Fig. 3 . l ( b ) t h e so lu t ions

f o r t h e symmetrical and anti-sy~nmetrical. p a r t s a r e sumnied up.

The funct ions 4 and F arc now cvaluatcd fo r problcnis w l t h various boundaqy

c o n d i t i o n s .

3 . 2 . 3 Allround Simply Supported P l a t e

The boundary cond i t i ons i n terms o f s t r e s s e s and displacements are:

Equations (3.30) and (3.40) a r e s a t i s f i e d by t a k i n g 4, F and t h e l oad

q (x ,y) i n t h e form

= 4 S i n a x S in Bny Inn m

F = 3 f m S i n amx S in Bny

= 2 q S i n a x s i n Bny mn m

where q i s t h e f o u r i e r c o e f f i c i e n t o f t h e l oad and mn

S u b s t i t u t i n g equa t ions (3.42) i n t o t h e d i f f e r e n t i a l equa t ions (3.30)

and (3.40) t h e c o e f f i c i e n t s 4 and f 3re ob ta ined ( s ee Appendix B ) a s rnn mn

Hence t h e f u n c t i o n s @ and F a r e given by

q S ina x s i n 6 4 = c c mn m n Y

m n 6 (sinh26h + 26h) + 2Xsinh2 6h

39 Now, using equat ions (3.19) t h e s t r e s s e s and displacements can be

obta ined by summing up f o r each quan t i ty , t h e r e s u l t s of t h e symmetric

and anti-symmetric p a r t s . They a r e given by

By using able 3.1 and equat ions (3.27) and (3.37) and s impl i fy ing , the

fol lowing express ions a r e obtained (see Appendix B)

. . . (3.47) Equat ions (3.45) a r e .now s u b s t i t u t e d i n t o equa t i ons ( 3 -47) t o o b t a i n

the exp re s s ions f o r t h e s t r e s s e s and d i sp lacements a t any p o i n t ( x , y , z )

(See Appendix B) t h u s

aln C&Z { ( 1 - 2 ~ ) ~ i . n h 6 h - 6 h ~ o s h S h ) + 6 z ~ i n h 6 z ~ i n h 6 h u = +C C --[ m n d 6 ( ~ i n h 2 d h + 26h) + 2Asinh2 8h

- ~ i n h d z {( 1-2p) ~osh-6h~in6h~+6z~oshbzCos h6h d (Sinh 26h-2831) + 2Xcosh2 611 l q mn Cosa m xSinBny

6 z ~ o s h 6 z ~ i n h 6 h - ~ i n h B z ( 2 (1-1) ~inh6h+8hCosh6h} w = '6 (Sinh 26h+26h) +2?&inh2 6h

6zs inh6z~osh6h-coshbz {2 ( l -~~ )cosh6h+bhs inh6h} - ] q S i n a xSinB y 6 (S inh 26h-26h) +2Xcosh2 dh mn n n

6z~osh6z~nh6h-6h~inh8zCosh6h = k i B n ' 6 (Sinh 26h+26h) +2hsinh2 6h

1 a2 k o s h 6 z (S inh6h-6h~oshdh) +6z~inh6z~in6h}+2pp~~osh6z~inh6h

m cr = C C -[-A

x m n 6 6 (Sinh 26h+26h) +2hsinh2 dh

... - - 6 (Sinh 26h-26h) + 2 k o s h 2 6h

I

XL S i n a xSin 6 y m n

Xqmn S i n a xSin6 y

m n

a ampn cosh6z { (1-21) ~inh6h-6h~osh6h}+6z~inh6z~inh6h = C C - - xy m n [ 6 (S inh 26h+26h) +2kSinhz 6h

3.2.4 Levy Type Solut lon

The a n a l y s i s of a p l a t e with two oppos i te edges simply supported

and the remaining edges assuming any boundary cond i t ions f o r t h e p l a t e

bending problem using t h e MIF has been given by Iyenger e t a 1 (1974)

and is now extended t o p l a t e on Winkler foundation. The expanded form

of t h e governing d i f f e r e n t i a l equat ion f o r t h e bending of a p l a t e

r e s t i n g on a ~ i n k l e r foundation has been given i n equat ion (3.40b) . The homogeneous p a r t is given by

where

The above d i f f e r e n t i a l equat ion can be f a c t o r i s e d i n t h e form

(v' V; "' v4 + k g v;" ... V;~)F = o

where v4 and v * ~ a r c biharrnonic ope ra to r s defined thus n n

V4= V4- 2 ( € I - q2 ) V2 +$ + r + 2~~ q2 (n=1,2,. . .) n n n n n

where t h e q u a n t i . 1 . j ~ ~ r and 1) a r e r c l a t c d t o 1 t h e r o o t s of t h e 11 I 1 11 '

equat ion

4 3

asX = E + i o n . . . (3.54) n n

and E* and n* are r e l a t e d t o A* t h e r o o t s o f t h e equa t i on n n n '

Since equa t i on (3.49) is l i n e a r i t s s o l u t i o n can be w r i t t e n a s

t h e sum o f t h e s o l u t i o n s o f

V ~ F = 0 , V ~ F = 0 , V L ' F ~ = 0 ( n = l r 2 , 3 , . . .) . . . (3.57) o n n

Choosing t h e s o l u t i o n s o f (3.57) i n t h e form o f

F =C f S i n ci x (n = 0 , 1 , 2 , ...I m

. . . (3.58) n m n

e q u a t i o n s (3.57) can be reduced t o a s e t o f o r d i n a r y d i f f e r e n t i a l

e q a a t i o n s and t h e s o l u t i o n of t h e homogeneous equa t i on (3.49) can

be w r i t t e n as

= C[f +C(f + k ' f i ) ] S i n a x F ( ~ , Y ) o n . . . (3.59) m

where

f =APCosha y+BOci ySinhci y+C;Sinha y+DOa yCosha y 0 m m m m m m m m

n n n -f = ~ " c o s h g yCost y+B Sinhg y S i n t y+C Coshg y S i n t y+D Sinhg y c o s t y

n m n n m n n m n n m n n

4 d =c4 +n4 + 2 ~ ~ l l ~ +2 ( c 2 -1l2 )a2 43

n n n n n n m r n

and t h e Am ... D ' s a r e i n t e g r a t i o n cons t an t s . m

I n o rde r ' t o determine t h e p a r t i c u l a r s o l u t i o n Fp a t heo ry of any

d e s i r e d o r d e r i s cons t ruc ted . For example, by assuming a f o u r t h o r d e r

theory w e have t h e fol lowing

This i s equ iva l en t t o t h e c l a s s i c a l t h i n p l a t e theory . S i x t h and h igher

order t h e o r i e s can be obta ined by in t roducing a shea r func t ion x such t h a t

( C o s y h ) ~ = 0 . . . (3.521

and proper ly t r u n c a t i n g t h e s e r i e s . For a s i x t h ordwtheory, t h e system

of equat ions c o n s i s t s of t h e f i r s t o f equa t ions (3.61) and t h e fol lowing:

2 (v2- x = 0 . . . (3,631

I n t h i s s tudy , it is intended only t o show t h a t a Levy type s o l u t i o n

is p o s s i b l e f o r t h e a n a l y s i s o f p l a t e s on e l a s t i c foundat ions us ing

method of i n i t i a l func t ions , Therefore t h e s i x t h order equa t ions of

(3.61) and (3.63) a r e used t o eva lua t e t h e p a r t i c u l a r s o l u t i o n F . The P

f i r s t of Equations (3.61) when reduced t o a d i f f e r e n t i a l equat ion i n

mid-plane d e f l e c t i o n (w i s 0

which on recas t ing becomes

~ D V ' W ~ -kH1~'wO + kw0 = ( I - H ' v ' ) ~

where

The p a r t i c u l a r so lu t ion (w ) p and t h e load a r e taken i n t h e form 0

( w ~ ) ~ = Za Sina x m m

q = Cqm~inamx

The f i r s t of equations (3.67) s a t i s f i e s equation (3.65) a s well a s

the boundary condi t ions (supports a r e assumed s imple) ,Gubst i tu t ing

equations (3.67) i n (3.65) gives

m = 1,3,5,.,.

where q is a uniformly d i s t r i b u t e d load. Thus

Using equations (3,3) t h i s can be wri t t en a s

where

Thus by e q u a t i o n (3.61

To s o l v e e q u a t i o n (3.63) it is f a c t o r i s e d i n t h e form

where t h e 2 ' s a r e t h e r o o t s o f Cos Rh = 0 . The s o l u t i o n o f (3.73)

i s w r i t t e n i n t h e form

~ ( x I Y ) = ~ x ~ I Y ) . *. (3,741

S Assuming x is o f the forwx = CE Cosa x w e o b t a i n

s m m in

where

d = R; + a;, s m

The complete s o l u t i o n oL c q u a t i o n 40) is g i v e n by t h e sum o f t h e

homogeneous and p a r t j . c u l a r solul ; ions ,

3.3 APPLICATION OF M I f i ' 'rO PLATE ON TWO-PARAMETI!R ELASTIC

, FOUNDATIONS

The problem o f p l a t e on a two-parameter founda t ion is a l s o d i v i d e d

i n t o symmetric and an t i - symm(? t r i c i,,irts a s shown i n F i g 3 , l . For a

two-parameter founds t i o n , the fot~ndat iorr r e a c t ion h a s been d e f i n e d i n

e q u a t i o n (2.28) a x

o r by u s i n g t h e n o t a t i o n s i n equat i -ons (3 ,3 )

3.3.1 Symmetric P a r t a . ,

The s t a t i c a l boundary c o n d i t i o n s a r e :

a t z = h , X = Y = O . . . (3.77)

1 z = - f q ( x , y ) - - 2 G { h ~ ~ ( x ~ y ) - k i y ~ ~ ~ ( x . y ) 1

Thus, p roceed ing on s i m i l a r l i n e s as i n s e c t i o n 3.2, t h e governing

d i f f e r e n t i a l equa t i on s i m p l i f i e s t o

Ly2 h + y h ~ i n y h ~ o s y h + y ~ i n ' yh-h lYi s i n 2 yhl @ = -3q (x , y ) .. (3.78) where i s a s g iven i n equa t i on (3.49 ) and

I n t h i s c a s e t.he s t a t i c a l boundary c o n d i t i o n s a r e :

Hence by proceeding i n t h e same l i n e s as i n s e c t i o n 3.2 t h e governing

d i f . £e r en t i a l equctt ion simplif ics t o

which i n expanded f o ~ m i.s !~i .ven by

3,3,3 Allround Simply Supportea P l a t e

A Navier type s o l u t i o n i s used i n t h i s ca se , By assuming @

and F i n t h e form of equa t ions (3.42) and s u b s t i t u t i n g i n t o t h e

d i f f e r e n t i a l equa t ions (3,78) and (3.81a) t h e c o e f f i c i e n t s $ and mn

fmn a r e obta ined a s

0, = SIln inn G (Sin h 26h + 26h) + 2 ( A + A1A2 s i nh26h

Thus @ and F a r e def ined a s

q S ina xSinB y mn m n @ = c c

m n 6 ;S inh 26h + 28h) + 2 ( h + A1d2)sinz8h

c c (1-p) .qmSin mxSin n Y F =

m n 6 ( s i n 26h-26h) + 2 ( A + A1G2 )Sinh2 6h

S u b s t i t u t i n g @ and F i n equa t ions (3.58) t h e express ions f o r t h e

s t r e s s e s and displacements a t any p o i n t (x ,y ,z ) a r e given by

. - Sinh6z {( 1-2p) cosh6h-6h~inhdh}+6z~osh6z~osh6h~ Cosa xSinBny

6 (Sinh 26h-26h) +2 (A+A162 )cosh2 6h mn m

a x =IzL[- mn6 6 ( s i n h 26ht26h) + 2 (h+XiS2 ) Sinh2 6h

Xqmn S i n a xSinBny

m

1 s2 { C O S ~ ~ Z (~in1161~-611~0shSl1) +6z~i.nh6z~ir1ll61~}+2p~l~~osh6~~inh&h

n a =.CC--[- Y mn6 6 ( S i n h 26h+26h) + ~ ( x + A 62 1 S i n h Z 6 h 1

3 3.4 Levy Type Solu t ion f o r P l a t e on Two-Parameter Foundation

The expanded form of t h e governing d i f f e r e n t i a l equat ion i s given

i n equat ion (3.8lb) . The homogeneous p a r t is given by

where

The d i f f e r e n t i a l equat ion (3.85) can be f a c t o r i s e d i n t h e form

v'v;. . .v;+k1 P I . . .v*'++k"v2 .v*' V * F = o n 1 . . . (3.87) n

snd . fo l lowing t h e proceedure i n s e c t i o n 3,2.4 t h e s o l u t i o n of t h e homo-

geneous equat ion (3.85) can be w r i t t e n a s

b

where

and a l l o t h e r t e r m s a s def ined before. Using a s i x t h o rde r theory

t h e fo l lowing system o f equa t ions a r e ob t a ined f o r t h e eva lua t ion of

t h e p a r t i c u l a r s o l u t i o n .

The f i r s t o f equa t ions (3.90) can be reduced to a d i f f e r e n t i a l equa t ion

i n t h e mid-plane d e f l e c t i o n a s

4 1 v W = - [ I - 0 8 D

h2 - ) 8' I x lq- {kwo-k lV2 wo 11 2 (1-P)

. . . (3.91)

which on r e c a s t i n g becomes

( ~ D + ~ , H ' ) V ~ W ~ - ( ~ ~ ~ + k ~ ) V ~ w ~ + k w ~ = ( l - ~ l V ~ ) q . . , (3.92)

where H' i s a s de f ined i n (3.66). By t a k i n g t h e p a r t i c u l a r s o l u t i o n

( W and t h e load i n t h e form o f (3,671 and s u b s t i t u t i n g equa t ions O P

(3.67) i n t o (3.91) we g e t

m = l , 3 , 5 , . .. and q is a uniformly d i s t r i b u t e d load. Thus

Uting t h e n o t a t i o n s of cqua t ions (3.3) t h i s reduces t o

where

Since by equat ions (3 ,61) , Wo = F it fol lows t h a t F = (W ) P O P

The s o l u t i o n f o r t he shear func t ion is a s given i n s e c t i o n 3 .2 .4

and t h i s completes t h e so lu t ion .

3 .4 A NEW 'FOUNDATIN MODEL

I n t h e Winkler and most o t h e r foundat ion models t h e foundation

r eac t ion is def ined i n terms of t h e t r ansve r se d e f l e c t i o n only.

However, t h e presence o f f a c t o r s such a s f r i c t i o n a t t h e p l a t e -

funct ion i n t e r f a c e sugges ts t h a t t h e foundation r e a c t i o n might a l s o

depend on l a t e r a l d e f l e c t i o n s . Thus a new foundat ion model is pro-

posed such t h a t t he r e a c t i o n of t h e Winkler foundation is 111odifJed

by t h e add i t ion of t h e l a t e r a l displacements. I t is suggested t h a t

t h e foundation r eac t ion p ( x , y ) i s given by

P(x ,y) = ~ ~ , Y ) + M ~ ~ C U ~ ( X , ~ ) + Gv(x ,y) ) . , , ( 3 -98)

which, using t h e n o t a t i o n s i n cquat ions (3.3) reduces t o

k 1 - w ( x , y ) + - C a ~ ( ~ , y ) + B ~ ( x , y ) p ( x , y ) = . . 0 (3.99 G

AS usua l , t l ~ c problem i s d iv ided i n t o sylnrnetric and anti-symmetric

p a r t s

3.4.1 Symmetric P a r t

S t a t i c a l equ i l i b r ium r e q u i r e s t h a t a t z = h , X = Y = 0

and . . . (3.100)

Proceeding as i n s e c t i o n 3.2, t h e governing d i f f e r e n t i a l equat ion reduces t o

where A is a s given by (3.31) and

3.4.2 Anti-Symmetric P a r t

The s t a t i c a l boundary cond i t i ons are at

z = h r X = Y = O

and

1 a = +q(x .y) - =[kw ( X , Y ) + ~ ~ { W ( X ~ Y ) + ~ ~ V ( X , Y ) 11 . . . (3.103)

and t h e governing d i f f e r e n t i a l equat ion i s t h u s obta ined (proceeding a s i n

s e c t i o n 3.2) a s

' which in.expanded form is given by

where c'= A /A 3 2

3.4.3 A p p l i c a t i o n t o Al l round Simply Supported P l a t e

For a n a l l r o u n d simgly suppor ted p l a t e we assume and F i n t h e form

(3.42) which s a t i s f y b o t h t h e boundary c o n d i t i o n s and t h e governing d i f f e r e n -

t i a l e q u a t i o n s . S u b s t i t u t i n g e q u a t i o n s (3.42) i n t o e q u a t i o n s (3.101) and

(3.104) we o b t a i n t h e c o e f f i c i e n t s ($ and fmn as mn

- - fmn 6 (S inh 26h-26h) + 2 k o s h 2 6h+6 (h2sinh26h+2A b%)

3

Hence t h e f u n c t i o n s + and F a r e g iven by

q S i n a xs inB y + =C C m 91 n m n --

6 (S inh 26h+26h) +2hsinh2 6h+ 6 (A2sinh26h-2X 6h) 3

(1-p)qm S i n a S i n 6 y F =C C a-

m , n m n 6 (Sinh26h-26h) + Z h ~ o s h ' 6 ~ + 6 (h2sinh26h+h36h?

S u b s t i t u t i n g f o r 6 and F i n e q u a t i o n s (3 .47) t h e e x p r e s s i o n s f o r t h e s t r e s s e s

and d i s p l a c e m e n t s a t any p o i n t ( x , y , z ) a r e g i v e n by

sizh6z {! 1 - 2 ~ ) ~ o s h 6 h - 6 h ~ i n h 6 h ) + 6 z ~ o s h 6 z ~ o s k , 6 h - -.-- --lq Sina xCosB y 6 (Sinh26h-2 6h) +2XCosh2 6h+6 (X2Sinh26h+2X 6h) mn

3 m n

6zCosh6z~inh6h-6h~inh6zCosh8h - - X = C C a t --.

m n m 6(~inh26h+26h)+2XSinh~6h+6(X~~inh28h-2A Ah). , 3

CHAPTER FOUR

NUMERICAL RESULTS

4 , l ALLROUND SIMPLY SUPPORTED PLATE ON WINKLER FOUNDATION

The e x p r e s s i o n s f o r t h e s t r e s s e s and d i sp lacements i n an a l l -

round s imply suppor ted p l a t e r e s t i n g on a Winkler founda t ion a r e g iven

by e q u a t i o n s (3.48). The problem is so lved f o r two c a s e s of load ing :

(i) uniform load o f i n t e n s i t y q on z = -h

(ii) p a r t i a l l oad o f i n t e n s i t y q on z = -h, o v e r an a r e a cxd

For c a s e (i) t h e F o u r i e r c o e f f i c i e n t q i n equa t i ons (3.48) i s g iven mn

by

and f o r c a s e (ii)

. For t h e sake of compansion, t h e fo l l owing paramete rs as used by

Voy iad j i s and Baluch (1979) have been used:

The va lue s o f founda t ion modulus, k used a r e

54311,132, 152933.4 and 543111.32 KN/mJ

R e s u l t s a r e p r e sen t ed f o r p l a t e s wi th l e n g t h t o t h i c k n e s s r a t i o s

(a /2h) o f 2.5,5,10,20 and 40. The maximum va lue s of each of t h e q u a n t i t i e s

t r a n s v e r s e d e f l e c t i o n , w; bending s t r e s s , 0 and shea r s t r e s s , T a r e X X z

c a l c u l a t e d and t h e i r v a r i a t i o n s a c r o s s t h e t h i c k n e s s have been s t u d i e d

by c v d u a t i ~ i c j q u m t i t ie:: ,it z/li - -1 -0, -0. ' ) , O,.') ,iricl 1 - 0 . 'I'Llc' fo t~ndd-

t i o n p r e s s u r e a t t h e bottom o f t h e p l a t e i s a l s o eva lua ted . A l l

r e s u l t s a r e p re sen t ed i n non-dimensionalised form. The computer pro-

gram developed f o r t h e s o l u t i o n is given i n Appendix C. Comparisons

a r e made with c l a s s i c a l and Reissner theory s o l u t i o n s .

4.1.1 P l a t e Subjec ted t o Uniform Load

I n Table 4.1 t h e maximum t r a n s v e r s e d e f l e c t i o n s ob t a ined by t h e MIF

a r e compared with r e s u l t s based on t h e c l a s s i c a l and Reissner t h e o r i e s .

The percentage e r r o r s i n t h e c l a s s i c a l theory s o l u t i o n s a r e a l s o given.

I t is seen t h a t f o r t h i c k p l a t e s t h c r c i s a marked d i f f c r c n c e between t h e

MIF and c l a s s i c a l theory s o l u t i o n s b u t an agreement of t h e s o l u t i o n s i s

observed f o r t h i n p l a t e s . The t a b l e a l s o shows t h a t t h e MIF and Reissner

theory s o l u t i o n s a r e c l o s e f o r bo th t h i c k and t h i n p l a t e s . For a given

p l a t e , t h e non-dimensional d e f l e c t i o n (Gw/2qh) decreases a s t h e value o f

t h e foundat ion modulus i nc reases . Th i s can be expla ined by t h e f a c t t h a t

a h igher k value means a s t i f f subgrade which o f f e r s more r e s i s t a n c e t o

deformation than a weaker subgrade wi th a smal l va lue o f k. Also, it is

noted from Table 4.1 t h a t f o r a given foundat ion, t h e d e f l e c t i o n i n c r e a s e s

a s t h e p l a t e becomes t h i n n e r . Table 4.2 shows a s i m i l a r t r e n d f o r t h e

maximum bending and shea r s t r e s s e s . However, a s shown i n Table 4.3, f o r

a p l a t e of given t h i c k n e s s , t h e maximum foundat ion r e a c t i o n , p i n c r e a s e s

wirth t h e foundat ion modulus while f o r a foundat ion of g iven modulus p

i nc reases a s t h e p l a t e g e t t h i n n e r .

The v a r i a t i o n s of t h e bending s t r e s s , 0 a c r o s s t h e c e n t r e o f va r ious X

p l a t e s a r e shown i n F igu re s 4.1 a n d 4 -2 . I t is seen t h < i t t h c v a r i a t i o n s o f

TABLE 4.1 Comparison o f non-dimensional rnaximum t r a n s v e r s e d e f l e c t i o n s

o f u n i f o r m l y l o a d e d s q u a r e p l d t e s r e s t i n g on Winkler Founda-

t i o n s (D = 0031

CLASSICAL

0.666

10.653

l69,3O9

2571.957

2921 1.822

0 ,666

10.632

166.783

2204.577

17363.096

0.666

10.562

158.455

1684.488

6854.031

REISSNER - 1.134

12.521

176.674

2598.245

29259.510

1.134

12.492

173 -894

2325.134

17373.251

1.132

12.393

164.803

1694.199

6848,808

-

"Percen tage E r r o r

Value by MIF - Value by Class ical t h e o r y *percentdge e r r o r =

Value by MIF

Table 4.2

-z&---

N9n-dimensional maxi~um s t r e s s e s i n uniformly loaded square p l a t e s r e s t i n g on Winkler foundat ions (~=0.3)

MIF ---

2.123

7.501

2b.810

107.977

294.995

C l a s s i c a l

TABLE 4,3 Maximcim fonndat ion r e a c t i o n a t bottom of uniformly loaded square p l a t e s r e s t i n g on Winkler foundat ions (p=0.3)

MIF

------ Classical

% a r e i n f luenced by p l a t e t h i cknes s . The v a r i a t i o n s t e n d t o d e v i a t e

from t h e l i n e a r assumption o f t h e c l a s s i c a l t h e o r y f o r t h i c k p l a t e s b u t

f o r t h i n p l a t e s , t h e assumption of t h e c l a s s i c a l t heo ry is d isp layed .

F i g 4.2 shows t h a t f o r a p l a t e o f given t h i c k n e s s , t h e v a r i a t i o n of U X

a c r o s s t h e t h i c k n e s s is t h e same no matter t h e va lue o f t h e founda t ion

modulus, a l though t h e maximum and i n t e rmed ia t e va lues a r e d i f f e r e n t f o r

d i f f e r e n t va lue s o f k. Msximum a always occu r s a t t h e c e n t r e o f t h e t o p X

s u r f a c e o f t h e p l a t e ( a t x = a /2 , y = b/2 and z =-h). Thickness a l s o

a f f e c t s t h e v a r i a t i o n of t h e shea r s t r e s s T as shown i n F igs . 4.3 and xz

4.4. The maximum va lue of T t ends t o s h i f t from t h e middle p l ane xz

towards t h e t o p of t h e p l a t e i n t h e c a s e o f t h i c k p l a t e s b u t t h e v a r i a t i o n

becomes symmetrical f o r t h i n p l a t e s . F ig 4 .5 shows t h a t f o r t h i c k p l a t e s

t h e v a r i a t i o n of t h e t r a n s v e r s e d e f l e c t i o n a c r o s s t h e t h i c k n e s s is non-

l i n e a r as a g a i n s t t h e assumption o f c o n s t a n t d e f l e c t i o n o f t h e c l a s s i c a l

and Reissner t h e o r i e s . I t is o n l y . # o r t h i n p l a t e s t h a t t h e d e f l e c t i o n

is f a i r l y c o n s t a n t th rough t h e t h i c k n e s s as shown i n F i g 4.6. Maximum

d e f l e c t i o n o c c u r s a t t h e middle p l ane excep t f o r t h e p l a t e wi th l e n g t h

t o t h i c k n e s s r a t i o o f 2.5 where t h e maximum i s a t t h e t o p su r f ace .

F i g 4.7 i n d i c a t e s t h a t t h e maximum founda t ion p r e s s u r e occu r s a t t h e

p l a t e c e n t r e .

The r e s u l t s p r e sen t ed have been c a l c u l a t e d t o c e r t a i n deg ree s o f

accuracy depending on t h e number of terms o f t h e s e r i e s employed. I t

i s found t h a t a good convergence is ach ieved by t a k i n g t h e fo l lowing

number of terms of t h e double s e r i e s :

f o r w: m=n=15

f o r p: m=n=15

f o r OX: m=n=2 1

f o r TXZ: m=n=9

Thus using t h e r e s u l t s corresponding t o k=162933.4 k ~ / m ~ and a/2h=2.5,

t h e e r r o r s i n t h e va lues accepted a r e 0.54%, 4.57% and 0.35% f o r w, 0 X

and T r e s p e c t i v e l y while t h e same r e s u l t s f o r a/2h = 40 a r e 0.002%, xz

0,14% and 4.52% respec t ive ly . Because o f t h e low r a t e of convergence

of t h e double s e r i e s it does n o t seem d e s i r a b l e t o ex tend t h e s e r i e s

beyond t h e number of terms ind ica t ed .

4.1.2 P l a t e Subjected t o P a r t i a l Load

Table 4.4 g i v e s a comparison of non-dimensional maximum mid-plane

d e f l e c t i o n f o r two va lues of c / a (c being t h e l eng th over which t h e

p a r t i a l load a c t s ) , It is seen a s be fo re t h a t f o r a given loading , t h e

MIF and c l a s s i c a l s o l u t i o n s a r e only c l o s e f o r t h i n p l a t e s while t h e

MIF and Reissner s o l u t i o n s a r e c l o s e f o r both t h i n and t h i c k p l a t e s .

Also, by r e f e r i n g t o Table 4.1 it is seen from Table 4.4 t h a t f o r a

given p l a t e t h e non-dimensional d e f l e c t i o n decreases wi th t h e loaded

a r e a (o r c / a ) .

The maximum s t r e s s e s f o r k=543ll . 132 k ~ / m ~ a r e given i n Table 4,5.

It .is observed t h a t maximum 0 and 'r decrease with c/a. However, X X Z

t h e decrease i s more apparent i n t he maximum shea r stress, 'r . Thi s X z

marked decrease i n t h e maximum 'r va lues might be due t o t h e f a c t t h a t X Z

tfle loaded a r e a becomes f a r t h e r from t h e p l a t e edge where maximum T xz

occurs , a s c / a decreases . A: A layed i n F ig 4.8 0 v a r i e s i n t h e manner X

descr ibed f o r uniformly loadcd p l a t e s but- i t is sccn thaL f o r a given

p l a t e the nnn- l inea r i t y i n O x i nc rcascs a s Chc loadcd area dc.c3rearw.s. F3949

Table 4.4 Comparison of non-dimensional maximum t r ansve r se d e f l e c t i o n of p a r t i a l l y loaded square p l a t e s on Winlkler foundat ion

MIF -- ;w/2qh

C l a s s i c a l .Percentage ---,

Error

Value by MIF-Value by C l a s s i c a l theory *Perct-ntage e r r o r = v a l u e by MIF

x 100

TABLE 4.5 Non-dinensional maximum stresses i n p a r t i a l l y loaded square p l a t e s r e s t i n g on Winkler foundation (b=0.3,

MIF C l a s s i c a l

MIF

---- Classical

Fig. 4.8 : Non-dimensional stress (crX/q) across centre of partially loaded plates Winkle, foundation ( K = 34311.132 K N / ~ ~ , f l = 0, a/2h ~ 2 . 5 )

does no t r e v e a l any s i g n i f i c a n t change i n t h e v a r i a t i o n of T a c r o s s X z

t h e th i ckness

4,2 UNIFORMLY LOAPED ALLROUND SIMPLY SUPPORTED PLATE ON VLASOV

FOUNDATION

I n equat ions (3.84) a r e given t h e express ion f o r t h e s t r e s s e s and

displacements i n an a l l round simply supported p l a t e r e s t i n g on t w o -

parameter foundat ions . The Vlasov model i s taken a s an example o f a two-

parameter foundat ion and t h e problem is so lved f o r t h e ca se of uniform

load only s i n c e t h e same t r e n d o f behaviour of t h e va r ious q u a n t i t i e s

a s d i scussed i n s e c t i o n 4.1 is expected f o r t h e ca se of p a r t i a l load.

I (

The Vlasov model is chosen a s t h e foundat ion parameters a r e obta ined

r a t i o n a l l y . The express ions f o r t h e foundat ion parameters k and 2 t a r e

given i n equat ions (2,23) and (2.25) r e spec t ive ly . From equat ion (2 -23) ,

p u t t i n g VB = 1.0, t h e Young's modulus E of t h e subgrade is given by S

Assuming D = 0.3, w e f i n d t h a t E = 1 .a86 k S S

.'. For k = 54311.132, Es = 1,486~54311.132 = 80690.8XN/m2

hence

S imi l a r ly f o r k = 162933,4 k N / m 3 / , 2 t ( = k = 48000 kN. The p r o p e r t i e s of 1

b

t h e p l a t e a r e t h e same a s t hose used i n s e c t i o n 4.1. The s t r e s s e s and

displacements a r e computed t o t h e same convergence l e v e l as d iscussed i n

76

wi th t h e va lues ob ta ined by t h e c l a s s i c a l theory i n Table 4.6. It

is seen t h a t , a s i n t h e ca se of p l a t e on Winkler foundation, f o r t h i c k

p l a t e s t h e va lues ob ta ined by t h e MIF are on ly c l o s e t o t h e c l a s s i c a l

t heo ry s o l u t i o n s f o r t h i n p l a t e s . A comparison with t h e app rop r i a t e

d a t a i n Table 4.1 shows t h a t f o r a given p l a t e t h e v e r t i c a l d e f l e c t i o n

o f t h e p l a t e on Vlasov foundat ion is sma l l e r than t h a t on t h e Winkler

foundat ion and t h i s discrepancy is more pronounced i n t h i n p l a t e s and

a l s o f o r b igger foundat ion modulii . Thus i f t h e Vlasov foundat ion ,

being de r ived from c o n t i n u i t y equa t ions is regarded a s a more r e a l i s t i c

model, it means t h a t t h e Winkler theory over e s t i m a t e s t h e d e f l e c t i o n

of t h i n p l a t e s r e s t i n g on e l a s t i c foundat ions. Table 4.7 shows t h e

same t r e n d f o r maximum s t r e s s e s , a l though t h e d i f f e r e n c e s a r e smal le r

i n t h e ca se o f T The s t r e s s e s a r e p l o t t e d i n F i g s 4.10 t o 4.12 t o XZ.

show how they compare with s t r e s s e s ob ta ined i n t h e c a s e o f p l a t e on

Winkler foundat ion.

A . 3 UNIFORMLY LOADED ALLROUND SIMPLY SUPPORTED PLATES ON NEW

FOUNDATION MODEL

The r e l e v a n t exp re s s ions f o r s t r e s s e s and displacements a r e given

i n equa t ions (3.107) . A dimensional a n a l y s i s o f equa t ion (3.98) r e v e a l s

-2 t h a t t h e second foundat ion modulus ki has u n i t s o f FL . Values o f k 1

a r e assumed a r b i t r a r i l y and t h e problem is so lved f o r p l a t e s having t h e

same p r o p e r t i e s a s those used i n s e c t i o n 4.1. S t r e s s e s and d isp lacements

a r g com2uted t o t h e same convergence l e v e l a s d i scussed i n s e c t i o n 4.1.1

us ing t h e app rop r i a t e program i n Appendix C

The maximum stresses and t r a n s v e r s e displacements for t h e K =200!,, 1

10,000, 5OC)OO arc. g i v e n irl 'l'clblc 4 . 8 w l ~ c ~ r e tllc curr-c.sporld~ng va lues due

7 7

TABLE 4.6 Comparison of non-dimensional maximum t r a n s v e r s e d e f l e c t i o n

of uniformly loaded square p l a t e s r e s t i n g on Vlasov founda-

t i o n ( p 0 . 3 )

Foundat ion parameters

MIF

1.139

12.516

169- 498

1956 -09

.006 1.02

1.132

12.335

154.013

1228.74

3879.91

C l a s s i c a l

0.666

10.596

162.381

e r r o r s

41.53

*Percentage e r r o r = Value by MIF - Value by C l a s s i c a l theory

Value by MIF x 100

TABLE 4.7 Comparison of non-dimensional maximum stresses in uniformly

loaded square plates on Vlasov foundations (p=0.3)

Foundat ion parameters

Classical

1.764

7 a016

26.794

78.141

89.205

O.!

1.C

Fig, 4.10 : Comparison of non-dimensional bending stress (uK/q) across centre of

square plateson Winkler and Vlasov foundations(a /2h = 2.5.5)

Fiq 4.12 Comparison of non-dimensional shear stress (xxz/q) across edge of CJ

square plates on Winkler and Vlasov foundotions F

82

TABLE 4.8 Comparison o f non-dimensional maximum t r a n s v e r s e d e f l e c t i o n

and s t r e s s e s i n uniformly loaded square p l a t e s on the Winkler

and new foundat ions (y=0.3, K=543111.32Wy/m3)

t o the Winkler theory a r e a l so incorporated fo r the sake of comparison.

I t is seen t h a t the second parameter does not introduce any s i gn i f i c an t

changes i n the s t r e s s e s and transverse de f lec t ion espec ia l ly f o r th ick

p la tes . For a given foundation, it is seen t h a t the s l i g h t change in-

troduced by the second parameter i s more i n t h in p l a t e s and fo r a given

p l a t e t he change i s more pronounced f o r higher values of K This shows 1

t h a t t he deviat ion might become large i f kl i s su f f i c i en t l y large . The

smallness of the contr ibut ion of K might be due t o the f a c t t h a t the 1

p l a t e is subjected t o only transverse loads. It is t o be expected t h a t

k might make a subs tan t ia l contribution i f the p l a t e i s subjected t o 1

l a t e r a l loads a s well.

The var ia t ions of the s t r e s s e s and transverse displacements a r e

similar t o those discussed i n sect ion 4.1.1 and since the values a re

almost a l i ke , they a r e not presented here a s the re levant t ab l e s and

f igures i n t h a t sect ion su f f i c i en t l y describe the var ia t ions of the

s t r e s s e s and displacements i n p l a t e s res t ing on the new foundation

model.

CHAPTER FIVE

CONCLUSIONS

I t h a s been shown t h a t t h e method o f i n i t i a l f u n c t i o n s (MIF) can

be used i n t h e a n a l y s i s o f p l a t e s r e s t i n g on one- and two-parameter e l a s t i c

f ounda t i ons , Numerical :;elutions of t h e Navier t ype have been p r e s e n t e d

f o r a l l r o u n d simply suppor ted p l a t e s and it h a s a l s o been shown t h a t a Levy

t ype s o l u t i o n is p o s s i b l e u s ing t h e MIF.

The numerical s o l u t i o n s o f p l a t e s r e s t i n g on t h e Winkler and Vlasov

founda t i ons r e v e a l t h a t f o r a g iven p l a t e r e s t i n g on a founda t ion o f given

p a r a m e t e r ( s ) , t h e t r a n s v e r s e d e f l e c t i o n , bending and s h e a r s t r e s s e s g e n e r a l l y

i n c r e a s e as t h e p l a t e g e t s t h i n n e r . The e f f e c t o f l a r g e r founda t ion modul i i

is t o reduce t h e d e f l e c t i o n and s t r e s s e s i n a g iven p l a t e , t h e e f f e c t be ing

more prominent i n t h i n p l a t e s . I t h a s been f u r t h e r demonstra ted t h a t t h e

d i f f e r e n c e s i n s t r e s s e s and d i sp lacements o b t a i n e d i n t h i c k p l a t e s on t h e

Winkler and Vlasov founda t i ons a r e small. However, f o r t h i n p l a t e s t h e s e

d i f f e r e n c e s a r e l a r g e and i f t h e Vlasov founda t i on , be ing d e r i v e d from a con-

tinuum p o i n t o f view, is regarded as be ing more c l o s e t o r e a l i t y t hen it can

be concluded t h a t t h e Winkler model ove r e s t i m a t e s t h e s t r e s s e s and d i s p l a c e -

ments i n t h i n p l a t e s .

A comparison of . t h e r e s u l t s o b t a i n e d by t h e MIF and t h e c l a s s i c a l

t h i n p l a t e t heo ry shows t h a t t h e c l a s s i c a l theory unde re s t ima t e s t h e stresses

and d i s ~ l a c e m e n t s i n t h j ck p l - ~ t e s r e s t i ~ l y on e l a s t i c f ounda t i ons . I t , however,

becomes more a c c u r a t e a s thc p l a t e bccolncs t h i n n e r . For example, t h e e r r o r

i n t r a n s v e r s e d e f l e c t i o n u s ing t h e c l a s s i c a l t heo ry f o r a p l a t e wi th l e n g t h

t o t h i c k n e s s r a t i o o f 2 . 5 i s about 4 4 % whi lc t h a t f o r a l c n g t h t o t h i c k n e s s

r a t i o of 40 i s j u s t 0.2%. Thus t h e use o f t h e c l a s s i c a l t heo ry f o r t h i c k

p l a t e s is n o t recommendcd. However, it i s i n t e r e s t i n g t o no t e t h a t t h e

MIF and Reissner theory s o l u t i o n s are c l o s e f o r a l l l eng th t o t h i c k n e s s

r a t i o s . The maximum d i f f e r c n c e s i n t r a n s v e r s e d e f l e c t i o n ob t a ined by t h e

two methods i s about 4.0%.

I t is seen t h a t MIF can be convenien t ly used t o ana lyse a p l a t e r e s t i n g

on a foundat ion which is desc r ibed i n t e r m s o f t r a n s v e r s e and l a t e r a l d i s -

placement so The i n t r o d u c t i o n o f l a t e r a l d e f l e c t i o n s i n t o t h e foundat ion

r e a c t i o n of t h e Winkler model does n o t in t roduce s u b s t a n t i a l changes i n t h e

s t r e s s e s and d isp lacements f o r t h e a r b i t r a r i l y chosen va lues of t h e second

parameter. Th i s i s probably due t o f a c t t h a t t h e p l a t e i s sub jec t ed t o

t r a n s v e r s e l oads on ly . I t i s l i k e l y t h a t s u b s t a n t i a l mod i f i ca t i ons i n s t r e s s e s

and d isp lacements w i l l be introduced i f t h e p l a t e is sub jec t ed t o l a t e r a l f o r c e s

a s wel l . However, an experimental i n v e s t i g a t i o n of t h e second parameter ought

t o be done t o confirm t h e exac t na tu re of t h e new foundat ion.

The MIF has t h e advantages t h a t t h e governing equa t ions a r e convenien t ly

expressed i n terms of a d i f f e r e n t i a l o p e r a t o r and t h a t approximate t h e o r i e s

o f any d e s i r e d o r d e r can be c r e a t e d by proper t r u n c a t i o n of t h e s e r i e s . How-

eve r , it reqwces enormous computcr t i m e t o produce good r e s u l t s and can only

be app l i ed t o problems wi th c e r t a i n boundary cond i t i ons .

APPENDIX A

DETERMINATION OF CITARACTERISTIC ROOTS OF MATRICES [C] AND [R] , AND APPLICATION OF SYLVESTER'S AND CAYLEY-HNULTON'S THEOREMS

I n o r d e r to e v a l u a t e t h e c h a r a c t e r i s t i c r o o t s o f t h e ma t r i c e s

[C] and [R] , t h e fo l lowing equa t i on i s used:

Expanding we have

On f u r t h e r expansion and s i n ! p l i f i c a t i o n t h i s r educes t o b

5' + 3y2c2 + -jy4~, + Y6 = 0

. . The c h a r a c t e r i s t i c r o o t s o f t h e m a t r i c e s [ C ] and [I?]

a r e

where Y2 = ct2 -c f3'

S y l v e s t e r ' s Theorem;

A s g iven by F raze r e t a 1 (1960) , S y l v e s t e r ' s theorem s t a t e s t h a t

i f n l a t e n t r o o t s o f a ma t r i x M are a l l d i s t r i n c t and P(M) i s any

polynomial o f M t hen

Thus f o r a t h i r d o r d e r ma t r i x P ( h ' d can be expressed as

.where el, t2 , c3 <ire the d i s t i n c t c h a r a c t e r i s t i c r o o t s o f M.

b.

In the case when a l l the character is t ic roots are equal

the confluent form of Sylvester's theorem is used:

In part icular , for a matrix of order m ,

where there are two equal la tent roots and

the expression becomes

one d is t inc t root,

. . . (6)

where 5 is the repeated root and 5 is the d is t inc t root, j i

~ ( 5 , ) .L

F(Ei) = .j. (5.1-M) and Q = 3 1 3 0

Cayley-Hamilton's Theorem:

The theorem s ta t e s tha t any square matrix M s a t i s f i e s i t s

character is t ic equation given by

f o r an nxn m a t r i x . b'or a t h i r d order m a t r i x . ,

we p u t n = 3 and o b t a i n

(S,I-M)' = 0

s u b s t i t u t i n g equa t i on (8) i n equa t i on ( 4 ) g i v e s

P ( M I = P (En) M1 -P ( C n ) M 2 + p ( 2 ) ( 6 n ) ~ 3 . . . (9b)

Also s u b s t i t u t i n g equa t i on ( 4 ) i n equa t i on ( 5 ) w e o b t a i n

p u t t i n g m = 2 we have

M' = CAI-2 ( ~ , I - M ) + (5 I-MI 2 n

From e q u a t i o n s (9b) and (11)

M = I 1

and M = ( C n 1 - m 2

3

Applying t h e s e t o C and R m a t r i c e s w e have

A ~ p l y i n g equation (10) t o the mztrices C and R , t h e following

expressions a r e obtained:

S u b s t i t u t i n g f o r C and R in equations (3.15) and c o l l e c t i n g like

terms t h e following s e t of equations a r e obtained:

P u t t i n g 6 = -y2 and s impl i fy ing , equat ions (15) reduce t o .

1 S i n z

Y Y ['o] ... (16)

9 2 APPENDIX B

DERIVATION OF EXPRESSIONS FOR STRESSES AND DISPLACEMENTS I N

TERMS OF THE FUNCTIONS (I AND F

From equat ions (3.46) each o f t h e q u a n t i t i e s is made up of two

p a r t s . For example t h e displacement U can be w r i t t e n a s

where

S u b s t i t u t i n g f o r t h e ope ra to r s , L u u p L u v ~ - - - from Table 3.1 and t h e

i n i t i a l func t ions U o, Vo, ... from equat ions (3.27) and (3.37) we have

1 6 S inyh - (-- . aBz ) . -[(I-2p)- - h Cosyh](I 2 ( 1 p) - Sinyz 2

Y Y

a z - - Sinyz. y [Sinyh+ hCosyh1 (I 4 ( 1-p)

a z + ay2zh Sinyzcosyh - - a zh 4 (1-p)

S iny zS inyh - -Y-- S iny ZCO syh] (I (1-ply 4 (1-p)

Simi la r ly ,

1 + [-Sinyz - a' ( ~ i n y z - yzCosyz) 1 ( -ayh Sinyh) F Y 4 ( 1-p) y" 1 -P

which on s i m p l i f i c a t i o n becomes

- t U2 - - a [(l-2p)SinyzCosyh+yzCosyzCosyh+ yhSinyzSinyh1F 2 (1-p)

Theref o r e

u = -.- a [ ( 1-2p) CosyzSinyh-yhCosyz Cosyh - yzSinyz$inyh] @ 2~

The same procedure i s app l i ed t o de r ive t h e express ions f o r t h e o t h e r

q u a n t i t i e s .

In o rde r t o de r ive express ions f o r t h e s t r e s s e s and displacements

a t any p o i n t , we s h a l l f i r s t c a r r y o u t ope ra t ions such a s

~ i n ' y h . Sin am x Sin fin y

b

Expanding t h e ope ra to r w e have

x Sin a xSin fi y rn n

9 4

Carrying o u t t h e o p e r a t i o n s t e r m by t e r m w e ob t a in .

y4h4 zY6hf i ,e s in2yh . s ina x s i n B y =[y'h2 - -- + -- - . . , lS ina xsinBny1

m n 3 4 5 m

1 2 Sin' yh.Sina xsinB y=- [€i2 h' + -6'h4+ - €j6h6+. . .] Sinamxsing y m n 3 4 5 11

= - s i n h 2 6h S i n a xSinB y ... (6) m n

where 6' = a: + f3:

Proceeding a s above, t h e fo l lowing a@ obta ined:

y' ,Sins xSinB y = -B2Sina xSinB y m n m n

y S i n yhCo syh . s i n a xS i n y = -6~inhBhcoshBh . sinamxSinBny m n

Cas2yh.Sina.xSinf3 y = cosh2 6 h ~ i n a xSinB y m n m n

~ o s y h . S i n a x SinB y = cosh6h S i u mxSinBny m n

aos inamxSin8 y - - cos a x Sin 8 y n m IL

-B., S ina x SinBny = 8 sinamxCosB y m n n

... (7 )

, S u b s t i t u t i n g f o r q and t h e func t ion @ and from equat ions (3.42) i n

(3 .30 ) and us ing equat ions ( 7 ) , w e have

C C ['-A2 h-&~inh6hCosh&h-X':inh~ 6h] .$,~ina x ~ i r l e ~ y = - : C C q S ina xSinB y m n m mnmn m n

Simi la r ly , s u b s t i t u t i n g f o r q and t h e funct ion F from equat ions

(3.42) i n t o equat ion (3.40) and using equat ions ( 7 ) , t h e co-

e f f i c i e n t s f a r e o b t a i n e d a s mn

Hence t h e func t ions 0 and F a r e given by

S u b s t i t u t i n g f o r t h e func t ions 4 and P i n equat ion (5 ) and us ing

equqt ions (7) , t h e displacement U a t any po in t (x ,y , z ) is given by

Expressions f o r o t h e r q u a n t i t i e s a r e s i m i l a r l y obtained.

APPENDIX C

COMPUTER PROGRAMMES

1840DEFPROC5TKESX(Ml,Nl) 1850REM..PROCEDURE TO EVRLUATE STRESS 186UHEM.. I N X-DIRECTION l 8 7 O X 1 a0 1BBOFOR t l = l T O M l STEP 2 1 t391:lFOR N= 1 TUN I STEP :.: IYoOPROCHYP'(M, N) 1911:)V5=(D2\2) + ( S 2 + F 2 ) + 2 t L ~ n * ( S 1 " 2 ) + 2 + (D~>,2)& ( L 2 + S l * C l - L 3 + . F l ) 1920V6= (D"%2) + (S2-FZ) +2*L+D+(C1.'2) +2+ (D, -Z) * (L2+Sl *Cl+~..Z*t:l )

1 9 3 0 x 2 ~ ( ( 6 - 2 ) * (CS* ( B i - F i + C i ) + F 3 + 5 3 + S l ) +2*U.~t (HI-?) t C 3 - S l I .iV:i 194i1X3= ( (A'5?) * (SS* ( ( : l -FI+Sl) +F3+C3*Cl ) + 2 9 W (H"':!) xS:?+Cl ) /L'b 1950Xl=Xl+l6*(X3-X2)U((-l)A(((M+N)/2)-l))~(M*N+(W2)) 196ONEXT N 1970NEXT tl 19BClENDF'HOC 1990: ~OCIODEFPROCST'RESXZ (M1. N 1 ) 2OIOREM..PKOCEDURE TO EVALUATE SHEAR S 'TRES 20ZOP=O 2030FOH M=lTOHi STEP 2 2040FOH N=1TON1 STEP 2 ZOSOPRUCHYP (M. N) 2060V7=D+ (S2+F2) +2+L* ( S i " " 2 ) +2*.D+ ( L 2 + S 1 +C 1 -LZ+F l ) 2070VB=D+(S2-F2)+Z+L*(C1"2)+?+U+(L2+Sl+Cl+L3+FI) 2 0 8 0 P l =A* (F3+C3*SI -F l + S Z + C l ) /V7 2090PZ=A+(F3+S9*C1-F1*(33*91)/VB 21OOP=P+(16*(PI-P3)+COS(A+Al)*SIN(B*(Rl/C.) ) ) / (M+N+(B" .Z) 2110NEXT N 212ONEXT M 2 130ENDF'KOC 2 1 4 0 : 2 IX~DEFPRC)CSTRES'/ ( H I , N 1 ) . . 2 16(:!REM. .PROCEDURE TO EVAL..IJATE STKESS Y 217CIY 1=0 ~IU~:IFOR M-ITOMI STEF; :1 2 1 C)l:,F('JF( N.-- 1 'ruf.J 1 C;T[:p 2

2XWF'ROl~HYP (P I , IN) ?311:1E:I . ( I ) . . ; ) * (:.;;> IF;') +;I. I_.. I) + ( I , ; 1.. 2 4.; k (TI.., 2> P , ,: e 5 1 (: 1 .-L.:.+f 1 ) ..,-., iLL~.~t.~,=(D.-.~) - --- . ( ~ z L p 2 ) + 2 + L . r . [ ) . i C 1 ' 3 ) + ~ . * ( D " ' : ' I r : 2*r ! ; l~( : j + I - < t F l )

2 2 3 Y 2 - ( (8.'-~)r.(~;*(Sl--..F1rC1)+fl:rS:5+61)+y'.(I~ ;i.: ')+C':uSl)/[:z ?24c:IY?.-:( (r'l.'':!) * ( ! ~ . " ; # . ( ~ ~ t , . . l : ~ ~ ~ ~ ~ ~ ) + ~ . ~ ~ ~ l . ; . ' ~ , N ~ I ) t i ' ~ l m . ~ t l :') h c ; ~ ~ , h l ' ; l )/I:: , ., ,.., ,~. .: ..... , l l Y l ~ - . ' f l I ! O * ( Y - , . Y z : ) H ( ( I j ' ( ( ( k I l N ) / 2 ) ~ - 1 ) ~ . ! * I J k t t J >!))

::'h(:rlVt:Y T w 227r:)NCXT M 2'2130L IV1)I~'I:iflC

REFERENCES

Anderheggen, E. (1969) , " F i n i t e Element P l a t e Bending E q u i l i b r i u m Analys i s" , J o u r n a l o f Engineer ing Mechanics D i v i s i o n , ASCE, Vol 95, No EM4, Proc Paper 6715, p p 841-857

Bache, ToCo, and Hegemier, G.A., (19741, "On Higher-Order E l a s t o - dynamic P l a t e ~ h e o r i e s " , J o u r n a l o f Appl ied ~ e c h a n i c s , Vo1.41, Trans . ASME, pp 423-428

Bahar, LoY. (19721, "Trans fe r Mat r ix hpproach t o l a y e r e d systems", J o u r n a l o f t h e Engineer ing Mechanics D i v i s i o n , (ASCE), Vo1.98, No. EMS, pp 1159-1172

Bahar, L,Y, (1975) , "A S t a t e Space Approach t o ~ l a s t i c i t y ," J o u r n a l o f t h e F r a n k l i n I n s t i t u t e , Vol. 299. No.1; pp 33-41

I1 Bahar, L.Y. (19771, Discuss ion on "A Mixed Method i n E l a s t i c i t y ,

J o u r n a l o f Appl ied Mechanics, Vol. 44, p p 790-791

Bares, R. (1969) , T a b l e s f o r t h e A n a l y s i s o f P l a t e s S l a b s and Dia- phragms Based on t h e Elast ic Theory, German and E n g l i s h E d i t i o n , Bauver lag, B e r l i n

B e a u f a i t , F.W. (1977) , "Numerical A n a l y s i s o f Beams on Elast ic Founda t ions , " J o u r n a l o f t h e Engineer ing Mechanics D i v i s i o n , ASCE, Val, 103, No. EM 1 , pp. 205-209,

Brown, C.B., Lauren t , J . M . and ~ i l t o n , ~ ~ ( 1 9 7 7 ) , "Beam-Plate System on Winkler ~ o u n d a t i o n " , J o u r n a l o f t h e Engineer ing Mechanics D i v i s i o n , ASCE, Vol 103, No. EM 4 , p p 589-600

C a r l e y , T.G. and Langhear, H.L. (19681, "Transverse s h e a r i n g stress i n Rec tangula r P l a t e s " , J o u r n a l o f t h e Engineer ing Mechanics D i v i s i o n , Vol. 94, No. EM 1, pp. 137-151,

. - D a s , Y.C. and S e t l u r , A,V. (1970) , "Method o f I n i t i a l F u n c t i o n s i n . Two Dimensional Elasto-dynamic Problems", ~ o u r n a l o f Appl ied Mechanics, Vol 37; No 1 , Trans . ASME, Vol 92 s e r i e s E , pp137-140

Deshmukh, R.S. and Archer , R ,R , (1974) , "Numerical S o l u t i o n o f e Moderately Thick P l a t e s " , J o u r n a l o f t h e ~ n g i n c e r i n g Mechanics

D i v i s i o n , ASCE, Vol 100, No. EMS, pp 903-917

Donnel, L.H. ( 1 9 5 4 ) , "A t h e o r y f o r t h i c k p l a t e s " , Proc. 2nd U.S, Na t iona l Congress on Appl ied Mechanicssp 369

F l e t c h e r , D.Q a n d Herrmann, L.R. (1971) , " E l a s t i c Founda t ion Repre- s e n t a t i o n o f Continuum", Proc . ASCE, V o l 97 , EM 1 , p p 95-107

F r a z e r , R.A. Duncan, W , J . , and Collar , A.R. (1960) Elementary Matrices and some a p p l i c a t i o n s t o dynamic and d i f f e r e n t i a l e q u a t i o n s ,

,Cambridge U n i v e r s i t y P r e s s , p p 70-87

F r e d e r i c k , D. ( 1 9 5 7 ) , "Thick R e c t a n g u l a r P l a t e s on E l a s t i c Founda t ion" , T r a n s a c t i o n ASCE, Vol, 122, Paper No 2898, pp 1069-1087

F r i e d r i c h s , K.O., and Dressler, R.F, (19611, "A Boundary Layer t h e o r y f o f o r E las t ic P l a t e s " , Cornm. o f Pure and Appl i ed Maths, Vol. 14, p. 1

G a z e t a s , G ( 1 9 8 2 ) , " p r o g r e s s i v e C o l l a p s e o f R i g i d P l a s t i c C i r c u l a r P l a t e s , J o u r n a l o f t h e E n g i n e e r i n g Mechanics D i v i s i o n , ASCE, Vol. 108, No EM2, p p 228-241

Green, A.E. ( 1 9 4 9 ) , "On R e i s s n e r ' s Theory o f Bending o f E l a s t i c P l a t e s " , E u a r t e r l y J o u r n a l o f App l i ed Mathemat ics , Vo1.7, pp223-228 . ,

Goldenweizer , A.L. (1968) " D e r i v a t i o n o f a n Approximate Theory o f Bending o f a P l a t e by t h e Method o f Asymptot ic I n t e g r a t i o n o f t h e E q u a t i o n s o f t h e Theory o f E l a s t i c i t y " , Appl. Math. Mech. E n g l i s h T r a n s l a t i o n o f P r i k l . M a t . Mech. 26, p.1000

Herrmann, L.R. (1967) , " F i n i t e Element Bending A n a l y s i s f o r P l a t e s " , J o u r n a l o f t h e E n g i n e e r i n g Mechanics D i v i s i o n , ASCE, V o l . 93 , No EM5, P roc , Paper 5497, p p 13-26

He teny i , M ( 1 9 4 6 ) , Beams on Elast ic F o u n d a t i o n s , U n i v e r s i t y o f Michigan P r e s s , Ann Arbor

H e t e n y i , M. (19711, " S e r i e s S o l u t i o n s F o r Beams On E l a s t i c Founda t ions" J o u r n a l o f App l i ed ~ e c h a n i c s , p p 507-5 14

I y e n g a r , K.T.S.R. and Raman, P,V. ( 1 9 8 0 ) , "Steady S t a t e Response o f Thick R e c t a n g u l a r P l a t e s " , J o u r n a l o f E n g i n e e r i n g Mechanics D i v i s i o n ,

- Vol. 106, No.EM4, p p 842-844.

I y e n g a r , K.T.S.R., ChandrasheKhara, K. and S e b a s t i a n , V,K. (1974) "On The A n a l y s i s o f Thick R e c t a n g u l a r P l a t e s " , Ingen ieur -Arch iv 43, pp. S. 317-330

I y e n g a r , K.T,S.R,, ChandrasheKhara, K. and S e b a s t i a n , V.K. (1974) "Thick R e c t a n g u l a r Beams", J o u r n a l o f t h e E n g i n e e r i n g Mechanics D i v i s i o n , Vol, 100, No.EM 6 , pp 1277-1282

J i a - r a n g , I?. ( 13c32) , " l ' l c 1 l P:; o r V,lryin(j 'I'll ic1.rnc.s:; W i ( 11 Four S i n p l y Suppor ted Edgcs", J o u r n a l of t h e Engineering Mechanics D i v i s i o n , ASCE, Vol. 108. NO. EM1, pp 167-173

Jones,R. and Xenophontos, J. (1977) , "The Vlasov Foundation Model", I n t e r n a t i o n a l J o u r n a l o f Mechanical Sc iences , Vo1.19, pp 317-323

Kamal, K. and Durvasula, S. (1983) , "Bending o f C i r c u l a r P l a t e on E l a s t i c Foundation", Jou rna l o f t h e Engineering Mechanics Div is ion ASCE, Vb1.109, No.5, pp 1293-1298

Kerr , A.D. (1964) , " E l a s t i c and Viscoelastic Foundation Models," J o u r n a l o f Applied Mechanics, V o l . 31, No.3, pp 491-498

Kra jc inovic , D. (1976) , "Rig id-Plas t ic C i r c u l a r P l a t e s On E l a s t i c Foundation", J o u r n a l of t h e Engineering Mechanics Div is ion , ASCE, Vo1.102, N o EM 2 , pp 213-224

Lancas te r , P.R. and K i t c h e l l , D. (1980) , Advanced s o l i d Mechanics, Theory, Worked Examples and Problems, Macmillan P r e s s Limited, Hong Kong

Lee, C.W, (1967) "Three Dimensional So lu t ion f o r Simply Supported Thick Rectangular P l a t e s " , Nuclear Engineering Design, Vo1.6, p: ,155

Lives ley , R.K., (1953) , "Some Notes On The Mathematical Theory o f A Loaded E l a s t i c P l a t e Res t ing On An E l a s t i c Foundation 'I, Qua r t e r ly J o u r n a l o f Mechanics and Applied Mathematics, V o l . 5, N o . 1 , pp32-44

Lur ' e , A . I . (1964) "Three Dimensional Problems i n t h e Theory of E l a s t i c i t y " , New York, London, Sydney, Toronto

McFarland, D.E., Smith, B.L. and Bernhar t , W.D. (1972) Analys i s of P l a t e s , Spar tan Books, New York

Norr ie , C.H., w i lbu r , J .B . and Utku, S. (19761, Elementary S t r u c t u r a l Analys i s , Th i rd Ed i t i on , McGraw-Hill Inc. Kogakusha

Nwoji, C.U. (19851, "Analysis o f Ribbed and Grid P l a t e s Using F i n i t e Element Method", M. Engr. Thes i s , Department of C i v i l Engineer ing, Un ive r s i t y o f Niger ia , Nsukka

Ojiako,. E.C.N. (1985) , "Mixed Method I n E l a s t i c i t y I n Analys i s o f Layered Beams," M.Engr. Thes i s , Department o f C i v i l Engineering, . Unive r s i t y o f Niger ia , Nsukka.

P i s t e r , K.S. and W i l l i a m , M.L. (19601, "Bending o f P l a t e s on a V i s c o - e l ? s t i c Foundation", J o u r n a l o f t h e Engineering Mechanics D iv i s ion

ASCE, Vo1.86, No.EM5, Proc. Paper 2619, pp.31-44

Pon ia tovsk i i , V.V. (1962)"Theory o f P l a t e s of Medium Thickness", P r i k l . 1 1

M a t . Mekh. Vo1-26, p335

P r y o r , C . W . , B a r k e r , R . M . a n d F r e d e r i c k , D . ( 1 9 7 0 ) , " ~ i n i t e E l e m e n t B e n d i n g A n a l y s i s o f R e i s s n e r P l a t e s " , J o u r n a l o f t h e E n g i n e e r i n g M e c h a n i c s D i v i s i o n , ASCG, V o l . 9 6 , p p . 9 6 7 - 9 8 3 .

Rao , N.S.VK. a n d Das, Y.C. ( l 9 7 7 ) , "A m i x e d Method i n ~ l a s t i c i t y " , t J o u r n a l o f t h e A p p l i e d M e c h a n i c s D i v i s i o n , ASME:, V o l . h h , p p . 51 -56 .

R a o , N.S .V.K. , D a s , Y . C . a n d A n a n d a k r i s h n a n , ( 1 9 7 1 ) , " V a r i a t i o n a l A p p r o a c h t o Beams o n F : l a s t i c F o u n d a t i o n s " , P r o c . ASCK , V o l . 9 ' 7 , p p . 271 -294 .

R e i s s n e r , R. ( 1 9 4 5 ) , "The E f f e c t o f T r a n s v e r s e S h e a r D e f o r m a t i o n o n t h e R e n d i n g o f E l a s t i c P l a t e s , J o u r n a l o f A p p l i e d M e c h a n i c s , V o 1 . 1 3 , p .A69 .

R e f s s n e r , E . ( 1 9 $ 7 ) , "On B e n d i n g o f E l a s t i c P l a t e s " , Q u a r t e r l y J o u r n a l o f A p p l i e d M a t h e m a t i c s , Vo1 .5 , p p . 55 -68 .

R o a r k , R . J . a n d Young , W . C . ( 1 9 7 5 ) , F o r m u l a s f o r S t r e s s a n d S t r a i n , 5 t h E d i t i o n , McGraw-Hi l l T n t e r n a t i o n a l Book Company.

S c o t t , R .F . ( ; g a l ) , F o u n d a t i o n A n a l y s i s , P r e n t i c e - B a l l , F n g l e w o o d C l i f f s .

S e b a s t i a n , V . K . ( 1 9 8 3 ) , "An E l - a s t i c i t y S o l u t i o n f o r S i m p l y S u p p o r t e d R e c t a n g u l a r P l a t e s " , N i g e r i a n J o u r n a l o f T e c h n o l o g y , V o 1 . 7 , No. L , p p . 1 1 - 2 0 .

S m i t h , L . M . ( 1 9 6 8 ) , "A F i n i t e E l e m e n t A n a l y s i s F o r ' M o d e r a t e l y T h i c k ' R e c t a n g u l a r P l a t e s i n ending" , J o u r n a l o f M e c h a n i c a l S c i e n c e s , V o l . 1 0 , p p . 5 6 3 - 5 7 0 .

. S o n o d a , K . a n d K o b a y a s h i , H . ( 1 9 8 0 ) , " R e c t a n g u l a r P l a t e s On [ ; i n e a r V i s c o e l a s t i c F o u n d a t i o n s " , J o u r n a l o f t h e ~ n g i n e - e r i n g M e c h a n i c s D i v i s i o n , V o 1 . 1 0 6 , P r o c . P a p e r 1 7 3 0 7 , p p . 3 2 3 - 3 3 8 .

Sonoda. , K., K o b a y a s h , H . a n d T s h i o , T. ( 1 9 7 8 ) , " C i r c u l a r P l a t e s '011 L i n e a r V i s c o e l a s t i c F o u n d a t i o n s " , J o u r n a l o f t h e E n g i n e e r i n g M e c h a n i c l j i v i s i o n , ASCF, Vo1 . l o b , P r o c . P a p e r 1 3 9 4 5 , p p . 8 1 9 - 8 2 8 .

S p e a r e , P.R. S . a.nd Kemp, K . O . ( 1 9 7 7 ) , " A S i m p l i f i e d R e i s s n e r T h e o r y F o r P l a t e B e n d i n g " , T n t e r n a t i o n a l J o u r n a l o f Solid S t r u c t u r e s , Pergarrion P r e s s , G r e a t B r i t a i n , p p . 1073-1079 .

S r i n i v a s , S . , Rao, A . K . , a n d J o z a Rao, C . V . ( 1 9 6 9 ) , " F l e x u r e o f S i m p l y S u p p o r t e d T h i c k Homogeneous a n d L a m i n a t e d R e c t a n g u l a r P l a t e s , Z. Angew. Math . Mech. ~ 0 1 . 4 9 , p p . 1149.

S v e c , J . O . ( 1 9 7 6 ) , " T h i c k P l a t e s on E l a s t i c F o u n d a t i o n s By F i n i t e E l e m e n t s " , J o u r n a l o f t h e ~ n g i n e e r i n g M e c h a n i c s D i v i s i o n , V o l . 1 0 2 , No. E m 3 , p p . 461-1177.

T i m o s h e n k o , S . P . and W o i n o w s k y - K r i e g e r , S . ( 1 9 5 9 ) , T h e o r y o f P l a t e s a n d S h e l l s , 2 n d E d i t i o n , McGraw-Ri l l Book Company, New Y o r k .

V e s i c , A.S. ( 1 9 6 1 ) , " R e n d i n g o f Beams R e s t i n g o n I s o t r o p i c E l a s t i c S o l i d " , P r o c . ASCR, V o l . 8 7 , EM, p p . 35 -51 .

V l a s o v , V . Z . ( 1 9 5 7 ) , "Method o f T n i t i a l F u n c t i o n s i n P r o b l e m s o f T h i c k P l a t e s a n d S h e l l s " , E ' roceedings 9 t h r n t e r - n a t i o n a l C o n g r e s s on A p p l i e d M e c h a n i c s , B r u s s e l s , p . 321 .

V o y i a d , j i s , G . % . , a n d B a l u c h , M . 11. ( 1 0 7 9 ) , " T h i c k P l a t e s on E l a s t i.c F o u n d a t i oris : One-Var j a b l e ~ o r r n u l a t i o n " , J o u r n a l o f t h e E n g i n e e r i n g M e c h a n i c s D i v i s i o n , V o l . 1 0 5 , p p . 1 0 4 1 - 1 0 4 5 .

Vykuti.] . , J . ( 1 9 8 2 ) , "13eams, F rames a n d S h e l l s on E l a s t i c F o u n d a t i o n s " , J o u r n a l o f t h e 'dogi n e e r i n g M e c h a n i c s D i v i s i o n , ASCR, VoL.108, No. EM 1, p p . 2 0 2 - 2 0 5 .

Wang , C.T. ( 1 9 5 3 ) , A p p l i e d E l a s t i c i t y , McGraw-Hil l Rook Company, New Y o r k .

W i l l i a m s , D.G., a n d A a l a m i , B . ( 1 9 7 9 ) , T h i n P J a t e D e s i g n F o r I n - P l a n e L o a d i n g , G r a n a d a P u b 1 i s b i n g T, irni ted, London.

Z h a o h u a , F. a n d Cook, R . D . ( l 9 8 3 ) , "Beam E l e m e n t s o n Two- @ P a r a m e t e r E l a s t i c F o u n d a t i o n s " , J o u r n a l o f t h e

E n g i n e e r i n g M e c h a n i c s D i v i s i o n s , ASCR, V o l . 1 9 , No. 6, p p . 1390-11402.