universiti putra malaysia design and development...

25
UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT OF A SEGMENTED RUBBER- TRACKED VEHICLE FOR SEPANG PEAT TERRAIN IN MALAYSIA MD. ATAUR RAHMAN. FK 2005 17

Upload: ledat

Post on 30-Jun-2019

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

UNIVERSITI PUTRA MALAYSIA

DESIGN AND DEVELOPMENT OF A SEGMENTED RUBBER-TRACKED VEHICLE FOR SEPANG PEAT TERRAIN IN MALAYSIA

MD. ATAUR RAHMAN.

FK 2005 17

Page 2: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

DESIGN AND DEVELOPMENT OF A SEGMENTED RUBBER- TRACKED VEHICLE FOR SEPANG PEAT TERRAIN IN

MALAYSIA

MD. ATAUR RAHMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2005

Page 3: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

Parents : Aa;lhuarliarn laher Zlriain andAa;lhyarhamah Khodaja Begum B r o t h Aa;lhyarharn !&ohul Islbrn

Page 4: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

Abstract of thesis presented to the Senat of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

DESIGN AND DEVELOPMENT OF A SEGMENTED RUBBER-TRACKED VEHICLE FOR SEPANG PEAT TERRAIN IN MALAYSIA

MD.ATAUR RAHMAN

October 2005

Chairman: Associate Professor Azmi Yahya, PhD

Faculty : Engineering

The study describes the design and development of a segmented rubber tracked vehicle

for operating on unprepared peat terrain. The vehicle was to traverse accurately and

reliably on the 1 8 . 7 9 k ~ l m ~ low bearing capacity peat terrain. The study observed four

main contributions towards determining the mechanical properties of peat terrain,

developing simulation models for optimizing the design parameters of the vehicle,

designing and developing the vehicle to be able to traverse accurately on low bearing

capacity peat terrain, and designing an innovative instrumentation system on the vehicle

for collecting relevant data to measure vehicle tractive performance.

An analytical framework for determining the mechanical properties of peat soil in view

of predicting the tractive performance of tracked vehicle was presented. It took into

account the load-sinkage and shearing characteristics of peat. An experimental study on

the mechanical properties of peat was conducted in Sepang, Selangor, Malaysia. The

Page 5: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

stiffness values of surface mat and underlying weak peat deposit from load-sinkage test

were determined by specially made bearing capacity apparatus. The mean values of

surface mat stiffness before and after drainage were found to be 31kN/m3 and 4 6 k ~ l r - n ~ ~

respectively. The mean value of underlying peat stiffness before and after drainage were

found to be 252kN/m3 and 380kN/m3, respectively. The mean value of internal frictional

angle, cohesiveness and shear deformation modulus of the peat soil sample were

determined using a direct shear box apparatus in the laboratory. The mean value of

internal frictional angle, cohesiveness and shear deformation modulus of the peat soil

before and after drainage were found to be 22.80" and 24.3 lo, 2.63kN/m2 and 2.89kN/m2,

and 1.2 1 cm and 1.37cm7 respectively.

A new simulation technique for studying the basic design parameters of the vehicle with

rigid link tracks system on Sepang peat terrain in Malaysia was also presented. The

proper track width, ground contact length, pitch and grouser height, idler diameter and

location, sprocket diameter and location, road-wheel diameter and geometrical

arrangement, the ratio of the road-wheel spacing to track pitch, location of the center of-

gravity (CG) of the vehicle are important to select to ensure good tractive performance of

the vehicle on unprepared peat terrain. Simulation technique was then used to optimize

the design parameters of the vehicle by establishing mathematical models for the track-

terrain interaction mechanism. In the simulation study, the 25.5kN vehicle including

payloads of 5.89kN was considered to traverse on the peat terrain at lOkm/h.

The simulation study for the vehicle of straight running motion showed that the nominal

ground pressure of the vehicle was 23.3% lower than the bearing capacity of the peat

Page 6: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

terrain. From simulated tractive performance results, vehicle average motion resistance

coefficient of 6.8 to 7.9%, drawbar pull coefficient of 25.22 to 47%, and tractive

efficiency of 74 to 77%, were found for the slippage of 5 to 20%. For the simulation

study on the vehicle of turning motion, the result showed that the vehicle ground contact

pressure exit from outer track was 14.61% and from the inner track was 6.67% lower

than the bearing capacity of the Sepang peat terrain, the sinkage of the vehicle outer track

10.5% lower and inner track 22.5% lower, torque of the outer track sprocket 7.85%

higher than the turning moment resistance of the vehicle, and lateral resistance 7.4%

higher than the centrifugal force of the vehicle which was ensured the vehicle to maintain

the steady state turn on the Sepang peat terrain at a turning speed of 1 Okm/h.

The vehicle field tests were conducted on three different types of peat terrains: Terrain

Type I, Terrain Type 11, and Terrain Type I11 with two loading conditions at travel speeds

of 6km.h and 10km.h. The results showed that the tractive effort of the vehicle was

increased 13.7 1 % for Terrain Type 1, 1 1 .O9% for Terrain Type 11, and 13.53% for

Terrain Type I11 when the traveling speed was increased from 6kmh to 10krnIh. From

the variation of the vehicle tractive operating environment, it was found that the tractive

effort of the vehicle at traveling speed of 6kmih increased 8.08%, 5.12%, and 14.14% for

changing the vehicle operating environment from Terrain Type I to Terrain Type 11,

Terrain Type I1 to Terrain T w e 111, and Terrain Type I to Terrain Type 111, respectively.

Similarly, the tractive effort for the vehicle at a traveling speed of lOkm/h increased

6.32%, 7.42%, and 14.22% for changing the vehicle operating environment fiom Terrain

Type I to Terrain Type 11, Terrain Type I1 to Terrain Type 111, and Terrain Type I to

Terrain Type 111, respectively. Furthermore, the tractive effort of the vehicle at a traveling

Page 7: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

speed of 6kmh increased 2.28% for Terrain Type I, 5.124% for Terrain Type 11, and

6.46% for Terrain Type 111 when the vehicle changing operating loading condition from

without payload to with full payload. Similarly, the tractive effort of the vehicle at a

traveling speed of 1 Okm/h increased 1.76% for Terrain Type I, 2.61% for Terrain Type 11,

and 6.69% for Terrain Type I11 when the vehicle changing operating loading condition

from without payload to with full payload.

Page 8: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

Abstrak tesis yang dikemukakan Kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluaan untuk ijazah Doktor Falsafah

MEREKA BENTUK DAN MEMBINA SEBUAH KENDERAAN TAPAK BERSEGMEN GETAH UNTUK PERMUKAAN TANAH GAMBUT

SEPANG Dl MALAYSIA

Pengerusi

Fakulti

Oleh

MD. ATAUR RAHMAN

October 2005

: Profesor Madya Azmi Yahya, PhD

: Kejuruteraan

Kajian ini menjelaskan pengujian dan mereka bentuk pembangunan bagi sebuah

kenderaan tapak bersegmen getah untuk beroperasi di atas rupa bumi tanah gambut yang

tak tersedia. Kenderaan ini seharusnya melakukan pejalanan secara mandatar secara tepat

dan berupaya bengerak dengan 18.79 k~lrn ' . Kapasiti galas rendah untuk rupa bumi

tanah gambut iaitu 18.79 k ~ i m ' . Objektif tersebut adalah sukar dan memerlukan

ketepatan sifat reka bentuk dan binaan pengeseran mantap untuk mengabut kenderaan ini

di kedua dua pengerakan samada lurus atau membelok. Kajian ini melaksanakan empat

sumbangan utarna kearah pencapaian objektif tersebut dan menentukan sifat sifat

mekanikal rupa bumi tanah garnbut, membangunkan model simulasi untuk

mengoptimalkan parameter reka bentuk kenderaan, mereka bentuk dan membangun

kenderaan, mereka bentuk dan membangun kenderaan yang lebih tepat bagi mengawal

kenderaan tersebut ketika melakukan perjalanan mendatar di rupa bumi tanah gambut

vii

Page 9: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

yang terselia dan mereka bentuk pembinaan data sistem instrumentasi kenderaan untuk

mendapatkan data yang berkenaan bagi mengukur keupayaan bekas tapak kenderaan.

Analisis rangka kejuteraan dilaksanakan untuk menentukan sifat-sifat tanah gambut dan

ciri tanah gambut mericih. Kajian penyelidikan terhadap sifat sifat mekanikal tanah

gambut dilakukan di kawasan Sepang, Selangor, Malaysia. Nilai kekakuan untuk

permukaan balas dan lapisan kemah tanah gambut diperolehi dari ujian beban-bebanan

dari ianya ditentukan mengunakan alat kapasiti galas yang telah direka bentuk.

Nilai min untuk lapisan tanah garnbut kaku sebelum dan selepas pengairan yang

diperolehi adalah 252 kN/m3 dan 380 kN/m3. Nilai min untuk suatu rintangan dalaman

kelekatan dan modulus kerosakan ricih bagi sampel tanah gambut telah ditentukan

dengan menggunakan alat direct shear box. Nilai min untuk suatu rintangan dalaman

kelekatan dan modulus kerosakan ricih untuk tanah gambut bagi sebelum dan selepas

pengairan adalah 22.80' dan 24.31°, 2.63 kN/m2 dan 2.89 kN/m2 , dan 1.21 cm dan 1.37

cm, masing-masing.

Sebuah teknik simulasi telah dihasilkan parameter reka bentuk asas bagi kenderaan

tersebut melalui sistem rantaian keras bekas tap& di kawasan tanah garnbut di Sepang.

Lebar bekas tap& yang bersesuaian panjang, sukatan tanah pit dan tinggi gronser

diameter idler dan posisinya diameter sprocket dan posisinya diameter roda-jalan dan

penyasunan geometri. Teknik simulasi tersebut kemudiannya digunakan untuk

mengoptimumkan reka bentuk parameter kenderaan dengan mungujudkan model

... Vll l

Page 10: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

matematik untuk mekanisma interaksi bekas tapak-permukan bumi melalui simulasi ini.

Kenderaaan dengan dengan berat 25.5 kN yang menanggung beban penuh sejumlah

5.89 kN adalah dipertimbangkan bergerak mendatar di atas rupa bumi pada 10 km/h.

Kajian simulasi untuk kendaraan yang bergerak lurus telah menunjukan bahawa tekanan

kecil bumi adalah 23.3% lebih rendah dari keupayaan galas bumi tanah gambut daripada

simulasi perlakuan bekas tapak. Dari simulasi rintangan pengerakan pada 6.8 hingga 7.9

% pekali tarikan heret pada 25.22% hingga 47% dan kekuatan tukisan pada 74 hingga

77% dan peratusan gelinciran pada 5 hingga 20%. Kajian simulasi untuk pengerakkan

pusingan kenderaan menunjukkan bahawa tekanan sentuhan bumi kendaraaan keluar

berlaku dari bekas tapak luaran 14.61% lebih rendah dari keupayaan galas permukaan

tanah gambut Sepang. Kikisan bekas tapak luaran 10.5% lebih rendah dan bekas tapak

dalaman 22.5% lebin rendah. Nilai kilasan gegancu bekas tapak luaran adalah 7.85%

daripada momen pusingan rintangan kenderaan dan rintangan sisi adalah 7.4% lebih

tinggi daripada gaya sentifugal yang mana menjamin kendraan tersebut untuk sentiasa

dalam keadaan mantap ketika membuat pusingan itu permukaan tanah gambut pada

kelajuan pusingan 10 kmlh.

Ujiankenderaan di dalam ladang telah dilaksanakan pada tiga keadaan permukaan tanah

garnbut. Jenis permukaan I, jenis permukaan I1 dan jenis permukaan 111. Dengan 2

keadaan bebanan dengan kelajuan perjalana 6 kmh dan 10 km/h. Keputusan

menunjukkan bahawa daya tarikan telah meningkat 13.71% untuk jenis permukaan I,

11.04% untuk jenis permukan I1 dan 13.53% untuk jenis permukaan 111 dengan

Page 11: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

peningkatan kelajuan pengerakan dari 6 k m h di pada 1 O M . Daripada perlbagai daya

tarikan untuk permukaan berlainan didapati bahawa daya tukisan pada kelajuan

pergerakan 6kmh meningkat sebanyak 8.05%, 5.12% dan 14.14% bagi pertukaran

persekitaran operasi kenderaan dari jenis permukaan I ke jenis permukan 11, jenis

permukan I1 ke jenis permukan I11 dan dari jenis permukan I ke jenis permukan 111,

begitu juga, daya tukisan untuk kelajuan pergerakkan 1 0 M telah meningkat 6.32%,

7.42% dan 14.21% . Perubahan persekitaran operasi kenderaan dari jenis permukaan I ke

jenis permukan 11, jenis permukan I1 ke jenis permukan I11 dan dari jenis permukan I ke

jenis permukan 111 masing-masing. Tambahan lagi apabila operasi kenderaan bertukar

dari tanpa bebanan ke beban penuh, daya tarikan untuk kelajuan kenderaan 6kmh telah

meningkat 2.28% untuk jenis permukan I, 5.124% untuk jenis permukan I1 dan 6.46%

untuk jenis permukan 111. Begitu juga dengan daya tukisan untuk pergerakan pada

kelajuan 10kmh telah meningkat 1.76% untuk jenis permukaan I, 2.6% untuk jenis

permukaan I1 dan 6.69% untuk jenis permukaan I1 apabila beroperasi dari pada tiada

beban ke bebanan penuh.

Page 12: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

ACKNOWLEDGEMENT

At the outset, I bow to the grace and mercy of the Almighty Allah without whose desire I

could not have materialized my dream to complete this thesis.

I would like to acknowledge my sincere gratitude to my respected supervisor Associate

Prof. Dr. Ir. Azmi Yahya, Dean, Faculty of Engineering, Universiti Putra Malaysia, for

his untiring inspiration, encouragement and invaluable guidance towards the write up of

this thesis. Without his scholastic criticisms, whole-hearted assistance, unfailing interest,

constructive criticism, continuous supervision and valuable suggestions throughout the

period of this research, I could not conclude this thesis.

I would also like to express my deepest gratitude and indebtedness for the kind

cooperation of my co-supervisors Prof. Dato' Dr. Ir. Mohd. Zohadie Bardaie, Vice

Chancellor, Prof. Dr. Ir. Wan Ishak Wan Ismail, Director, Institute of Advanced

Technology, and Prof. Dr. Ir. Desa Ahrnad, Department of Biological and Agricultural

Engineering, Faculty of Engineering, Universiti Putra Malaysia in the successfL1

completion of this study. Their contribution and suggestions helped to overcome many

errors and showed me the right path during the course of this work.

I would also like to express my gratitude to the School of Graduate Studies, Universiti

Putra Malaysia for granting Graduate Research Assistantship through the RM7 IRPA

Page 13: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

project, Ministry of Science Technology and Environment, Malaysia for the financial

support during study in Universiti Putra Malaysia.

There are many other people whom I would like to thank for their help and support

during study in Universiti Putra Malaysia especially Mr. Abdul Aziz, Mr. Rushdi, Mr

P.C Tuang of MAC Engineering SDN. BHD. and Mr. William Wu of UEW SDN. BHD.

for their assistance in the fabrication process of the machine.

Thanks also go to the other members of the research group namely Dr. Mutalib, Darius El

Pebrian, Wee, Skgew, Boon, Hafiz, Rozlan and Yap with whom I shared idea for four

years. They not only helped me to complete this study but also helped me to make my

time in Malaysia more enjoyable.

I owe my greatest debt to my late mother and my father and my brother who taught me

how to live and study. I would like to express my special thanks to my wife Dr. Rafia

Afroz who has given me love and support throughout my time here in Malaysia.

Finally, I would like to show my confidence in the manner that the followers will drive

maximum benefit from this study.

The Author

xii

Page 14: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

I certify that an Examination Committee met on 13' October 2005 to conduct the final

examination of Md. Ataur Rahrnan on his Doctor of Philosophy thesis entitled "Design

and Development of a Segmented Rubber-Tracked Vehicle for Sepang Peat Terrain in

Malaysia" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980

and Universiti Pertanian Malaysia (Higher Degree) Regulation 198 1. The committee

recommends that the candidate be awarded the relevant degree. Members of the

Examination Committee are as follows:

Mohd Saleh Haji Jaafar Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohamed Daud, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Rimfiel Janius, PhD Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Vilas Salokhe, PhD Professor Agricultural System and Engineering Asian Institute of Technology (External Examiner)

AH ABDUL RASHID, PhD

School of Graduate Studies Universiti Putra Malaysia

Date:

Page 15: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as

fulfilment of the requirement for the degree of Doctor of Philosophy. Members of the

Supervisory Committee are as follows:

Azmi Yahya, PhD Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd. Zohadie Bardai, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Wan Ishak Wan Ismail, PhD Professor Institute of Advance Technolgy Universiti Putra Malaysia (Member)

Desa Ahmad, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, PhD Professor1 Dean School of Graduate Studies Universiti Putra Malaysia

Date: f 2 JAN 2006

xiv

Page 16: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or any other institutions.

-

MD. ATAUR RAHMAN

Date: 67. 1 ~ 1 , O r

Page 17: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

TABLE OF CONTENTS

Page

DEDICATION ABSTRACT ABSTRAK ACKNOWLEDGEMENTS APPROVAL DECLARATION LIST OF TABLES LIST OF FIGURES

CHAPTER

1 INTRODUCTION 1.1 Background of the Study 1.2 Statement of Problems 1.3 Objectives of the Study

2 LITERATURE REVIEW 2.1 Vehicle Performance Comparison

2.1.1 Performance Comparison Between Tracked and Wheel Vehicle 2.1.2 Performance Comparison Between Metal and Rubber Tracked

Vehicle 2.2 Parametric Study Method

2.2.1 Effect of Track Ground Contact Length and Track Width 2.2.2 Effect of Track Pitch 2.2.3 Effect of Grouser Size 2.2.4 Effects of Number of Roadwheels 2.2.5 Effects of Ratio of Road-Wheel Spacing to Track Pitch. 2.2.6 Effects Track Initial Tension 2.2.7 Effects of Vehicle Weight 2.2.8 Effects of the Center of Gravity Location

2.2.9 Effects of the Sprocket Location 2.3 Study on Developed Tracked Vehicle

2.5.1 Localized Vehicle 2.3.2 Globalize Tracked Vehicle

3 MATERIALS AND METHODS 3.1 Mechanical Properties of Peat

3.1.1 Moisture Content and Bulk Density 3.1.2 Cohesiveness, Internal Friction Angle, and Shear Deformation 3.1.3 In-Situ Shearing Strength

. . 11 . . . 111

vii xi . . . Xl l l

xv xviii XX

xvi

Page 18: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

3.1.4 Surface Mat Stiffness and Underlying Stiffness of Peat 3.2 Development of Mathematical Models

3.2.1 Vehicle Design Consideration 3.2.2 Description of Mathematical Model 3.2.3 Mathematical Model for Vehicle of Straight Motion with UPGPD 3.2.4 Mathematical Modeling for Vehicle of Straight Motion with 3.2.5 Mathematical Model for Vehicle of Turning Motion

3.3 Vehicle Design Parameter Optimization 3.4 Vehicle Development

3.4.1 Hydraulic Pressure Estimation for Proposed Tracked Vehicle 3.4.2 Vehicle Instrumentation

3.5 Vehicle Field Testing

4 RESULTS AND DISCUSSIONS 4.1 Mechanical Properties of Sepang Peat

4.1.1 Moisture Content and Bulk Density 4.1.2 Cohesiveness, Internal Friction Angle, and Shear Deformation 4.1.3 In-Situ Shearing Strength 4.1.4 Surface Mat and Underlying Stiffness of Peat

4.2 Vehicle Simulated Performance 4.2.1 Vehicle Performance During Straight Motion 4.2.2 Vehicle Performance During Turning Motion

4.3 Vehicle Design Parameter Optimization 4.3.1 Track Width and Ground Contact Length 4.3.2 Track Grouser Size 4.3.3 Sprocket Location and Size 4.3.4 Idler location and size 4.3.5 Road-wheel diameter, Track pitch, and Number of road-wheel 4.3.6 Center of Gravity Location 4.3.7 Basic Design parameters

4.4 Vehicle Development 4.4.1 Vehicle Instrumentation

4.5 Vehicle Field Testing 4.5.1 During Straight motion 4.5.2 During Turning Motion 4.5.3 Model Validity

5 CONCLUSIONS AND RECOMMENDATIONS AND LIMITATIONS 5.1 Conclusions 5.2 Recommendations 5.3 Limitations

REFERENCES APPENDICES BIODATA OF THE AUTHOR

xvii

Page 19: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

LIST OF TABLES

Table

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.1

4.1

4.2

4.3

4.4

Performance parameters at 20% slip for various track pitch

Technical specifications of Super Crawler

Technical specifications of peat tractor prototype

Technical specifications of peat tractor prototype

Technical specifications of Tracked FFB Picker MRK-1

Technical specifications of KC-SOL

Technical Specification of EG3O Rubber Crawler Carrier

Values of KO and A, for various Types of Terrain

Page

18

2 7

29

3 1

3 3

36

3 8

5 3

Basic design parameters of the special segmented rubber tracked vehicle 53

Variation of moisture content and bulk density of peat 152

Variation of the shearing strength of peat in laboratory analysis 154

ANOVA of the shearing strength of peat 156

Variation of the cohesiveness, internal friction and shear deformation 157

modulus of peat

Variation of the in-situ shear shearing strength of peat with depth 158

ANOVA of the in-situ shear testing shearing strength of peat 159

Variation of the surface mat stiffness of peat with depth 162

ANOVA of the surface mat stiffness of peat 162

Variation of the underlying stiffness of peat with depth 162

ANOVA of the underlying stiffness of peat soil 163

Basic design parameters of the special segmented rubber tracked vehicle 197

Regression Analysis of the sprocket Torque 200

ANOVA on the torque of the sprocket 200

Regression analysis for actual velocity transducer 204

xviii

Page 20: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

4.15 Summaries of the moisture content 207

4.16 Analysis of variance on the vehicle tractive effort for without payload 226

4.17 Variation of the tractive effort of the vehicle without payload on 227

different peat terrains

Comparison on tractive effort of the vehicle having without payload on 227

different peat terrains

4.19 Analysis of variance on the slippage of the vehicle without payload

4.20 Variations of the slippage of the vehicle without payload on different 229

peat terrains

Comparison on slippage of the vehicle without payload on different peat 230

terrains

4.22 Analysis of variance on the tractive effort of the vehicle full payload

4.23 Variations of the tractive effort of the vehicle full payload on different 231

peat terrains

4.24 Comparison on tractive effort of the vehicle without payload on 232

different peat terrain

4.25 Analysis of variance on the slippage of the vehicle having full payload 232

4.26 Slippage of the vehicle with full payload on different peat terrain

4.27 Comparison on the slippage of the vehicle having full payload on 235

different peat terrains

4.28 Analysis of variance on tractive effort of the vehicle outer track during 240

turning motion

4.29 Variations of tractive effort of the vehicle outer track during turning 240

motion

4.30 Analysis of variance on tractive effort of the vehicle's inner track during 241

turning motion

4.31 Variations of tractive effort of the vehicle's inner track during turning 242

motion

Peat terrain parameters

xix

Page 21: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

LIST OF FIGURES

Figure

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.1 1

3.12

3.13

3.14

3.15

Ground Pressure Distributions Under a Track

Ground Pressure Distribution Under the Track System

Super Crawler

Peat Tractor Prototype

Photo of MALTRAK

FFB Picker Mrk- 1

KC-SOL KUBOTA Tracked Vehicle

Hitachi EG30- Rubber Crawler Carrier

Tested Site before Drainage

Tested Site after Drainage

Bearing Capacity Measuring Scenario

Wykeham Farrance 25402 Shear Box Apparatus

Typical Trend of Shearing Stress Versus Normal Stress

RMU I012 Digital Vane Shear Test Apparatus

In Situ Shearing Test Determinng Scenerio

Bearing Capacity Measuring Apparatus

Typical Load-Sinkage Trend of Peat

Track System

Flow Chart for the Mathematical Model of Vehicle Straight Motion with

Force Acting on the Driven Belt of Vehicle with UGPD

Variation of the Terzaghi Bearing Capacity Factors

Flow chart for the mathematical model of vehicle straight motion with

Forces Acting on the Driven Track Belt of Vehicle with NUGPD

Page

16

2 0

26

2 8

30

32

35

3 7

4 1

42

43

45

45

47

47

49

49

53

55

5 7

5 8

73

74

Page 22: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

Sinkage of the Vehicle Track System During Traversing

Force Diagram on the Track System Components

Flow Chart for the Mathematical Model of Vehicle Turning Motion

Six Degrees of Freedom of the Vehicle Movement

Track System for the Vehicle During Turning

Force Acting on the Track During Turning at 6km/Hr

Force Acting on the Track During Turning at 1 OkmIHr

3D-CAD Drawing and Geometrical Dimension of the Vehicle

3D -CAD Assembly Drawing of Undercarriage

3D-CAD Drwaing of Vehicle Track System

Track Frame and its Geometrical Dimension

Track ~ r a m e Cross-sectional Area

Front Idler and its Geometrical Dimension

Road-Wheel and its Geometrical Dimension

Rear Sprocket and its Geometrical Dimension

Driving Shaft and its Geometrical Dimension

Notch Sensitivity and Notch Radius

Stress Concentration Factor

Driving Unit Assembly Drawing

Supporting Wheel and Its Geometrical Dimension

Track Initial Tension Unit

Integrated Hydraulic Circuit Diagram for the Vehicle

Dewe-2010 PC Instrument

Pictorial Programming on ~ a s ~ l a b @

Touch-Screen Virtual Control Interface

Torque Transducer

Torque Transducer Calibration Setup

xxi

Page 23: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

Output Electrical Circuit of Torque Transducer

DICKEY-John Radar I1 Velocity Sensor (RVSII).

Calibration Setup of the Radar I1 Ground Speed Sensor

Output Electrical Circuit Diagram of the RVSlI Sensor

Proximity Sensor Electrical Circuit Layout

Speed Transducer

Terrain Type I

Terrain Type I1

Terrain Type III

Scenario of the Vehicle CG Measurement

Typical Trend of Moisture Content Versus Depth

Typical Trend of Bulk Density and Depth 153

Typical Consolidation Test of Peat 155

Example of Shearing Strength Variation with Shear Displacement 155

Typical Trend of Shearing Strength versus Depth 159

Typical Load-Sinkage Trend of Peat 161

Effect of Vehicle Slip on Sinkage 165

Effect of Vehicle Slip on Vehicle External Motion Resistance 167

Effect of Vehicle Slip on Vehicle Drawbar Pull 168

Effect of Vehicle Slip on Vehicle Tractive Efficiency 169

Relationship Between Ground Contact Pressure and Turning Radius 172

Relationship Between Vehicle Sinkage and Turning Radius 173

Relationship Between Vehicle Sprocket Torque and Turning Moment 175

Resistance

4.14 Relationship Between Vehicle Tractive Effort and Turning Radius

4.15 Relationship Between Vehicle Centrifugal Force and Lateral Resistance

xxii

Page 24: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

4.16 Variation of Ground Pressure Distribution

4.17 Variation of Vehicle Sinkage

4.18 Effect of Track Size on Vehicle Tractive Performance 184

4.19 Variation of Sprocket Torque and Turning Moment with Turning Radius 188

4.20 Variation of Tractive Efficiency and Sprocket Torque with Sprocket 188

Diameter

Relationship Between Track Entry Angle, Sinkage and Idler Diameter 1 92

Track Entry Angle, Tractive Performance and Slippage 192

Relationship between Tractive Efficiency and Ratio of the Road-wheel 193

Spacing to Track Pitch

Relationship Between ~ract ive Efficiency and Slippage for CG location 195

Relationship Between Tractive Efficiency and Slippage for loading 195

condition

Developed Vehicle 198

Calibration Curve for the Right Track Torque Transducer 202

Calibration Curve for the Left Torque Transducer 202

Verifications Curve of Measurements Accuracy for Torque Transducer 203

Calibration Curve for the Vehicle Actual Velocity Transducer 205

Verification Curve of Measurements Accuracy for Velocity Transducer 205

Tractive Effort of the Vehicle during Traveling on the Terrain Type I 209

without Payload

Tractive Effort of the Vehicle during Traveling on the Terrain Type I 210

with full Payload

4.34 Slippage of the vehicle during straight motion on the Terrain Type I 21 1

without payload

xxiii

Page 25: UNIVERSITI PUTRA MALAYSIA DESIGN AND DEVELOPMENT …psasir.upm.edu.my/6007/1/FK_2005_17(1-24).pdf · location, sprocket diameter and location, road-wheel diameter and geometrical

4.35 Slippage of the Vehicle During Straight Motion on Terrain Type I with 212

full Payload

4.36 Tractive Effort of the Vehicle during Straight Motion on Terrain Type I1 215

without Payload

4.37 Tractive Effort of the Vehicle during Straight Motion on Terrain Type I1 216

with full Payload

4.38 Slippage of the Vehicle during Straight Motion on Terrain Type I1 217

without full Payload

4.39 Slippage of the Vehicle during Straight Motion on Terrain Type I1 with 21 8

full Payload

4.40 Tractive Effort of the Vehicle on Terrain Type I11 During Straight 220

Motion without Payload.

4.41 Tractive Effort of the Vehicle on Terrain Type 111 During Straight 221

Motion with full Payload

4.42 Slippage of the Vehicle on the Terrain Type 111 During Straight Motion 222

without Payload.

4.43 Slippage of the vehicle on the Terrain Type I11 During Straight Motion 223

with full Payload.

4.44 Tractive Effort of the Outer and Inner Track of the Vehicle without 236

Payload during Turning on the Terrain Type I

4.45 Tractive Effort of the Outer and Inner Track of the Vehicle without 237

Payload during Turning on the Terrain Type I1

4.46 Tractive Effort of the Outer and Inner Track of the Vehicle without 238

xxiv