universidad nacional de ingenierÍa Área académica de cursos complementarios facultad de...

71
UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA

Upload: natalia-martinez-valverde

Post on 24-Jan-2016

223 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

UNIVERSIDAD NACIONAL DE INGENIERÍA

Área Académica de Cursos Complementarios

FACULTAD DE INGENIERIA QUIMICA Y TEXTIL

AHORRO DE ENERGIA

AHORRO DE ENERGIA

Page 2: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

USO EFICIENTE DE LA ENERGIA ELECTRICA

El ahorro de energía eléctrica, se consigue mejorando la eficiencia del consumo optimo de energía

Page 3: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

1. ¿Cuáles son los factores que influyen en el uso de la Energía Eléctrica?

·   2. ¿Qué medidas deben tomarse en el aspecto Técnico, Organizacional, de Gestión para optimizar el nivel de consumo optimo de Energía Eléctrica?

Page 4: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

El ahorro de energía debe ser un proceso continuo que implica:

MEDICIÓN de insumos y productos.

EVALUACIÓN y valoración de las condiciones actuales.

IMPLEMENTACIÓN de ideas propuestas

ANÁLISIS de nuevos resultados, comparados contra las condiciones iniciales (mejoramiento)

Page 5: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Este proceso implica:

DECISIONES ADMINISTRATIVAS por las implicaciones en el proceso.

EQUIPO DE TRABAJO, debe involucrar los diferentes niveles de la empresa.

EVALUACIÓN de metas, inversiones y ahorros a lograr.

DEFINICIÓN de prioridades.

IMPLEMENTACIÓN de actividades, tiempo, recursos y personal.

Page 6: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

A través de Acciones Ttécnicas y Operativas llamadas : Tecnología

A través de decisiones económico administrativas llamadas :Cuestiones de Organización y Gestión

USO EFICIENTE DE LA ENERGIA ELECTRICA

Page 7: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Factores que influyen en el Uso eficiente de Energia

• La capacidad de los conductores.

• Eficiencia de los transformadores .

• Banco de condensadores.

• Sistemas de iluminación.

• Tipo de Tarifa Electrica• Análisis de

Interrupciones

• Auditoría Energética• Gestión , oorganización

que permita el uso eficiente de Energía y cambio de actitud de la población

• Planificación

Page 8: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

EL AHORRO DE LA ENERGÍA CONOZCO EL

SISTEMA ELÉCTRICO

IDENTIFICO AREAS

PROBLEMAS

TOMO MEDIDAS CORRECTIVAS

EVALÚO LOS RESULTADOS

Page 9: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

La planificación para el uso eficiente de energía, debe tener dos medidas:

MEDIDAS DE CORTO PLAZO

-- Manejo de tarifaria

-- un programa de Mantenimiento y Operacion para la Administración energética orientada vigilar su eficacia energetica

MEDIDAS DE MEDIANO PLAZO

-Mejoramiento de equipos y maquinarias (Transformadores, banco de condensadores, equipos de medición y control).

- Mejoramiento de Instalaciones eléctricas (conductores, artefactos de iluminación).

Planificación

Page 10: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Gestión administrativa para un manejo eficiente

de la energía.

Page 11: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

No muchas veces en el manejo de los diferentes eventos productivos se realiza Gestión de la Energía consumida, esto debido a que no es costumbre en nuestro medio.

Pero al realizar este tipo de Gestión, se logra tener plena consciencia de la magnitud del consumo y de la forma como se utiliza esta energía.

Esta nueva visión lleva a relacionar un consumo energético con una producción lograda.

Page 12: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

“La energía es un elemento fundamental para las operaciones de una empresa y puede representar un costo muy importante para las mismas, independientemente de su actividad.Se puede tener una idea, al considerar el uso de la energía dentro de la cadena de suministro de una empresa, desde las materias primas hasta el reciclaje.” (ISO 50001)

Page 13: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

La energía más económica es la que no se consume, para ello se define el esquema de Eficiencia Energética de una empresa en cuatro (4) factores.

Page 14: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Las diferentes acciones para la optimización en el consumo de la energía no deben afectar el proceso productivo y las mismas se deben proyectar consecuentemente:a) Cambio de cultura en el personalb) Uso de fuentes naturales.c) Uso de nuevas tecnologías.d) Cambio en los procesos.e) Uso de tecnología fuerte.

Page 15: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

El proceso de mejora para lograr “ahorro de energía” debe identificar:• Las nuevas condiciones operativas a las cuales se

quiere llegar.• El tiempo en el cual se quiere lograr resultados.• Evaluar los ahorros a lograr.• Estimar las inversiones• Estimar el tiempo de recuperación.

Page 16: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

MANTENIMIENTO CENTRADO EN LA EFICIENCIA ENERGÉTICA Un correcto y eficiente mantenimiento debe mantener el consumo de energía dentro de un límite “razonable” hasta que termine la vida útil de los equipos.Un reemplazo oportuno de un equipo por uno nuevo, más eficiente en el diseño energético, ayuda a optimizar el consumo de energía permitiendo al sistema sostener su estándar de Eficiencia Energética.

Page 17: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Existen cinco dimensiones para elaborar un correcto Programa de Mantenimiento dirigido a la Eficiencia Energética.

(OMETA)  

1.  OPERATION Operación. 2.  MAINTENANCE Mantenimiento. 3.  ENGINEERING Ingeniería. 4.  TRAINING Entrenamiento. 5.  ADMINISTRATION Administración.

Page 18: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

OBJETIVOS DEL MANTENIMIENTO CENTRADO EN LA EFICIENCIA ENERGÉTICA - EECM

1. Reducción de costos energéticos.2. Aumento de la confiabilidad energética.3. Predicción de fallas funcionales simples.4. Minimización de costos de mantenimiento.5. Minimización de emisiones de GEI6. Mejora del control y conocimiento de los procesos y equipos.

Page 19: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Gestión operativa para un manejo eficiente de la

energía.

Page 20: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Los sistemas más importantes para el ahorro de la energía en los procesos industriales a tener en cuenta son: Sistema Eléctricos. Sistemas mecánicos. Sistemas térmicos. Sistemas de aire comprimido. Sistemas de refrigeración. Sistemas de ventilación. sistemas de iluminación.

Page 21: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

SISTEMAS ELÉCTRICOS:

Para poder identificar como eficiente un sistema eléctrico de potencia, se debe hacer seguimiento al comportamiento de los siguientes elementos:

Cargabilidad en los transformadores. Coordinación de protecciones. Buen Sistema de Puesta a tierra. Balance del sistema de potencia. Control sobre la Regulación de voltajes en los

diferentes alimentadores. Calidad del sistema de Potencia.

Page 22: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Red de alimentación a media Tensión:13.200 voltios.

Medición en media Tensión a 13.200 voltios.

Transformador de 13200 voltios a 440 voltios.

Carga en baja Tensión, a 440 voltios.

PROTECCIONES.

COORDINACIÓN DE

PROTECCIONES.

Page 23: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Buen Sistema de Puesta a tierra.

• La característica transitoria de una descarga atmosférica o falla a tierra, son fenómenos transitorios.

• El CHOQUE TÉRMICO (kt = dDT/dt), y el CHOQUE

MECÁNICO (kv = dv/dt) son fenómenos ineludibles por la magnitud de la corriente que se presentan en una descarga en KA en tiempos cortos (microsegundos).

• El CHOQUE ELÉCTRICO (L.di/dt), obliga a la energía a

cambiar su forma pasando de alta corriente-bajo voltaje a alto voltaje-baja corriente, ésto causa los siniestros.El terreno no tiene capacidad de dar balance natural a la energía potencial para convertirla en calor, dado su altísimo incremento de temperatura con respecto al tiempo (dT/dt).

Page 24: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Lo que NO debe ser

Como SI debe ser

Page 25: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Balance del sistema de potencia.

La norma americana IEEE 1159, recomienda un límite de 2% de desbalance entre líneas, su cálculo "aproximado" se logra de la siguiente forma: % de Desbalance = (Max _ Desviación (D1, D2, D3) / Promedio)*100%

Promedio = (V1+V2+V3)/3D1=Abs. (Promedio - V1)D2=Abs. (Promedio - V2)D3=Abs. (Promedio - V3)

La asimetría de tensiones, se conoce como el desequilibrio de tensiones. Un sistema trifásico está equilibrado cuando lo constituye tres señales sinusoidales de igual amplitud y desfase de 120°.

Page 26: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

El desbalance de voltaje, produce para sistemas polifásicos, dificultades en las corrientes.Las corrientes desbalanceadas origina pulsaciones del Par motor; vibraciones; pérdida de eficiencia; incremento de temperatura.Un desbalance de solo 3,5% puede incrementar las pérdidas en un 20%Desbalances superiores al 5% son ya problemas mayores según.

Balance del sistema de potencia.

Page 27: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Regulación de voltajes en los diferentes alimentadores.

Page 28: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Factor de carga = Demanda media / D. Máxima =(Pot.medida.KW/0,746) / (Pot.nomin.HP/ŋ nominal)

El Factor de Carga define la eficiencia operativa de un motor y el F de P de funcionamiento del mismo .Un motor con Fc. menor del 50% no es aconsejable

utilizar. Motores de Alta Efic. son 20% más costosos pero 5%

más eficientes y con buen Mantenimiento, pueden durar 10 años.

Page 29: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

PARÁMETRO VOLTAJE + 10 % VOLTAJE - 10%

TORQUE INCREMENTA 20 % DISMINUYE 2 %

EFICIENCIA INCREMENTA 1 % DISMINUYE 2 %

FACTOR DE POTENCIA

DISMINUYE 3 % INCREMENTA 2 %

CORRIENTE DE ARRANQUE

INCREMENTA 10 % DISMINUYE 10 %

CORRIENTE A PLENA CARGA

DISMINUYE 7 % INCREMENTA 10 %

TEMPERATURA DISMINUYE 4 % INCREMENTA 7 %

Efectos de la variación del voltaje en Motores Eléctricos

Page 30: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Calidad del sistema de Potencia.

El caso de armónicas es originado por sistemas electrónicos de control que origina desperfectos en el sistema de energía

Page 31: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Mejoras inmediatas para el ahorro de la energía eléctrica

1. Determinar el índice energético de la industria

2. Establecer el ofrecimiento comercial de la industria

3. Subir el factor de Potencia a un valor entre 0.90 y 0.95

4. Hacer un Balance adecuado de la carga instalada para que por cada fase circule aproximadamente la misma corriente

5. Seleccionar adecuadamente la capacidad de una nueva subestación

6. Usar motores de alta eficiencia

7. Dimensionar correctamente la capacidad y tipo de motor para mover una carga predeterminada

8. Apagar las luces que no se utilizan

9. Utilizar lámparas eficientes y balastros electrónicos

10. Controlar la demanda eléctrica

Page 32: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

SUBIR EL FACTOR DE POTENCIA

El cargo por bajo factor de potencia (fp) se evalúa conforme a la siguiente fórmula:

y la bonificación por un fp superior a 0.9 se evalúa como,

100190

53

(%)arg xfp

oc

10090

14

1(%) x

fpónBonificaci

Page 33: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

La capacidad requerida del banco de capacitores es de k x KW: donde k se toma del valor de las tablas del fabricante, con los valores actual y el deseado del factor de potencia. Para este caso, con los valores de 0.84 y 0.95 respectivamente, tenemos un valor de k = 0.317 por lo que:

Capacidad requerida = 0.317 x 147 = 46.60 = 47 KVA

 

Los cuales con un costo aproximado de $240/KVA, nos da un valor de $11,280, y consecuentemente:

Recuperación de la Inversión = 11280 / 15426 = 0.73 años = 9 meses

MENU

Page 34: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

HACER BALANCE ADECUADO-APLICACIÓN

Para un sistema eléctrico trifásico a 220 V con una corriente de línea de 75 A, se tiene un desbalance del 40°l0. Se debe estimar la energía perdida en el neutro. Si el sistema opera 720 horas mensuales con una resistencia total del conductor del neutro de 0.4656Ω (cal. 6), para el desbalance del 40% se tiene una In = 30 A (circulando por el neutro) lo que hace que se disipe una potencia

Q=RI2=0.4656x302=419W  Por lo que en un mes de operación se tiene una pérdida de energía de 301.709kWh.

Q = RI2 = 0.4556 x 3.752 = 6.55W Lo que en un mes equivale a 4.7kWh, y a un ahorro de energía de 297 kWh mensuales.

Page 35: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

SELECCIONAR ADECUADAMENTE LA CAPACIDAD

Una subestación sobrada de 500KVA de capacidad demanda en condiciones pico 125kW con un fp de 0.9 y una alimentación de 23 kV. La subestación trabaja al 28% de capacidad ya que a esas condiciones requiere una capacidad real de 139KVA. Las pérdidas sin carga para un transformador de 500 KVA con una alimentación de 23kV son, para un equipo estándar, de 2.55kW. Como normalmente se tiene energizada todo el tiempo, su consumo anual debido a estas pérdidas es:

Pérdidas = 2.55 x 24 x 365 = 22, 338 kWh/año Si se selecciona un transformador de 150 KVA, éste operará al 92.7% de capacidad, las pérdidas sin carga son de 1.065kW, por lo que las pérdidas de energía anuales son de 9,329kWh/año, lo que representa una disminución de 13,OOOkWh/año.

Page 36: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

USAR MOTORES DE ALTA EFICIENCIA

Sustituir un motor de 250 hp con una eficiencia del 82% que opera 12 horas diarias durante cinco días a la semana, por un motor con 92% de eficiencia. La potencia ahorrada (PA) será:

Potencia ahorrada (PA) = 0.746 x hp

Es decir: PA = 0.746 x 250  Considerando el tiempo que opera al año, 12x5x50=3.000 horas, la energía

ahorrada es de 74.164.90 kWh. Para un costo aproximado de $0.45/kWh se tiene un ahorro económico de $3.374 al año.

 

aex 11

kW75.2492.01

82.01

Page 37: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

DIMENSIONAR CORRECTAMENTE LA CAPACIDAD

Para un motor de 100hp que mueve una carga de 38hp y opera 4000 horas al año, se sugiere sustituirlo por otro de 50hp que trabajará a un régimen del 76%, con una eficiencia de 91.5%.La eficiencia del motor de 100hp trabajando a un régimen del 38% es de 81% por l o que la potencia ahorrada (PA) es de:

PA=0.746*38(1/0.81 – 1/0.915)

El ahorro de energía anual es = 4.02x4000 = 16.080kWh Si el costo de la energía es de $0.45kWh el ahorro económico es de $7.236 anuales más la disminución en demanda. Considerando un promedio de$65/kW de demanda, obtenemos un ahorro anual de $3.136 adicionales. El ahorro total es de $10.372, Si el motor nuevo instalado tiene un costo de $ 17000, la inversión se recupera en 1.6 años (un año 8 meses).

Page 38: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

APAGAR LAS LUCES QUE NO SE UTILIZAN

En un área de oficinas se tienen 200 luminarias de 2x40 con lámparas de 39 W. Se encienden durante 12 horas diarias por medio de interruptores generales. Las oficinas laboran durante cinco días a la semana, 50 semanas al año, 250 días al año. Durante el turno vespertino solamente labora el 20% del personal, quien requiere 50 luminarias exclusivamente, incluyendo la iluminación de seguridad. Cada turno se considera de seis horas.Estimando el consumo actual, suponiendo 80% de eficiencia, se tiene que cada luminaria es una carga de 93.6 W, por lo que el consumo anual es de

Consumo anual = (200x93.6x12x5x50) / 1000 = 56,160 kWh 

Page 39: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Estimando el consumo actual, suponiendo 80% de eficiencia, se tiene que cada luminaria es una carga de 93.6 W, por lo que el consumo anual es de

Consumo anual = (200x93.6x12x5x50) / 1000 = 56,160 kWh Si se realizan los cambios necesarios para instalar apagadores

y utilizar en el turno vespertino solamente las lámparas que se requieren, el consumo es

Nuevo consumo = (200x93.6x6+50x93.6x6)(5x50) / 1000 = 35,100 kWh anuales

El ahorro de energía que se obtiene esAhorro = 56160 - 35100 = 21,060 kWh

 Si se considera un costo de $0.45 kWh, el ahorro económico es

de $9,477, más el IVA correspondiente a dicha cantidad.

Page 40: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

UTILIZAR LAMPARAS EFICIENTES Y BALASTROS ELECTRONICOS

Se tienen 500 luminarias de 2x39 W para alumbrar un área comercial. La iluminación opera 12 horas diarias durante cinco días a la semana y se trabajan cincuenta semanas al año, el equivalente a 3000 horas. Bajo estas condiciones de operación el sistema tiene una vida de tres años. El consumo total de este sistema, incluyendo las pérdidas es:

Consumo anual = (93.6x500x12x5x50) / 1000 = 140,400 kWh Si se utilizan lámparas T8 de consumo total de 32 W, del mismo tamaño que las anteriores y balastro electrónico, se logra mayor eficiencia energética y la vida media de un poco más de seis años. El consumo anual con este nuevo sistema resulta ser:

Consumo anual = (64x500x12x5x50) / 1000 = 96,000 kWh

Page 41: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Por lo que el ahorro en energía que se tiene es de: Ahorro de energía anual= 140400 - 96000 = 44, 000 kWh

 Por otro lado se tiene una disminución en demanda de:

Disminución en demanda = (93.6-64)x500/1000 = 14.8 kW 

Si se considera un costo de la energía de $0.45/kWh y uno de demanda de $65/kW el ahorro económico anual es de:

Ahorro económico anual = 44400x0.45+16.8x65x12 = $32,904

Si la diferencia en costo considerando el ciclo de vida de seis años es de $90 por luminaria se tiene que el sistema eficiente

tiene un costo mayor de $45,000 con un tiempo de recuperación de la inversión de:

Recuperación de la Inversión = 45,000/32,904 = 1.37 años (1 año y 4 meses)

MENU

Page 42: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

CONTROLAR LA DEMANDA ELECTRICAEn una industria se tiene un consumo mensual de 122,400 kWh con una demanda máxima de 250 kW, que se presenta entre las 17 y las 18 horas. El sistema opera 720 horas en promedio mensualmente. Como resultado de la auditoria energética se detectó que una bomba de pozo de 80 HP que alimenta a los tanques de agua, opera varios días del mes a las horas pico, en períodos de cuatro horas.Se recomendó no operar la bomba durante las horas pico y desplazar su funcionamiento a horas nocturnas, preferentemente después de las 12 de la noche, que es cuando se tiene el costo de energía más barato.La demanda media actual es:

Dmed = 122, 400 / 720 = 170 kW

Page 43: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Por lo que se tiene un factor de carga de: 

Si se desplaza la carga de la bomba fuera de las horas pico, especialmente hacia las horas de menor demanda, la demanda máxima disminuye en 804.746 = 59.6 kW, por lo que su valor pico será de 190.4 kW. Esta acción representa un ahorro económico mensual, considerando un costo de demanda de $65 kW, de:

Ahorro económico mensual = 59.6x65 = $3,874Más el IVA correspondiente. E1 factor de carga tendrá pues un valor de:

 Este valor nos indica un mejor uso de la energía eléctrica en todo el sistema. Si el cambio de rutina de operación de la bomba implica algún costo conviene hacer un análisis económico para ver si se recupera la inversión.

68.0250

170

fc

893.04.190

170

fc

Page 44: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

TIPOS DE BANCO de CONDENSADORES

Page 45: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

VARIEDAD EN FLUORECENTES

Page 46: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

BALASTOS

Page 47: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Sistemas mecánicos.

POTENCIA PARA ACCIONAMIENTO DE TRASLACIÓN

P = (F x w x v) / (2 x 9,550 x ) P = potencia en KW F = Peso total en N w = perdidas - 0,007 cojinetes de rodillo 0,020 cojinetes de fricción v = velocidad de traslación m / minuto = rendimiento mecánico

Page 48: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Sistemas de Bombeo

H = hd + hs + fd + fs +( V.V / 2.g )

hd = cabeza de descarga estáticahs = cabeza de succiónfd = perdidas por fricción en tuberías de descargafs = perdidas por fricción en tuberías de succiónV.V/2g = cabeza por velocidad del líquido

POTENCIA PARA UN BOMBA

P = Q x d x h / P = potencia en KWQ = caudal en m3/sgd. d = peso específico N/m3 h = elevación del líquido en metros = rendimiento mecánico

Page 49: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Sistemas Térmicos

Page 50: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Sistemas térmicos.

Page 51: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

El ahorro de combustible obtenido con una buena regulación de la combustión puede aportar un 5 a 7 % de ahorro en consumo de combustible.Las pérdidas de calor sobre las paredes pueden aportar un ahorro del 1 al 2 % del combustible.Si la temperatura de los gases de chimenea supera los 230°C, puede ser por un deficiente intercambio de calor en el interior de la caldera.

Sistemas térmicos.

Page 52: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Sistemas de aire comprimido

PRODUCCIÓNCONSUMOCAPACIDAD

ALMACENAMIENTO

MOTORCOMPRESORCONSUMO

MANTENIMIENTO AL SISTEMACENTRADO EN LA EFICIENCIA

Page 53: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

• Cada 4º C de incremento de temperatura del aire aspirado se incrementa el consumo de energía en un 1% para el mismo caudal

• Cada 3º C de disminución en la temperatura del aire aspirado origina un beneficio de un 1 % para el mismo caudal

• El aire aspirado se debe tomar de un medio abierto no cerrado

• Reducir 1 psig en la presión de descarga a 60 HP representa disminuir 1 Kwh de consumo.

• Se considera pequeño un compresor de menos de 30 HP y grande a uno mayor a esta capacidad.

Sistemas de aire comprimido

Page 54: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

• Los puntos de fugas mas frecuentes son:Juntas de tuberías y manguerasconectores rápidosHerramientas neumáticas

• Evitar reducciones de alta relación en los diámetros de tuberías

• Las salidas de la línea principal deben ser siempre de arriba hacia abajo

• La velocidad en línea principal debe ser entre 6 y 10 m/s. y en las secundarias, máximo de 15 m/s., para mangueras se admite hasta 30 m/s.

Sistemas de aire comprimido

Page 55: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Sistemas de refrigeración.

EFICIENCIA EN LA FUENTE

SEER / COP

FLUJO DE AIREY CONFORT

FUGAS

MANTENIMIENTOY EFICIENCIA

Page 56: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Sistemas de ventilación.Aspectos de Eficiencia

Tipo Axial Tipo Centrífugo

POTENCIA PARA UN VENTILADOR P = (Q x p x 981) / (1,000 x ) P = potencia en KW. Q = Caudal en mts.3 / sgdo. p = presión en mm c.d.a (columna de agua) = rendimiento mecánico

Page 57: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Sistemas de iluminación.

Una fuente Luminosa, consume una potencia eléctrica (vatios).Produce un flujo medido en lúmenes.Este flujo luminoso incide sobre una superficie originando un nivel de iluminación o Luminancia, medido en Luxes.Eficiencia de la Fuente se mide en: Lúmenes / vatios

Page 58: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Una forma de medir la Eficiencia en el sistema de iluminación de da por la, Densidad de Potencia eléctrica de alumbrado (vatios/metro cuadrado)-DPEA

AREA DPEA

AREA DPEA

CORREDOR 3,53 OFICINA 12,3

ESCALERAS 5,85 ESTUDIO 18,6

BODEGAS 5,6 BAÑO 4,1

Sistemas de iluminación.

Page 59: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA
Page 60: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

HACER BALANCE ADECUADO-APLICACIÓN

Para un sistema eléctrico trifásico a 220 V con una corriente de línea de 75 A, se tiene un desbalance del 40°l0. Se debe estimar la energía perdida en el neutro. Si el sistema opera 720 horas mensuales con una resistencia total del conductor del neutro de 0.4656Ω (cal. 6), para el desbalance del 40% se tiene una In = 30 A (circulando por el neutro) lo que hace que se disipe una potencia

Q=RI2=0.4656x302=419W  Por lo que en un mes de operación se tiene una pérdida de energía de 301.709kWh.

Q = RI2 = 0.4556 x 3.752 = 6.55W Lo que en un mes equivale a 4.7kWh, y a un ahorro de energía de 297 kWh mensuales.

Page 61: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

SELECCIONAR ADECUADAMENTE LA CAPACIDAD

Una subestación sobrada de 500KVA de capacidad demanda en condiciones pico 125kW con un fp de 0.9 y una alimentación de 23 kV. La subestación trabaja al 28% de capacidad ya que a esas condiciones requiere una capacidad real de 139KVA. Las pérdidas sin carga para un transformador de 500 KVA con una alimentación de 23kV son, para un equipo estándar, de 2.55kW. Como normalmente se tiene energizada todo el tiempo, su consumo anual debido a estas pérdidas es:

Pérdidas = 2.55 x 24 x 365 = 22, 338 kWh/año Si se selecciona un transformador de 150 KVA, éste operará al 92.7% de capacidad, las pérdidas sin carga son de 1.065kW, por lo que las pérdidas de energía anuales son de 9,329kWh/año, lo que representa una disminución de 13,OOOkWh/año.

Page 62: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

USAR MOTORES DE ALTA EFICIENCIA

Sustituir un motor de 250 hp con una eficiencia del 82% que opera 12 horas diarias durante cinco días a la semana, por un motor con 92% de eficiencia. La potencia ahorrada (PA) será:

Potencia ahorrada (PA) = 0.746 x hp

Es decir: PA = 0.746 x 250  Considerando el tiempo que opera al año, 12x5x50=3.000 horas, la energía

ahorrada es de 74.164.90 kWh. Para un costo aproximado de $0.45/kWh se tiene un ahorro económico de $3.374 al año.

 

aex 11

kW75.2492.01

82.01

Page 63: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

DIMENSIONAR CORRECTAMENTE LA CAPACIDAD

Para un motor de 100hp que mueve una carga de 38hp y opera 4000 horas al año, se sugiere sustituirlo por otro de 50hp que trabajará a un régimen del 76%, con una eficiencia de 91.5%.La eficiencia del motor de 100hp trabajando a un régimen del 38% es de 81% por l o que la potencia ahorrada (PA) es de:

PA=0.746*38(1/0.81 – 1/0.915)

El ahorro de energía anual es = 4.02x4000 = 16.080kWh Si el costo de la energía es de $0.45kWh el ahorro económico es de $7.236 anuales más la disminución en demanda. Considerando un promedio de$65/kW de demanda, obtenemos un ahorro anual de $3.136 adicionales. El ahorro total es de $10.372, Si el motor nuevo instalado tiene un costo de $ 17000, la inversión se recupera en 1.6 años (un año 8 meses).

Page 64: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

APAGAR LAS LUCES QUE NO SE UTILIZAN

En un área de oficinas se tienen 200 luminarias de 2x40 con lámparas de 39 W. Se encienden durante 12 horas diarias por medio de interruptores generales. Las oficinas laboran durante cinco días a la semana, 50 semanas al año, 250 días al año. Durante el turno vespertino solamente labora el 20% del personal, quien requiere 50 luminarias exclusivamente, incluyendo la iluminación de seguridad. Cada turno se considera de seis horas.Estimando el consumo actual, suponiendo 80% de eficiencia, se tiene que cada luminaria es una carga de 93.6 W, por lo que el consumo anual es de

Consumo anual = (200x93.6x12x5x50) / 1000 = 56,160 kWh 

Page 65: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Estimando el consumo actual, suponiendo 80% de eficiencia, se tiene que cada luminaria es una carga de 93.6 W, por lo que el consumo anual es de

Consumo anual = (200x93.6x12x5x50) / 1000 = 56,160 kWh Si se realizan los cambios necesarios para instalar apagadores

y utilizar en el turno vespertino solamente las lámparas que se requieren, el consumo es

Nuevo consumo = (200x93.6x6+50x93.6x6)(5x50) / 1000 = 35,100 kWh anuales

El ahorro de energía que se obtiene esAhorro = 56160 - 35100 = 21,060 kWh

 Si se considera un costo de $0.45 kWh, el ahorro económico es

de $9,477, más el IVA correspondiente a dicha cantidad.

Page 66: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

UTILIZAR LAMPARAS EFICIENTES Y BALASTROS ELECTRONICOS

Se tienen 500 luminarias de 2x39 W para alumbrar un área comercial. La iluminación opera 12 horas diarias durante cinco días a la semana y se trabajan cincuenta semanas al año, el equivalente a 3000 horas. Bajo estas condiciones de operación el sistema tiene una vida de tres años. El consumo total de este sistema, incluyendo las pérdidas es:

Consumo anual = (93.6x500x12x5x50) / 1000 = 140,400 kWh Si se utilizan lámparas T8 de consumo total de 32 W, del mismo tamaño que las anteriores y balastro electrónico, se logra mayor eficiencia energética y la vida media de un poco más de seis años. El consumo anual con este nuevo sistema resulta ser:

Consumo anual = (64x500x12x5x50) / 1000 = 96,000 kWh

Page 67: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Por lo que el ahorro en energía que se tiene es de: Ahorro de energía anual= 140400 - 96000 = 44, 000 kWh

 Por otro lado se tiene una disminución en demanda de:

Disminución en demanda = (93.6-64)x500/1000 = 14.8 kW 

Si se considera un costo de la energía de $0.45/kWh y uno de demanda de $65/kW el ahorro económico anual es de:

Ahorro económico anual = 44400x0.45+16.8x65x12 = $32,904

Si la diferencia en costo considerando el ciclo de vida de seis años es de $90 por luminaria se tiene que el sistema eficiente

tiene un costo mayor de $45,000 con un tiempo de recuperación de la inversión de:

Recuperación de la Inversión = 45,000/32,904 = 1.37 años (1 año y 4 meses)

MENU

Page 68: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

CONTROLAR LA DEMANDA ELECTRICAEn una industria se tiene un consumo mensual de 122,400 kWh con una demanda máxima de 250 kW, que se presenta entre las 17 y las 18 horas. El sistema opera 720 horas en promedio mensualmente. Como resultado de la auditoria energética se detectó que una bomba de pozo de 80 HP que alimenta a los tanques de agua, opera varios días del mes a las horas pico, en períodos de cuatro horas.Se recomendó no operar la bomba durante las horas pico y desplazar su funcionamiento a horas nocturnas, preferentemente después de las 12 de la noche, que es cuando se tiene el costo de energía más barato.La demanda media actual es:

Dmed = 122, 400 / 720 = 170 kW

Page 69: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

Por lo que se tiene un factor de carga de: 

Si se desplaza la carga de la bomba fuera de las horas pico, especialmente hacia las horas de menor demanda, la demanda máxima disminuye en 804.746 = 59.6 kW, por lo que su valor pico será de 190.4 kW. Esta acción representa un ahorro económico mensual, considerando un costo de demanda de $65 kW, de:

Ahorro económico mensual = 59.6x65 = $3,874Más el IVA correspondiente. E1 factor de carga tendrá pues un valor de:

 Este valor nos indica un mejor uso de la energía eléctrica en todo el sistema. Si el cambio de rutina de operación de la bomba implica algún costo conviene hacer un análisis económico para ver si se recupera la inversión.

68.0250

170

fc

893.04.190

170

fc

MENU

Page 70: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA

BENEFICIO DEL AHORRO DE ENERGIA

Beneficios ambientales

Beneficios económicos

consumo eficiente

PARA HOY Y MAÑANA

Page 71: UNIVERSIDAD NACIONAL DE INGENIERÍA Área Académica de Cursos Complementarios FACULTAD DE INGENIERIA QUIMICA Y TEXTIL AHORRO DE ENERGIA AHORRO DE ENERGIA