unit - iii normal & oblique shocks

27
ME 6604 – GAS DYNAMICS AND JET PROPULSION UNIT – III SHOCK WAVES Mrs. N. PREMALATHA ASSOCIATE PROFESSOR DEPARTMENT OF MECHANICAL ENGG

Upload: sureshkcet

Post on 15-Feb-2017

59 views

Category:

Engineering


2 download

TRANSCRIPT

Page 1: UNIT - III NORMAL & OBLIQUE SHOCKS

ME 6604 – GAS DYNAMICS AND JET PROPULSION

UNIT – III SHOCK WAVES

Mrs. N. PREMALATHAASSOCIATE PROFESSOR

DEPARTMENT OF MECHANICAL ENGG

Page 2: UNIT - III NORMAL & OBLIQUE SHOCKS

Significance of Compressible Flows• Isentropic Flow a. Entropy remains constant b. All the stagnation parameters remain constant

• Fanno Flowa. Entropy changes (Non-isentropic process)

b. Stagnation temperature remains constant

• Rayleigh Flow a. Entropy changes (Non-isentropic process) b. Stagnation temperature changes • Flow Through Shock Waves

a. Entropy increases (Non-isentropic process) b. Stagnation temperature constant

Note: Isentropic flow tables are used for All the flows. How?

Page 3: UNIT - III NORMAL & OBLIQUE SHOCKS

Difference between Normal and Oblique Shock WavesNormal Shock Wave Oblique Shock Wave

Occurs in supersonic flow (M1 >1)

Occurs in supersonic flow (M1 >1, No difference)

Normal to the Flow direction Inclined at some other angleFlow direction does not change (Flow Deflection angle = 0)

Flow direction changes (Flow Deflection angle 0)

The downstream of the shock wave flow is always subsonic (M2 <1)

The downstream of the shock wave flow may be subsonic or supersonic (M2 <1 or M2 > 1)

Shock strength is high Shock strength is low

Page 4: UNIT - III NORMAL & OBLIQUE SHOCKS

Applications of Shock Waves– Supersonic flow over aerodynamic bodies-

Supersonic airfoils, wings, fuselage and other parts of airplanes

• Supersonic flow through engine components- Engine intake, Compressors, combustion chambers,

Nozzle

• Propellers running at high speeds

Current Research• Design of supersonic combustor for scramjet engine

• Shock interactions

• Shock boundary layer interaction

Page 5: UNIT - III NORMAL & OBLIQUE SHOCKS

Supersonic Flow Turning• For normal shocks, flow is perpendicular to shock

– no change in flow direction

• How does supersonic flow change direction, i.e., make a turn– either slow to subsonic ahead of turn (can

then make gradual turn) =bow shock

M1 M2

M1>1

M1>1

– go through non-normal wave with sudden angle change , i.e., oblique shock (also expansions: see later)

• Can have straight/curved, 2-d/3-d oblique shocks– will examine straight, 2-d oblique shocks

Page 6: UNIT - III NORMAL & OBLIQUE SHOCKS

Oblique Shock Waves• Mach wave

– consider infinitely thin body M1>1

• Oblique shock– consider finite-sized wedge,

half-angle, M1>1

– no flow turn required

11 M/1sin– infinitessimal wave

– flow must undergo compression– if attached shock

oblique shock at angle – similar for concave corner

M1>1

Page 7: UNIT - III NORMAL & OBLIQUE SHOCKS

Equations of Motion• Governing equations

– same approach as for normal shocks– use conservation equations and state equations

• Conservation Equations– mass, energy and momentum– this time 2 momentum equations - 2 velocity

components for a 2-d oblique shock• Assumptions

– steady flow (stationary shock), inviscid except inside shock, adiabatic, no work but flow work

Page 8: UNIT - III NORMAL & OBLIQUE SHOCKS

Control Volume• Pick control volume along

shock

p1, h1,T1, 1

v1

p2, h2,T2, 2

v2

-• Divide velocity into two

components– one tangent to shock, vt

– one normal to shock, vn

• Angles from geometry

v1nv2n

v1n

v2nAn

At

p1p2

1 2

v1t v2t

v1t v2t

v1t v2t

– v1n= v1sin; v1t=v1cos– v2n= v2sin(-); v2t=v2cos(-)– M1n= M1sin; M1t=M1cos– M2n= M2sin(-); M2t=M2cos(-)

Page 9: UNIT - III NORMAL & OBLIQUE SHOCKS

Conservation Equations• Mass

v1n

v2nAn

At

p1p2

1 2

v1t v2t

v1t v2t Adnv0 rel

CS

2Av

2AvAv

2Av

2AvAv

tt22

tt11nn22

tt22

tt11nn11

• Momentum CS

relCS

AdnvvAdnp

tangent nn22t2nn11t1t

21t

21 AvvAvv2

App2

App

t2t1 vv

normal nn22n2nn11n1n2n1 AvvAvvApAp

n22n11 vv (1)

2n22

2n1121 vvpp (2)

Page 10: UNIT - III NORMAL & OBLIQUE SHOCKS

Conservation Equations (con’t)• Energy

v1n

v2nAn

At

p1p2

1 2

v1t v2t

v1t v2t

2vhAv

2vhAv

22

2nn22

21

1nn11

2v

2vh

2v

2vh

2t2

2n2

2

2t1

2n1

1

2vh

2vh

2n2

2

2n1

1 (3)

• Eq’s. (1)-(3) are same equations used to characterize normal shocks ( with vnv)

• So oblique shock acts like normal shock in direction normal to wave– vt constant, but Mt1Mt2

11t

22t

1t

2t

avav

MM

(4)2

1

1t

2t

TT

MM

1

Page 11: UNIT - III NORMAL & OBLIQUE SHOCKS

Oblique Shock Relations• To find conditions across

shock, use M relations from normal shocks,

• but replaceM1 M1 sinM2 M2 sin(-)

• Mach Number

1sinM1

21

2sinMsinM 221

221

222

1M1

21

2MM 21

21

22

from

p1, h1,T1, 1

v1

p2, h2,T2, 2

v2

-

v1nv2n

v1t v2t

(5)

Page 12: UNIT - III NORMAL & OBLIQUE SHOCKS

Oblique Shock Relations (con’t)• Static Properties

p1, h1,T1, 1

v1

p2, h2,T2, 2

v2

-

v1nv2n

v1t v2t

(6)11sinM

12

pp 22

11

2

(from pressure ratio of NS wave)

(7)

2sinM1sinM1

vv

221

221

1

2

n2

n1

(from density ratio of NS wave)

121sinM

1sinM1

2sinM2

11

TT

2221

221

221

1

2

(8)

(from temperature ratio of NS wave)

Page 13: UNIT - III NORMAL & OBLIQUE SHOCKS

Oblique Shock Relations (con’t)• Stagnation Properties

1o2o TT To (from energy conservation)

121

211o2o ppTTpp

1

1

221

1

221

221

1o

2o11sinM

12

sinM2

11

sinM2

1

pp

(9)

Page 14: UNIT - III NORMAL & OBLIQUE SHOCKS

Use of Shock Tables• Since just replacing

M1 M1sinM2 M2sin(-)– can also use normal

shock tables– use M1'=M1sin to look up property ratios– M2= M2'/sin(-), with M2' from normal shock tables

• Warning– do not use p1/po2 from tables– only gives po2 associated with v2n, not v2t

p1, h1,T1, 1

v1

p2, h2,T2, 2

v2

-

v1nv2n

v1t v2t

Page 15: UNIT - III NORMAL & OBLIQUE SHOCKS

Example #1• Given: Uniform Mach 1.5 air

flow (p=50 kPa, T=345K) approaching sharp concave corner. Oblique shock produced with shock angle of 60°

• Find:1. To2

2. p2

3. (turning angle)• Assume: =1.4, steady, adiabatic, no work, inviscid except

for shock,….

=60°

M1=1.5T1=345Kp1=50kPa

M2

Page 16: UNIT - III NORMAL & OBLIQUE SHOCKS

Example #1 (con’t)• Analysis:Determination of To

30.160sin5.1sinMM 1n1

191.1805.1

786.0)(

12

12

2

TTppMTableNS n

– calculate normal component

K5005.12.01K345

M2

11TTT

2

2111o2o

Determination of p2

kPa3.90kPa50805.1pppp 1122

Determination of

2.11191.160cos5.1

786.0tan60 5.01

t2n2 MMtan 211n221t1n2 TTcosMMTTMM

v1t

v1

v1n -v2

v2nv2t

104.1sinMM n22 NOTE: Supersonic flow okay after oblique shock

=60°

M1=1.5T1=345Kp1=50kPa

M2

Page 17: UNIT - III NORMAL & OBLIQUE SHOCKS

Wave/Shock Angle• Generally, wave angle is not

given, rather know turning angle

• Find relationship between M1, , and

22cosM

1sinMtan2tan 21

221

v2-

v2n

v1

v1nv1t v2t

2sinM1

sinM1vv

221

221

n2

n1

(from relation between V1n and V2n and Vel triangle)

tanv

tanv

t2

t1

1

(10)

Page 18: UNIT - III NORMAL & OBLIQUE SHOCKS

Oblique Solution Summary

• If given M1 and turning angle,

1. Find from (iteration) or use oblique shock charts 2. Calculate M1n=M1sin

3. Use normal shock tables or Mach relations4. Get M2 from M2=M2n/sin(-)

M1

M2

Page 19: UNIT - III NORMAL & OBLIQUE SHOCKS

Example #2• Given: Uniform Mach 2.4, cool,

nitrogen flow passing over 2-d wedge with 16° half-angle.

• Find:, p2/p1 , T2/T1 , po2/po1 , M2

• Assume: =1.4, steady, adiabatic, no work, inviscid except for shock,….

M1=2.4 M2

Page 20: UNIT - III NORMAL & OBLIQUE SHOCKS

Example #2 (con’t)• Analysis:

Determination of

52.14.39sin4.2sinMM 1n1

9227.0;335.1;535.2;6935.0)1.( 1212122 oon ppTTppMNSTable

– use shock relations calculate normal component

75.1sinMM n22 Supersonic after shock

22cos4.14.2

1sin4.2tan216tan 2

22

=16°M1=2.4 M2

iterate 4.39

Page 21: UNIT - III NORMAL & OBLIQUE SHOCKS

Example #2 (con’t)• Analysis (con’t):

38.21.82sin4.2sinMM 1n1

5499.0;018.2;425.6;5256.0)( 1212122 oon ppTTppMNStable

– use shock relations calculate normal component

575.0sinMM n22

=16°M1=2.4 M2

– a second solution for

22cos4.14.21sin4.2tan216tan 2

22

in addition to 39.4 1.82

• Eqn generally has 2 solutions for : Strong and Weak oblique shocksNow subsonic after shock

previous solution 2.535 1.335 0.9227

1.75

Page 22: UNIT - III NORMAL & OBLIQUE SHOCKS

Strong and Weak Oblique Shocks• As we have seen, it is possible to get two

solutions to equation (10)

– 2 possible values of for given (,M1)– e.g.,

22cosM1sinMtan2tan 21

221

M1=2.4 39.4°

M2=1.75

=16°

M1=2.4 82.1°M2=0.575

=16°

• Examine graphical solution

Page 23: UNIT - III NORMAL & OBLIQUE SHOCKS

Graphical Solution• Weak shocks

– smaller –min=

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 (deg)

(d

eg)

0

10

20

30

40

50

60

70

80

90

M1= 1.25

1.52 2.5 3

510

100

=1.4M2<1

M2>1

Strong

Weak

=sin-1(1/M1)

–usuallyM2>1

• Strong shocks–max=90°

(normal shock)–always M2<1

• Both for =0– no turn for

normal shock or Mach wave

Page 24: UNIT - III NORMAL & OBLIQUE SHOCKS

Which Solution Will Occur?• Depends on upstream versus downstream pressure

– e.g., back pressure– p2/p1 large for strong shock

small for weak shock• Internal Flow

– can have p2 much higheror close to p1

M>1p1

pb,high

M>1p1

pb,low

• External Flow– downstream pressure

usually close to upstream p (both near patm)

M>1patm

patm

Page 25: UNIT - III NORMAL & OBLIQUE SHOCKS

Maximum Turning Angle• Given M1,

no straight obliqueshock solution for >max(M)

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 (deg)

(d

eg)

0

10

20

30

40

50

60

70

80

90

M1= 1.25

1.52 2.5 3

510

100

=1.4

max(M=3)~34°

• Given , no solution forM1<M1,min

• Given fluid (),no solution for any M1 beyond max

e.g., ~45.5° (=1.4)

max()

Page 26: UNIT - III NORMAL & OBLIQUE SHOCKS

Detached Shock• What does flow look like when no straight

oblique shock solution exists?– detached shock/bow shock, sits ahead of body/turn

M1>1>max

bow shock can cover whole

range of oblique shocks

(normal to Mach wave)

– normal shock at centerline (flow subsonic to negotiate turn); curves away to weaker shock

asymptotes to Mach wave

M2<1

M2>1

M1>1 >max

Page 27: UNIT - III NORMAL & OBLIQUE SHOCKS

CRITICAL FLOW AND SHOCK WAVES

0.1 DivergenceDragCR MM

MCR

• Sharp increase in cd is combined effect of shock waves and flow separation• Freestream Mach number at which cd begins to increase rapidly called Drag-

Divergence Mach number