understanding feshbach molecules with long range quantum defect theory paul s. julienne

33
Understanding Feshbach molecules with long range quantum defect theory Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland EuroQUAM satellite meeting, University of Durham, April 18, 2009 Collaborators (theory) Tom Hanna, Eite Tiesinga (NIST) Thanks also to Bo Gao (U. of Toledo) and Cheng Chin (U. Chicago) J. K. Freericks (Georgetown U.), M. Maśka (U. Silesia), R. Lemański (Wroclaw)

Upload: brenna

Post on 25-Jan-2016

21 views

Category:

Documents


0 download

DESCRIPTION

EuroQUAM satellite meeting, University of Durham, April 18, 2009. Understanding Feshbach molecules with long range quantum defect theory Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland. Collaborators (theory) Tom Hanna, Eite Tiesinga (NIST) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Understanding Feshbach molecules with long range quantum defect theory

Paul S. Julienne

Joint Quantum Institute, NIST and The University of Maryland

EuroQUAM satellite meeting, University of Durham, April 18, 2009

Collaborators (theory)

Tom Hanna, Eite Tiesinga (NIST)

Thanks also to Bo Gao (U. of Toledo) and Cheng Chin (U. Chicago)J. K. Freericks (Georgetown U.), M. Maśka (U. Silesia), R. Lemański

(Wroclaw)

Page 2: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Outline

1. Sone general considerations

2. The significance of the long-range potential0812.1486, Feshbach review 0902.1727, Book chapter0903.0884, MQDT treatment LiK, KRb

3. Long-range potential + quantum defect theory for atom-atom collisionsCan we get simple, practical models?

Page 3: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Surface of sunRoom temperature

Liquid He

Laser cooled atoms

(Bosons or Fermions)

Interior of sun

Optical lattice bandsQuantum gases

1 pK

1 nK

1 K

1 mK

1 K

1000 K

106 K

109 K

E/kB

E/h

1 MHz

1 GHz

1 THz

1 kHz

1 Hz

Page 4: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Ultracold polar molecules are now with us

1. Atom preparation

3. Populationtransfer

STIRAP

2. AtomAssociation

weakly bound pair

100 kHz

100 THz

4. Polar moleculesDipolar gases, lattices

Kohler et al, Rev. Mod. Phys. 78, 1311 (2006)

Chin, et al, arXiv: 0812.1496

Page 5: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Long range

-C6/R6

Analyticlong-range

theory(B. Gao)

a_

10-4 eV

Separated atoms

Properties ofseparated species

“simple”

10-10 eV (1 K)

A+B

Y

1 eV

AB

“Core”independent

of E ≈ 0

Short range

(E) scattering phase

(E) bound state phase(Ei)=nat eigenvalue

Page 6: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne
Page 7: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Resonance scattering S-matrix theory of molecular collisionsF. H. Mies, J. Chem. Phys. 51, 787, 798 (1969)

where

1

QT= ΛT

3 =h

2πμkBT

⎝ ⎜

⎠ ⎟

3

2

where

QT = translational partition function

T = thermal de Broglie wavelengthof pair

Replace

for elastic collisionsPhaseSpacedensity

Timescale

Dynamics

Page 8: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Adapted from Gao, Phys. Rev. A 62, 050702 (2000); Figure from FB review

Bound states from van der Waals theory

Page 9: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Spectrum of van der Waals potential

Adapted from Fig. 8Chin, Grimm, Julienne,Tiesinga, “FeshbachResonances in UltracoldGases”, submitted to Rev. Mod. Phys.arXiv:0813.1496

Singlet

Triplet

Blue lines: a = ∞

40K87Rb

Page 10: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

-0.41 GHz-3.17 GHz-10.56 GHz

Page 11: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

-3.00 GHz-3.17 GHz

Page 12: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne
Page 13: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Goal: Simple, reliable model for classification and calculation

* Now: Full quantum dynamics with CC calculations All degrees of freedom with real potentials Exact, but not simple

* vdW-MQDT: Reduction to a simpler representation Parameterized by

C6 van der Waals coefficient reduced massabg “background” scattering length

resonance widthB0 singularity in a(B)magnetic moment difference

vdW Energy scale

Page 14: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Analytic properties of (R,E) across thresholds (E) and betweenshort and long range (R)

Analytic solutions for -C6/R6 van der Waals potentialB. Gao, Phys. Rev. A 58, 1728, 4222 (1998)Also 1999, 2000, 2001, 2004, 2005Solely a function of C6, reduced mass , and scattering length a

Generalized Multichannel Quantum Defect Theory (MQDT):F. H. Mies, J. Chem. Phys. 80, 2514 (1984)F. H. Mies and P. S. Julienne, J. Chem. Phys. 80, 2526 (1984)

Ultracold:Eindhoven (Verhaar group), JILA (Greene, Bohn) P. S. Julienne and F. H. Mies, J. Opt. Soc. Am. B 6, 2257 (1989)F. H. Mies and M. Raoult, Phys. Rev. A 62, 012708 (2000)P. S. Julienne and B. Gao, in Atomic Physics 20, ed. by C. Roos,

H. Haffner, and R. Blatt (2006) (physics/0609013)

Use vdW solutions for MQDT analysis

Page 15: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

For coupled channels case

Given the reference the single-channel functions:for scattering (E>0) (E), C(E), tan (E) and bound states (E<0) (E)

MQDT theory (1984) gives coupled channels S-matrix and bound states.

From vdW theory, given C6, , a

Assume a single isolated resonance weakly coupled to the continuumYc,bg <<1, Ycc = -Ybg,bg = 0

Bound states

Scattering states

Page 16: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Classification of resonances by strength, arXiv:0812.1496

For magnetically tunable resonances:

Bound state norm Z as E → 0

Bound state E=0 shifts to

Resonance strength

See Kohler et al, Rev. Mod. Phys. 78, 1311 (2006)

Page 17: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Closed channeldominated

Entrance channeldominated

“Broad”

“Narrow”

Page 18: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

400 600 800

B (Gauss)

6Li ab

0

1

2

E/kB(mK)

400 600 800

B (Gauss)

0

1

7Li aa

Closed channeldominated

Entrance channeldominated

Color:sin2(E)

Page 19: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Two-channel “box” model

Corresponds to vdW MQDT when “box” width is chosen to be

Bound state equation for level with binding energy

with

Page 20: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Bound state E and Z for selected resonancesPoints: coupled channels Lines: box model

Closed-channelcharacter

Energy

Page 21: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Can we get simple models for bound and scattering states?

Use vdW solutions for MQDT treatment

Ingredients:Atomic hyperfine/Zeeman propertiesAtomic-molecule basis set frame transformationVan der Waals coefficient C6

S, T scattering lengths

arXiv: 0903.0884 Fit 9 s-wave measured resonances in 6Li40K from

To about 2 per cent accuracy (3 G)

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, et al., Phys. Rev. Lett. 100, 053201 (2008).

3 AND ONLY 3 free parameters

Page 22: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne
Page 23: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne
Page 24: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne
Page 25: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

40K87Rb aa resonances

Page 26: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne
Page 27: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne
Page 28: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne
Page 29: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

n=-2

Page 30: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

n = -3

A(-1)

D(-3)

B(-2)

Page 31: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

Ion-atom MQDT elastic and radiative charge transferNa + Ca+

Ion-atom -C4/R4:

Idziaszek, et al., Phys. Rev. A 79, 010702 (2009)

Model calculationonly (no realPotentials)

Page 32: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

A+B

Long range Asymptotic

Cold speciesprepared

Chemistry

Scatter offlong-rangepotential

Assumeunit probability

of inelastic eventat small R

“Universal” van der Waals inelasticity

LostReflect

Transmit

Reflect

Page 33: Understanding Feshbach molecules  with long range quantum defect theory Paul S. Julienne

“Universal” van der Waals

model

Applied to RbCs molecular quenching byHudson, Gilfoy, Kotochigova, Sage, and De Mille, Phys. Rev. Lett. 100, 203201 (2008)