understanding dissolved gas analysis of ester...

99
Understanding Dissolved Gas Analysis of Ester Liquids an Updated Review of Gas Generated in Ester Liquid by Stray Gassing, Thermal Decomposition and Electrical Discharge Initially presented at the 2016 IEEE ELECTRICAL INSULATION CONFERENCE (EIC)

Upload: others

Post on 17-Oct-2019

9 views

Category:

Documents


2 download

TRANSCRIPT

Understanding Dissolved Gas Analysis of Ester Liquids

an Updated Review of Gas Generated

in Ester Liquid by Stray Gassing,

Thermal Decomposition and Electrical Discharge

Initially presented at the 2016 IEEE ELECTRICAL INSULATION CONFERENCE (EIC)

TRANSFORMATOR’17

Carbon

Hydrogen= Hydrocarbon

Mineral Oil Chemical Structure

TRANSFORMATOR’17

Carbon

Hydrogen= Hydrocarbon

Mineral Oil Chemical Structure

Aromatic

Naphthenic

Paraffinic

TRANSFORMATOR’17

CO

O

R2

1R

R 21R , = Carbon Based Compound

Ester Chemical Structure

TRANSFORMATOR’17Glycerol

CO

CH

COCH2

R’’

CO

O

CH2

R’’’

O

O

R’

Natural Ester Chemical Structure

Fatty Acid

Fatty Acid

Fatty Acid

H

H

H

TRANSFORMATOR’17

CO

CH

COCH2

R’’

CO

O

CH2

R’’’

O

O

R’

Ester

Natural Ester Chemical Structure

R

R

R

H

H

H

TRANSFORMATOR’17

CO

CH

COCH2

R’’

CO

O

CH2

R’’’

O

O

R’

Natural Ester Chemical Structure

Fatty Acid

Fatty Acid

Fatty Acid

R

R

R

H

H

H

For R = HandR’, R’’, R’’’ =long hydrocarbonchain

TRANSFORMATOR’17Glycerol + Fatty Acid = Glyceride

CO

CH

COCH2

R’’

CO

O

CH2

R’’’

O

O

R’

Natural Ester Chemical Structure

H

H

TRANSFORMATOR’17

CO

CH

COCH2

R’’

CO

O

CH2

R’’’

O

O

R’

Natural Ester Chemical Structure

Glycerol + 3 * Fatty Acid = Triglyceride

TRANSFORMATOR’17

R’, R’’, R’’’ = Fatty Acid

TRANSFORMATOR’17

Fatty Acid Composition (%) of Some Natural Ester Liquids

10053162173Flax Seed

10010226224Canola

10075424411Soybean

10055128511Walnut

100<198245HO Sunflower

93<13248211Peanut

100<1731548Grape Seed

Sum%

LinolenicC18:3

3

LinoleicC18:2

2

OleicC18:1

1

StearicC18:0

0

PalmiticC16:0

0

Unsaturated

=

TRANSFORMATOR’17

Differences of Natural Ester Oilfrom Mineral Oil

Mineral Oil

TRANSFORMATOR’17

CO

CH

COCH2

CO

O

CH2

O

O

CO

CH

COCH2

CO

O

CH2

O

O

Differences of Natural Ester Oilfrom Mineral Oil

Ester Oil

TRANSFORMATOR’17

CO

CH

COCH2

CO

O

CH2

O

O

CO

CH

COCH2

CO

O

CH2

O

O

Differences of Natural Ester Oilfrom Mineral Oil

Numerous Carbon Double Bonds

TRANSFORMATOR’17

CO

CH

COCH2

CO

O

CH2

O

O

CO

CH

COCH2

CO

O

CH2

O

O

Differences of Natural Ester Oilfrom Mineral Oil

Numerous C – O – C Bonds

TRANSFORMATOR’17

CO

CH

COCH2

CO

O

CH2

O

O

CO

CH

COCH2

CO

O

CH2

O

O

Differences of Natural Ester Oilfrom Mineral Oil

Large amount of Oxygen

TRANSFORMATOR’17

CO

CH

COCH2

CO

O

CH2

O

O

CO

CH

COCH2

CO

O

CH2

O

O

Differences of Natural Ester Oilfrom Mineral Oil

Large Molecule

TRANSFORMATOR’17

Mineral Oil Natural Ester

• Different composition

• Different structure

• Different properties

• Different reactions?

TRANSFORMATOR’17

Oil Degradation

• Moderate temperature might produce gas

• Excessive temperature (Hot Spot) will produce gas

• Arcing will produce gas

• PD will produce gas

• It occur in both mineral and ester oil

TRANSFORMATOR’17

Oil Degradation

• Fortunately the gases produced are the same:– H2 hydrogen

– CH4 methane

– C2H6 ethane

– C2H4 ethylene

– C2H2 acetylene

– CO carbon monoxide

– CO2 carbon dioxide

• Just not in the same proportion

TRANSFORMATOR’17

Oil Degradation

• There is several way to degrade a molecule

– Autoxidation (Free Radical)

– Oxydation (O2)

– Pyrolysis (Heat)

– Ionisation (Charge transfer)

• Each way has several possible mechanisms

TRANSFORMATOR’17

Natural Ester Degradation: Stray Gassing

• In normal service, no gas production is expected

• However, Ethane has been reported for normal operation

• This phenomena is called “Stray Gassing”

• It is also observed with some Mineral Oil

• But Mineral Oil produce mostly H2, not C2H6

• Why?

TRANSFORMATOR’17

Degradation by Autoxidation(Free Radical)

RH R· + H·

RRR· + R·

ROO·R· + O2

ROO· + RH ROOH + R·

H2H· + H·

TRANSFORMATOR’17

1

+ H· (From a nearby R)

Ethane (C2H6)

HH

H

HH

HH

H

HH

H

H

H

H

HH

H

HH HH

H

H

H

H

H

H

1HH

H

H

HH

H

H

HHHH HH

HHHH HH

CCC CCCC

CCCCCCCCCCC

Omega-3

Stray Gassing: Formation of Ethane from Linolenic Acid (Oxidation)

TRANSFORMATOR’17

Stray Gassing: Formation of Ethane from Linolenic Acid

1O2 is unstable 3O2 is the normal form of Oxygen

So where 1O2 come from ?

1

HH

H

HH HH

H

H

1

Sn

S2

S1

S0 Electronic Ground State

Vibrational states

Photosensitive Oxygen

Photon absorption

е-

γ

е-

Electronic statesSinglet (S0,S1,S2,Sn)

Triplet (T1,T2)

Molecule

Generation of 1O2

Photon Capture

е-

Sn

S2

S1

S0 Electronic Ground State

Vibrational states

Photosensitive

е-

е-

е-

Electronic statesSinglet (S0,S1,S2,Sn)

Triplet (T1,T2)

Molecule

Generation of 1O2

е-

Fluorescence

Fluorescentemission

γ

Internal conversion (IC), heat transfer

Sn

S2

S1T2T1

S0 Electronic Ground State

Vibrational states

Internal conversion (IC), heat transfer

Intersystem crossing (ISC)

Photosensitive

е-

е-

е-

Electronic statesSinglet (S0,S1,S2,Sn)

Triplet (T1,T2)

Molecule

Generation of 1O2

ISC

е-

Sn

S2

S1T2T1

S0 Electronic Ground State

Vibrational states

Photosensitive

е-

е-

Electronic statesSinglet (S0,S1,S2,Sn)

Triplet (T1,T2)

Molecule

Generation of 1O2

Phosphorescence

е-

Phosphorescentemission

γ

е-

Sn

S2

S1T2T1

3O2

1O2

S0 Electronic Ground State

Vibrational states

Photosensitive

Oxygen

Spin inversion

е-

е-

Electronic statesSinglet (S0,S1,S2,Sn)

Triplet (T1,T2)

Molecule

Generation of 1O2

е-

е-е-

Spin Inversion

е-

TRANSFORMATOR’17

Stray Gassing

• Photoreaction is compound dependant

• It is also dependant of light energy

• Is photoreaction also occurring in natural ester?

• The short answer is “YES”

TRANSFORMATOR’17

Stray Gassing

Natural ester fluid showing phosphorescence from photo activity (left) and after this activity had subsided (right).

TRANSFORMATOR’17

Stray Gassing in Natural Ester

• Could be initiated by Free radical reaction

• Could be initiated by Photoreaction

• Exposure to light (UV and Sunlight) create gas

• Exposure to Light also increase gas generation at moderate temperature.

• Mostly H2, C2H6, CO and CO2

• C2H6 production related to oil composition

TRANSFORMATOR’17

Stray Gassing in Natural Ester

• Importance of storing Oil properly

Impact of 3 years exposure of soybean oil to sunlight in Polyethylene tank (ASTM D7150 at 120°C)

942

220

0

7

615

35

149

NewASTM 7150

786

7

0

0

0

0

0

New

2627

265

0

52

400

18

33

Stored

2199CO2

351CO

0C2H2

68C2H4

1372C2H6

76CH4

429H2

StoredASTM 7150

942

220

0

7

615

35

149

NewASTM 7150

786

7

0

0

0

0

0

New

2627

265

0

52

400

18

33

Stored

2199CO2

351CO

0C2H2

68C2H4

1372C2H6

76CH4

429H2

StoredASTM 7150

TRANSFORMATOR’17

Stray Gassing in Natural Ester

• Importance of storing Oil properly

As Received

942

220

0

7

615

35

149

NewASTM 7150

786

7

0

0

0

0

0

New

2627

265

0

52

400

18

33

Stored

2199CO2

351CO

0C2H2

68C2H4

1372C2H6

76CH4

429H2

StoredASTM 7150

942

220

0

7

615

35

149

NewASTM 7150

786

7

0

0

0

0

0

New

2627

265

0

52

400

18

33

Stored

2199CO2

351CO

0C2H2

68C2H4

1372C2H6

76CH4

429H2

StoredASTM 7150

TRANSFORMATOR’17

Stray Gassing in Natural Ester

• Importance of storing Oil properly

After Stray Gassing Test

942

220

0

7

615

35

149

NewASTM 7150

786

7

0

0

0

0

0

New

2627

265

0

52

400

18

33

Stored

2199CO2

351CO

0C2H2

68C2H4

1372C2H6

76CH4

429H2

StoredASTM 7150

942

220

0

7

615

35

149

NewASTM 7150

786

7

0

0

0

0

0

New

2627

265

0

52

400

18

33

Stored

2199CO2

351CO

0C2H2

68C2H4

1372C2H6

76CH4

429H2

StoredASTM 7150

TRANSFORMATOR’17

Stray Gassing in Natural Ester

• Importance of storing sample properly

Impact of one week sample exposure to light

(ASTM D3612 method C at 70°C)

TRANSFORMATOR’17

Stray Gassing

• Do not store oil sample under the sun

• Do not store outside in translucent container

• Expect some Ethane

TRANSFORMATOR’17

Thermal Studies

• Controlled thermal stress zone– Studies from 250°C to 700°C at 50 degree intervals

• Controlled fluid flow

• Thermal relaxation zone

• Fluid reservoir and headspace

• Managed system pressure

• Nitrogen environment– Low oxygen content

• Fixed study time– Ensemble of studies optimized at 8 hours.

• Liquid and gas sample collection

TRANSFORMATOR’17

Thermal Studies

Gas Collector

N2

Oil1.5 L

Pump

Heate

r

Sam

plin

g

250 – 700°C

8 Hours

TRANSFORMATOR’17

Thermal Studies

TRANSFORMATOR’17

Total gas volume 8 Hours

Total Gas Generation

0

20

40

60

80

100

120

140

Temperature

Volu

me (

liters

)

Soybean

Sunflower

Mineral

300°C 400°C 500°C 600°C 700°C

TRANSFORMATOR’17

Gas Produced in Soybean Oil

Soybean Oil

0

200,000

400,000

600,000

800,000

1,000,000

Temperature

Am

ount

of

Gas (

ppm

)

H2

CH4

C2H6

C2H4

C2H2

CO

CO2

300°C 400°C 500°C 600°C 700°C

H2

CH4

C2H6

C2H4

C2H2

CO2

CO

TRANSFORMATOR’17

Gas Produced in Sunflower Oil

Sunflower Oil

0

200,000

400,000

600,000

800,000

1,000,000

Temperature

Am

ount

of

Gas (

ppm

)

H2

CH4

C2H6

C2H4

C2H2

CO

CO2

300°C 400°C 500°C 600°C 700°C

H2

CH4

C2H6

C2H4

C2H2

CO2

CO

TRANSFORMATOR’17

Gas Produced in Mineral Oil

Mineral Oil

0

200,000

400,000

600,000

800,000

1,000,000

Temperature

Am

ount

of

Gas (

ppm

)

H2

CH4

C2H6

C2H4

C2H2

CO

CO2

300°C 400°C 500°C 600°C 700°C

H2

CH4

C2H6

C2H4

C2H2

CO2

CO

TRANSFORMATOR’17

Duval TriangleMineral Oil

Duval 1

C2H2

CH4 C2H4

0

100 0

100

0100

D2

D1

DT

T1

T2

T3

PD

TRANSFORMATOR’17

Duval TriangleMineral + Soybean Oil

Duval 1

C2H2

CH4 C2H4

0

100 0

100

0100

D2

D1

DT

T1

T2

T3

PD

TRANSFORMATOR’17

Duval TriangleMineral + Soybean + Sunflower Oil

Duval 1

C2H2

CH4 C2H4

0

100 0

100

0100

D2

D1

DT

T1

T2

T3

PD

TRANSFORMATOR’17

Modified Duval Triangles

Duval 3 b

C2H2

CH4 C2H4

0

100 0

100

0100

D2

D1

DT

T1

T2

T3

PD

Duval 3 d

C2H2

CH4 C2H4

0

100 0

100

0100

D2

D1

DT

T1

T2

T3

PD

TRANSFORMATOR’17

Acidity

• Thermal Degradation of Natural Ester generate also high level of Acidity

Temperature °C 250° 300° 350° 400° 450° 500° 550° 600° 650° 700°

Soybean Oil 0.026 0.049 0.084 0.328 9.035 >10 >10 >10 >10 >10

Sunflower Oil 0.043 0.061 0.066 0.15 0.262 8.762 >10 >10 >10 >10

Mineral Oil 0.01 0.01 0.01 0.01 0.011 0.01 0.01 0.047 0.048 0.048

Acid Number

TRANSFORMATOR’17

Electrical Discharges in Ester Oil

• In Arcing and PD, oil degradation occur in gas phase

• Plasma is involved

• Large difference of energy level

TRANSFORMATOR’17

Partial Discharges Studies

1. Oil

2. Salt Bath

3. Gas Phase

4. Electrode

5. Tesla Coil

12

3

4

5

12

3

4

5

TRANSFORMATOR’17

Partial Discharges Studies

TRANSFORMATOR’17

Partial Discharges

Mineral

Oil

Soybean

Oil

High Oleic

Sunflower Oil

Rape seed

Oil A

Rape seed

Oil B

Synthetic

Ester Oil

H2 4733 537 179 1462 3110 2977CH4 251 167 0 38 188 129C2H6 22 18 0 70 7 0C2H4 2 1 0 2 0 0C2H2 0 0 0 0 0 0CO 4818 2041 2535 1079 1336 1245CO2 5885 9432 5826 10311 4702 5379

Mineral Oil

Soybean

Oil

High Oleic

Sunflower Oil

Rape seed

Oil A

Rape seed

Oil B

Synthetic

Ester OilH2 5718 153 24 352 4947 4589

CH4 527 23 0 31 214 162C2H6 61 7 0 12 13 11C2H4 0 0 0 0 0 0C2H2 0 0 0 0 0 0CO 954 1428 532 1846 625 632CO2 310 1940 578 3202 918 1243

In Air

In Nitrogen

TRANSFORMATOR’17

D1

Study 1

Study 2

Mineral Oil Soybean Oil

High Oleic

Sunflower Oil Rape seed Oil

Synthetic

Ester OilH2 3462 2136 1282 2269 1664

CH4 452 155 80 60 69C2H6 2 1 6 0 0C2H4 554 532 327 180 154C2H2 3251 3339 2477 2660 2495CO 10 785 381 527 749CO2 352 915 537 777 665

Mineral Oil Soybean Oil

High Oleic

Sunflower OilH2 452 112 95

CH4 20 8 8C2H6 8 2 2C2H4 13 8 6C2H2 54 26 22CO 4 28 21CO2 473 558 671

TRANSFORMATOR’17

Duval 1 for D1 studies

Duval 1

C2H2

CH4 C2H4

0

100 0

100

0100

D2

D1

DT

T1

T2

T3

PD

TRANSFORMATOR’17

Statistical Study

90 Percentile

95 Percentile

90 Percentile H2 CH4 C2H6 C2H4 C2H2 CO CO2

Ester Liquids 106 12 332 11 0 138 1497Mineral Oil 81 94 106 62 0 680 6680

95 Percentile H2 CH4 C2H6 C2H4 C2H2 CO CO2

Ester Liquids 159 21 583 19 2 195 2269Mineral Oil 186 182 225 135 8 893 9471

TRANSFORMATOR’17

Reference

TRANSFORMATOR’17

Thank You• Questions ?

Corresponding email:

Claude Beauchemin

[email protected]

Understanding Dissolved Gas Analysis of Ester Liquids

an Updated Review of Gas Generated in Ester Liquid by Stray Gassing,

Thermal Decomposition and Electrical Discharge

Initially presented at the 2016 IEEE ELECTRICAL INSULATION CONFERENCE (EIC)

Carbon

Hydrogen= Hydrocarbon

Mineral Oil Chemical Structure

Carbon

Hydrogen= Hydrocarbon

Mineral Oil Chemical Structure

Aromatic

Naphthenic

Paraffinic

CO

CH

COCH2

R’’

CO

O

CH2

R’’’

O

O

R’

TriglycerideEster

Natural Ester Chemical Structure

GlycerolGlycerol + Fatty Acid = Glyceride

Fatty Acid

Fatty Acid

Fatty Acid

H

H

H

R

R

R

H

H

H H

H

For R = HandR’, R’’, R’’’ =long hydrocarbonchain

R’, R’’, R’’’ = Fatty Acid

Fatty Acid Composition (%) of Some Natural Ester Liquids

10053162173Flax Seed

10010226224Canola

10075424411Soybean

10055128511Walnut

100<198245HO Sunflower

93<13248211Peanut

100<1731548Grape Seed

Sum%

LinolenicC18:3

3

LinoleicC18:2

2

OleicC18:1

1

StearicC18:0

0

PalmiticC16:0

0

Unsaturated

=

CO

CH

COCH2

CO

O

CH2

O

O

CO

CH

COCH2

CO

O

CH2

O

O

Differences of Natural Ester Oilfrom Mineral Oil

Numerous Carbon Double Bonds Large amount of Oxygen

Large MoleculeNumerous C – O – C Bonds

Mineral Oil Natural Ester

• Different composition

• Different structure

• Different properties

• Different reactions?

Oil Degradation

• Moderate temperature might produce gas

• Excessive temperature (Hot Spot) will produce gas

• Arcing will produce gas

• PD will produce gas

• It occur in both mineral and ester oil

Oil Degradation

• Fortunately the gases produced are the same:– H2 hydrogen– CH4 methane– C2H6 ethane– C2H4 ethylene– C2H2 acetylene– CO carbon monoxide– CO2 carbon dioxide

• Just not in the same proportion

Natural Ester Degradation: Stray Gassing

• In normal service, no gas production is expected

• However, Ethane has been reported for normal operation

• This phenomena is called “Stray Gassing”

• It is also observed with some Mineral Oil

• But Mineral Oil produce mostly H2, not C2H6

• Why?

1

+ H· (From a nearby R)

Ethane (C2H6)

HH

H

HH

HH

H

HH

H

H

H

H

HH

H

HH HH

H

H

HH

H

H

1HH

H

H

HH

H

H

HHHH HH

HHHH HH

CCC CCCCCCCCCCCCCCC

Omega-3

Stray Gassing: Formation of Ethane from Linolenic Acid (Oxidation)

Stray Gassing: Formation of Ethane from Linolenic Acid

1O2 is unstable 3O2 is the normal form of Oxygen

So where 1O2 come from ?

1

HH

H

HH HH

H

H

1

That is Torun contribution to the science of DGA !!

SnS2S1 T2T13O21O2S0 Electronic Ground State

Vibrational states

Internal conversion (IC), heat transfer

Intersystem crossing (ISC)

Photosensitive Oxygen

Photon absorption

Phosphorescentemission

Spin inversion

е-

γ

е-

е-е-

е-

е-

γ

Electronic statesSinglet (S0,S1,S2,Sn)Triplet (T1,T2)

Molecule

Jablonski Diagram: Generation of 1O2

е- е- е-

е-е-

Energy Levels

Fluorescentemission

γ

Stray Gassing

• Photoreaction is compound dependant

• It is also dependant of light energy

• Is photoreaction also occurring in natural ester?

Stray Gassing

• The short answer is “YES”

Natural ester fluid showing phosphorescence from photo activity (left) and after this activity had subsided (right).

Stray Gassing in Natural Ester

• Could be initiated by Free radical reaction

• Could be initiated by Photoreaction

• Exposure to light (UV and Sunlight) create gas

• Exposure to Light also increase gas generation at moderate temperature.

• Mostly H2, C2H6, CO and CO2

• C2H6 production related to oil composition

Stray Gassing in Natural Ester

• Importance of storing Oil properly

Impact of 3 years exposure of soybean oil to sunlight in Polyethylene tank (ASTM D7150 at 120°C) As ReceivedAfter Stray Gassing Test

942220

07

61535

149

NewASTM 7150

786700000

New

2627265

052

4001833

Stored

2199CO2

351CO0C2H2

68C2H4

1372C2H6

76CH4

429H2

StoredASTM 7150

942220

07

61535

149

NewASTM 7150

786700000

New

2627265

052

4001833

Stored

2199CO2

351CO0C2H2

68C2H4

1372C2H6

76CH4

429H2

StoredASTM 7150

Stray Gassing in Natural Ester

• Importance of storing sample properly

Impact of one week sample exposure to light (ASTM D3612 method C at 70°C)

Stray Gassing

• Do not store oil sample under the sun

• Do not store outside in translucent container

• Expect some Ethane

Thermal Studies

• Controlled thermal stress zone– Studies from 250°C to 700°C at 50 degree intervals

• Controlled fluid flow

• Thermal relaxation zone

• Fluid reservoir and headspace

• Managed system pressure

• Nitrogen environment– Low oxygen content

• Fixed study time– Ensemble of studies optimized at 8 hours.

• Liquid and gas sample collection

Thermal Studies

Gas Collector

N2

Oil1.5 L

Pump

Hea

ter

Sam

plin

g

250 – 700°C

8 Hours

Thermal Studies

Total gas volume 8 Hours

Total Gas Generation

0

20

40

60

80

100

120

140

Temperature

Vol

ume

(lite

rs)

SoybeanSunflowerMineral

300°C 400°C 500°C 600°C 700°C

Gas Produced in Soybean Oil

Soybean Oil

0

200,000

400,000

600,000

800,000

1,000,000

Temperature

Am

ount

of G

as (p

pm) H2

CH4C2H6C2H4C2H2COCO2

300°C 400°C 500°C 600°C 700°C

H2

CH4

C2H6

C2H4

C2H2

CO2

CO

Gas Produced in Sunflower Oil

Sunflower Oil

0

200,000

400,000

600,000

800,000

1,000,000

Temperature

Am

ount

of G

as (p

pm) H2

CH4C2H6C2H4C2H2COCO2

300°C 400°C 500°C 600°C 700°C

H2

CH4

C2H6

C2H4

C2H2

CO2

CO

Gas Produced in Mineral Oil

Mineral Oil

0

200,000

400,000

600,000

800,000

1,000,000

Temperature

Am

ount

of G

as (p

pm) H2

CH4C2H6C2H4C2H2COCO2

300°C 400°C 500°C 600°C 700°C

H2

CH4

C2H6

C2H4

C2H2

CO2

CO

Duval TriangleMineral Oil

Duval 1

C2H2

CH4 C2H4

0

100 0

100

0100

D2

D1

DT

T1

T2

T3

PD

Duval TriangleMineral + Soybean Oil

Duval 1

C2H2

CH4 C2H4

0

100 0

100

0100

D2

D1

DT

T1

T2

T3

PD

Duval TriangleMineral + Soybean + Sunflower Oil

Duval 1

C2H2

CH4 C2H4

0

100 0

100

0100

D2

D1

DT

T1

T2

T3

PD

Modified Duval Triangles

Duval 3 b

C2H2

CH4 C2H4

0

100 0

100

0100

D2

D1

DT

T1

T2

T3

PD

Duval 3 d

C2H2

CH4 C2H4

0

100 0

100

0100

D2

D1

DT

T1

T2

T3

PD

Acidity

• Thermal Degradation of Natural Ester generate also high level of Acidity

Temperature °C 250° 300° 350° 400° 450° 500° 550° 600° 650° 700°

Soybean Oil 0.026 0.049 0.084 0.328 9.035 >10 >10 >10 >10 >10Sunflower Oil 0.043 0.061 0.066 0.15 0.262 8.762 >10 >10 >10 >10Mineral Oil 0.01 0.01 0.01 0.01 0.011 0.01 0.01 0.047 0.048 0.048

Acid Number

Electrical Discharges in Ester Oil

• In Arcing and PD, oil degradation occur in gas phase

• Plasma is involved

• Large difference of energy level

Partial Discharges Studies

1. Oil

2. Salt Bath

3. Gas Phase

4. Electrode

5. Tesla Coil

12

3

4

5

12

3

4

5

Partial Discharges

Mineral Oil

Soybean Oil

High Oleic Sunflower Oil

Rape seed Oil A

Rape seed Oil B

Synthetic Ester Oil

H2 4733 537 179 1462 3110 2977CH4 251 167 0 38 188 129C2H6 22 18 0 70 7 0C2H4 2 1 0 2 0 0C2H2 0 0 0 0 0 0CO 4818 2041 2535 1079 1336 1245CO2 5885 9432 5826 10311 4702 5379

Mineral Oil Soybean

OilHigh Oleic

Sunflower OilRape seed

Oil ARape seed

Oil BSynthetic Ester Oil

H2 5718 153 24 352 4947 4589CH4 527 23 0 31 214 162C2H6 61 7 0 12 13 11C2H4 0 0 0 0 0 0C2H2 0 0 0 0 0 0CO 954 1428 532 1846 625 632CO2 310 1940 578 3202 918 1243

In Air

In Nitrogen

D1

Study 1

Study 2

Mineral Oil Soybean Oil

High Oleic Sunflower Oil Rape seed Oil

Synthetic Ester Oil

H2 3462 2136 1282 2269 1664CH4 452 155 80 60 69C2H6 2 1 6 0 0C2H4 554 532 327 180 154C2H2 3251 3339 2477 2660 2495CO 10 785 381 527 749CO2 352 915 537 777 665

Mineral Oil Soybean OilHigh Oleic

Sunflower OilH2 452 112 95

CH4 20 8 8C2H6 8 2 2C2H4 13 8 6C2H2 54 26 22CO 4 28 21CO2 473 558 671

Duval 1 for D1 studies

Duval 1

C2H2

CH4 C2H4

0

100 0

100

0100

D2

D1

DT

T1

T2

T3

PD

Statistical Study

90 Percentile

95 Percentile

90 Percentile H2 CH4 C2H6 C2H4 C2H2 CO CO2

Ester Liquids 106 12 332 11 0 138 1497Mineral Oil 81 94 106 62 0 680 6680

95 Percentile H2 CH4 C2H6 C2H4 C2H2 CO CO2

Ester Liquids 159 21 583 19 2 195 2269Mineral Oil 186 182 225 135 8 893 9471

Reference

Thank You• Questions ?

Corresponding email:

Claude Beauchemin

[email protected]