ultrafast science at slac - stanford university · 2008. 7. 1. · slac aaron lindenberg stanford...

43
Ultrafast Science at SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June 26, 2008

Upload: others

Post on 17-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Ultrafast Science

at SLAC

Aaron Lindenberg Stanford Dept. of Materials Science and Engineering

Stanford Linear Accelerator Center June 26, 2008

Page 2: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Ourunderstandingoftheworldislimitedbywhatwecanobserve.Forthousandsofyears,thismeantwithourowneyes...

1608-HansLippersheyinventstelescope1609-Galileousesthetelescopetoobservethemoon’sofJupiter,cratersonthemoon,sunspots,galacticnebulae)

1595-ZachariasJansenninventsmicroscopeImprovedbyAntonvanLeeuwenhoek.Heobservesbloodcells,bacteria,nematodes...

1665(RobertHooke)

Page 3: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

X-rays,withwavelengthsontheorderofaninteratomicspacing,provideameansofseeingontheatomic-scale.

Apowerfultoolforprobingmaterialsstructure,molecularstructure,nanoscaleobjects...andcreatinghavocinthestreets.

Page 4: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

E[eV]≅12398/λ[Å]

Page 5: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

TheFatherofUltrafastScience,circa1890

Page 6: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Whenahorsegallops,doallfourfeetleavethegroundatonetime?

Page 7: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June
Page 8: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June
Page 9: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Takingsnapshotsofdynamicalphenomena

H.Edgerton

Page 10: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June
Page 11: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June
Page 12: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June
Page 13: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Control of materials structure with light

EricMazur,HarvardUniversity

Page 14: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Thelightsponge

Mazuretal.

Page 15: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

SKawata,etal.,Nature412,697,2001.

Femtosecondsub-micronsculpting

Page 16: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Shortlength-scalesimpliesultrafasttime-scales

Short-pulsex-raysallowonetomeasurebothtechnologicallyrelevantlength-scalesandtechnologicallyrelevanttime-scales...

Ultrasmall Ultrafast

Page 17: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

WhyX-rays?

crystallography imaging

(Roentgen1895)

microscopy

Page 18: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

ThestructureofDNA,solvedthroughx-raydiffraction

Watson,Crick,Franklinetal.-1953

Page 19: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Visualizingatomic-scalemotion:Howdoatomsmove?

Page 20: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

UltraslowMammoth-scaleMicroscopy

Page 21: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

harpo 10-27

yocto 10-24

milli 10-3

micro 10-6

nano 10-9

pico 10-12

femto 10-15

atto 10-18

zepto 10-21 Pulse duration (seconds)

lasers (and laser-driven sources)

Synchrotrons

Condensed Matter Physics Chemistry and Biology HEP,

Cosmology

Ultrafast X-ray Sources and Science:

Particle Collisions Atomic Physics

LCLS SPPS

(fromP.Bucksbaum)

Page 22: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

HowdoesanRNAmoleculefold?

Page 23: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Phase-changematerials:Switchingdynamics

Page 24: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Whatarethefluctuationsthatoccurinthestructureofaliquid?

equilibrium...

andnon-equilibrium...

Page 25: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Example2.Imagingnanoscalenucleationdynamicsatfemtosecondresolution

Page 26: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Formationofsub-criticalnuclei,fluctuatingonpstime-scales

Simulations(Lorazoetal):

Directvisualizationofmotiononafreeenergysurface

Page 27: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

StanfordLinearAcceleratorCenter(SLAC)

Page 28: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Twomainstepstodoingultrafastx-rayscienceatSLAC

1.Makerelativisticultrafastelectronbunches

2.Turnelectronsintox-rays

Page 29: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

What’sanFEL?

Answer:It’sarelativisticelectronbeamandanelectromagneticwaveco-propagatingthroughaperiodicmagneticfield.

Sometimeduring2009,arevolutionarynewtoolwillbecomeavailableatSLAC...

TheLCLS(LinacCoherentLightSource)(Theworld’sfirsthardx-rayFEL)

Page 30: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Howdoesanundulatorwork?

1.  Fromtheelectron’spointofview,asithurtlestowardstheundulator,theundulatorperiodisLorentzcontractedbyγ

2.  Theelectronwigglesinthisfieldandradiateslikeadipoleatwavelength

3.  Anobserversittingattheoutputoftheundulatorseestheemittedlightblue-shiftedbyroughlyanotherfactorofγ.

!U/"

Page 31: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

How does an undulator work?

Consider electrons moving at almost the speed of light through a periodic magnetic field (undulator).

The periodically-accelerating electrons create periodic radiation wave fronts…

Resonance condition: In the time it takes an electron to travel the length of one undulator period, the light wavefront travels one light wavelength further.

This gives constructive interference and results in narrowband intense emission of x-rays.

Page 32: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Lightproducedondifferentundulatorbendsfromthesameelectronareinphase

Butlightproducedbydifferentelectronswithinthebunchareoutofphase

Intensityscaleswiththenumberofelectrons

Page 33: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

What happens if the radiated field acts back on the electrons?

• Depending on the relative phase of EM field with respect to an electron, it either gains transverse momentum, loses it, or feels no net effect

Electron path in undulator field

EM field adds momentum

EM field removes momentum

EM effect neutral

Page 34: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Undulator FEL

Page 35: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

The Free-Electron Laser instability •  Electrons that gain momentum swing wider, take longer path length

•  Electrons that lose momentum take shorter path length •  All electrons converge on each other at the neutral phase position: they

bunch together with spacing equal to undulator fundamental wavelength

•  The bunched electrons radiate in phase, adding to the strength of the EM field

•  This makes the interaction between field and electrons stronger

•  Causes more bunching •  Etc.

Intensity scales like N2!

Page 36: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

Self-Amplified Spontaneous Emission (SASE)

log

(out

put p

ower

)

Length along undulator

Undulator regime (unbunched)

Exponential gain regime (bunching)

Saturation regime

Page 37: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

ChladniPatterns

Page 38: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June
Page 39: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

2-3 mJ FEL

20 mJ Spontaneous

Spatial distribution of SASE FEL radiation

Fluence, viewed at 100m, fundamental λ = 1.5Å

Page 40: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June
Page 41: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

SLACResearchYard

Page 42: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June
Page 43: Ultrafast Science at SLAC - Stanford University · 2008. 7. 1. · SLAC Aaron Lindenberg Stanford Dept. of Materials Science and Engineering Stanford Linear Accelerator Center June

LCLSParameters

Answer:1033ph/sec/mrad2/mm2/0.1%BW

Thanks,buthowbrightistheLCLS?

1mJin100fs=1010W(totalUSenergyconsumptionrateisabout1012W)

focusedto1um:1018W/cm2(roughlytheearth’ssolarfluxfocusedtotheheadofapin)

E-field:3x1010V/cm(orderofmagnitudelargerthantheatomicunitoffield)

HowbrightistheLCLS?