tutorial on optical fibres

25
Tutorial on optical fibres F. Reynaud IRCOM Limoges Équipe optique Equipe Optique IRCOM E cran : v isu alisation d u faiscea u d iffra cté F ib re op tiq ue /a a (d iam ètre co eu r) 0 (diam ètre d ’un gra in ) D im ension D irectio n 0=2O N ~ C a s d ’u ne fib re op tiq ue m ultim ode n 1 n 2 t I E la rg issem en t d e l’im p ulsion t Is 1 2 2 > > 1 Cargèse sept 2002

Upload: bambi

Post on 12-Jan-2016

50 views

Category:

Documents


2 download

DESCRIPTION

Tutorial on optical fibres. F. Reynaud IRCOM Limoges Équipe optique. Cargèse sept 2002. Silica fibres typical refractive index : 1,45 – 1,50 R efractive index difference Core diameter  : 5 à 50 µm Cladding diameter  : 125 à 500 µm. 1) Generalities. optical fibre structure. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Tutorial on optical fibres

Tutorial on optical fibresTutorial on optical fibres

F. ReynaudIRCOM LimogesÉquipe optique

F. ReynaudIRCOM LimogesÉquipe optique

Equipe Optique

IRCOM

Equipe Optique

IRCOM

E cra n : v isu a lisa t io n d u fa iscea u d iffra c té

F ib re o p tiq u e

/a

a (d ia m è tre c o e u r )

0 (d iam ètre d ’u n gra in )

D im en sio n

D irec tio n

0= 2 O N

~

C a s d ’u n e f ib re o p tiq u e m u ltim o d e

n 1

n 2

t

I

E la rg issem en t d e l’ im p u lsio n

t

Is

12

2 > > 1

Cargèse sept 2002

Page 2: Tutorial on optical fibres

optical fibre structure optical fibre structure

Equipe Optique

IRCOM

Equipe Optique

IRCOM

S te p in d e x p ro file

n

R a d iu s .

G ra d e d in d e x p ro f i le

n

R a d iu s .

1) Generalities1) Generalities

M e c h a n ic a l c o a t in g

C la d d in g C o re

Cargèse sept 2002

Silica fibres typical refractive index : 1,45 – 1,50Refractive index difference

Core diameter : 5 à 50 µm Cladding diameter : 125 à 500 µm

%1gaine

gainemaxcoeur

n

nnn

%1

maxcore

claddingnnn

n cladding

Refractive index profil

Page 3: Tutorial on optical fibres

optical fibre manufacturingoptical fibre manufacturing

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

G a z (o x y g è n e + d o p a n t)

s il ic e tu b e

H e a te r (1 7 0 0 ° C )

In tern a l co a tin g C o lla p se step

H e a te r (1 9 0 0 ° C )

C o re C la d d in g

P reform m a n u fac tu r in g b y M C V D p ro cess

In te r n a l c o a tin g

1) preform manufacturing1) preform manufacturing

2) Drawing process2) Drawing process

P refo rm

O v en

C o a tin g

P o ly m er iza tio n u s in g U -V

C a b esta n M eca n ica lTests

F ib re ro ll

F ib re d ia m eter sen so r )

D ra w in g sp eed serv o co n tro l

D raw in g p ro cess

(Modified Chemical Vapour Deposition). PCVD (Plasma Chemical Vapour Deposition)OVPO (Outside Vapour Phase Oxydation

1) Generalities1) Generalities

Page 4: Tutorial on optical fibres

2) Propagation in optical fibres2) Propagation in optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

m a x

C a se o f a n o p tica l f ib re

n 1

n 2C la d d in g

C o re

Geometrical optics

1)isin(n

nlim

2

1

Snell Decartes law :

n

To ta l re flex io n

i1 i1

n 1

n 2

i1 > ilim

)isin(n)isin(n 2211

1)cos(n

nmax

2

1

)n

narccos(

1

2

Possibility to trap light beams in an high refractive index area surrounded by a low refractive index area

i1

n 1

n 2

i2

n

R efra ct io n

Page 5: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

)sin(2i

Wave theory

P la n a r w a v eg u id e w ith m irro rs

a

In ten s ity

P o s itio n

2) Propagation in optical fibres2) Propagation in optical fibres

First example planar mirror guide

Propagation without losses:Intensity = 0 on mirrors

a = n i with n = integer

Two directions interference between two plane waves

n

a

)sin(2

)a2

nsin(Arc

For each n

one propagation mode

Page 6: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

a

n 2

n 2

n 1

In ten s ité

P o s itio n

2) Propagation in optical fibres2) Propagation in optical fibres

)sin(2i

Propagation without losses:Intensity =0 close to the core/cladding interface

a+ 2 = n i with n = integer

Two directions interference between two plane waves

Second example

Planar dielectric waveguide

Wave theory

One mode n ))2a(2

nsin(Arc

One angle n solution of the equation

Page 7: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

2) Propagation in optical fibres2) Propagation in optical fibres

a

n 2

n 2

n 1

In ten s ité

P o s itio n

Second example

Planar dielectric waveguide

Wave theory

))2a(2

nsin(Arcn

Limited number of modeIf only one>>>monomode

)n

narccos(

1

2n

)n

narccos(

1

2n

max

0

solutions

Page 8: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

E x a m p les o f m o d es L P F ib re

L P 0 1 L P 11 L P 2 1 L P 0 2

L a rg e v a r ie ty o f d irec t io n

a (c o re d ia m e tre r )

0 (O ne spot d iam etre))

N ea r fie ld

~O p tica l f ib re

2) Propagation in optical fibres2) Propagation in optical fibresWave theory

3 D interference

Page 9: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

2) Propagation in optical fibres2) Propagation in optical fibres

Properties of the modal structure

Decomposition of any optical field on the mode basis

a

n 2

n 2

n 1

In ten s ité

P o s itio n

Wave theory

Same transverse field distribution at the input and output

Propagation = phase shift z

n is the propagation constant

n

z.jnnout

ne.emod.aEPropagation = phase shiftn

nnin emod.aE

Page 10: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

m u lt im o d e o p tica l fib re

n 1

n 2

t

I

P u lse sp rea d in g

t

Is

12

2 > > 1

In p u t p u lse

2) Propagation in optical fibres2) Propagation in optical fibres

depends upon

Dispersion

Mode in a multimode fibre

Modal or intermodal dispersion

Page 11: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

2) Propagation in optical fibres2) Propagation in optical fibres

Dispersion

Wavelength dependent

t

M o n o m o d e fib re

n 1

n 2

t

IIs

12

P u lse sp rea d in gIn p u t p u lse

Chromatic or intramodal dispersion

-10

-5

0

5

10

15

20

25

1200 1300 1400 1500 1600

Wavelength (nm)C

hro

mat

ic d

isp

ersi

on

(p

s/n

m.k

m)

G.6

52 (0

.08

ps/n

m2 .k

m)

G.6

53

ED

FA

ban

dw

idth

G.6

55

G.6

55

Page 12: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

N ea r fie ld

0

F a r f ie ld

m a x 0 = /

D iffra c t io n =

Tra n sfo rm F o u r ier

D im e n s io n s D ire c tio n s (fa r f ie ld )

/a

F o u r ie rTr a n sfo r m

N ea r fie ld

3) Determination of the mode number3) Determination of the mode number

M

N

O

M N = a

x

d x

O ’

F e n te é lé m en ta ire d e la r ge u rd x s itu é e à la d is ta n ce x d e O

O O ' = x sin

Diffraction properties

Basic rules

General caseMultimode beam

Monomode beam

Cargèse sept 2002

Page 13: Tutorial on optical fibres

L a rg e v a r ie ty o f d irec tio n

screen : fa r fie ldv isu a lisa tio n

/a

a (c o re d ia m e te r )

0 (O ne spot d iam eter))

N ea r fie ld

F a r f ie ld

0= 2 N A

~O p tica l f ib re

F o u r ie rTr a n sfo r m

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

3) Determination of the mode number3) Determination of the mode number

Core diameter /a

Numerical apertureNA

Number of spots or speckles Number of modes

2221

nn)sin(NA Case of an optical fibre

Page 14: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

3) Determination of the mode number3) Determination of the mode number

NA20

2

220

)NA2(44s

4

aS

2

2

2

2

)NA2(4

4a

s

SN

2)NA2(

S4

a2

2

SN

a (c o re d ia m e tre r )

0 (O ne spot d iam etre))

N ea r fie ldOne specklediameter surface

Fibre core

Number of degrees of freedom

diameter surface

a

Warning: N is wavelength dependent

Page 15: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

3) Determination of the mode number3) Determination of the mode number

Two examples

n2=1.450

a=8µm

rad12.0nn)sin(NA 2221

Monomode fibre

1S

N2

n1=1.455

a=50µm

n2=1.450

n1=1.462

rad19.0nn)sin(NA 2221

esmod60S

N2

Multimode fibre

Warning: N is wavelength dependent

@ = 1.3µm @ = 1.3µm

Page 16: Tutorial on optical fibres

4) Characterisation of optical fibres4) Characterisation of optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

F ib re h o ld er

F ib re

D étec to r

2221

nn)sin(NA

2

21

21

nn

nnR

Numerical aperture

Refractive index distribution

L ig h t so u rce

R e flec ted p o w er

O p tica l fib ren(radius)

radius

Page 17: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

4) Characterisation of optical fibres4) Characterisation of optical fibres

First step

Detector

Launching assembly

Fibre length L

10/010 LII

)I

I(Log

L

10

z

0

dB)P

P(Log10Loss

out

in

Fibre losses

1000 1200 1300 1400 1500 1600

1.0

Loss

(d

B/k

m)

0.1

0.5

0.2

Wavelength (nm)

Transmission fibre loss (silica)

I2

I1

Second step

Detector

Fibre length d

Launching assembly

=0

Page 18: Tutorial on optical fibres

5) Optical fibre implementation5) Optical fibre implementationEquipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

x

0

L o sses d B

x / 0

0 .1 0 .2 0 .3 0 .4 0 .5

0 .5

1

2

3

0 .2

1 .7

Connectors

Plug with a ceramic ferule

FCPC

E2000

body

Loss as function of The transverse position error

Page 19: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

5) Optical fibre implementation5) Optical fibre implementation

A b r a s io n C o lla g e

1

2

3

F u s io n E tir a g e

F ib re o p t. 1

F ib re o p t. 2

1

2

3

4

1

2

3

4

couplers

Fusion splicing

polishing Glued

From 2 to 2

From 2 to 8

Page 20: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

principal use>> optical fibre telecommunications

6) Application of optical fibers6) Application of optical fibers

V (t)

L a ser P h o to d io d e

V ’(t)

Very high bit rate 1 Tbit/sec Very low losses

The solution for long distance signal propagation

Page 21: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

S o u rce

F ib reo p tiq u e

F ib reo p tiq u e

T (x )

M esu re d e la p u issa n ce

S o u rce

F ib reo p tiq u e

R (x )

M esu re d e lap u issa n ce

Optical fibre sensors

TemperaturePressureRotationChemical concentration

6) Application of optical fibers6) Application of optical fibers

Page 22: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Possibility to built interferometers

Mach Zehnder configuration

Cargèse sept 2002

6) Application of optical fibers6) Application of optical fibers

See next lecture

D etec to r

L a ser d io d e

M o n o m o d e fib re

B S )

S

F O 1 (L )

F O 2 (L )

I= 2 I [1 + co s(2 )]0

L

L

Page 23: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

7) Material and new optical fibers7) Material and new optical fibers

UV0.3µm Visible

Near IR2µm

Far IR10µm

Page 24: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

DGD

Slow PSP

Fast PSP

7) Material and new optical fibers7) Material and new optical fibers

Polarisation preserving fibers

Highly birefringent fibres

core

cladding

Stress area

Propagation

Page 25: Tutorial on optical fibres

Equipe Optique

IRCOM

Equipe Optique

IRCOM

Cargèse sept 2002

7) Material and new optical fibres7) Material and new optical fibres

structure

Photonic crystal fibres

Monomode over a very large spectral domain