tunnelling by epb tunnel boring machine in dmrc

4
LOGIN CREATE AN ACCOUNT (/component/comprofiler/registers.html) HOME (/) ABOUT US (/aboutus.html) CONTACT US (/contactus.html) ADVERTISE WITH US (/advertisewithus.html) (/) Search... (/component/banners/click/98.html) (/component/banners/click/177.html) Currently Online We have 154 guests and no members online (http://www.alexa.com/data/details/mai url=http://www.nbmcw.com) (http://www.alexa.com/siteinfo/www.nb MAGAZINES NEWS (/news.html) ARTICLES PRODUCTS EQUIPMENTS REPORTS INTERVIEWS (/interviews.html) SUBSCRIPTION (/subscription/levels.html) PEOPLE WATCH (/peoplewatch.html) EVENTS (/events.html) (/component/banners/click/14.html) View Online (http://nbmcw.com/Online_Edition/NBMCW/June 2015/index.htm) Download Latest Issue (http://nbmcw.com/index.php? option=com_ars&view=download&id=167) Previous Issues (http://nbmcw.com/index.php? option=com_content&view=article&id=32475:nbmcw archives 2014&catid=9:nbmcwissue archive&Itemid=216) View Online (http://nbmcw.com/Online_Edition/MGS/June 2015/index.htm) Download Latest Issue (http://nbmcw.com/index.php? option=com_ars&view=download&id=168) Previous Issues (http://nbmcw.com/index.php? option=com_content&view=article&id=32726:mgs TBM at Factory Tunnelling by EPB Tunnel Boring Machine in DMRC Jitendra Tyagi, Director (Works) DMRC, Saleem Ahmad, AGM/Civil, DMRC Background Delhi Metro Rail Corporation has been entrusted with the task of providing an MRTS network to the city of Delhi and National Capital Region. The network is partly at grade, elevated and underground. At present, 190 km of metro network is operational out of which 48 km is underground. In Phase III also, 45 km of section is planned to be underground. The underground network comprises stations built by cut and cover method, while tunnels are constructed by Cut & Cover, NATM (New Austrian Tunnelling Method) or earth pressure balance or slurry type shield machine depending on the geological strata of the project. Selection of TBM depends on ground conditions, surface features and dimension of the tunnel. DMRC used 14 tunnel boring machines in PhaseII to construct the tunnel of finished diameter of 5.8 meter. Soil Investigation The geological strata of Delhi varies along the project alignment and consists of compacted alluvium soil which is also known as Delhi silt, this is generally a fine grained material consisting of different variation between clay and silt with variable fine sand content. The strata consist of coarse sand, gravel and kankar. Soil investigation was carried out throughout the tunnel alignment before the start of the project to finalise the type of machine to be deployed for the project. The cross section of the tunnel varied in level above and below the ground water table. The overburden was between 3.5 to 22 meter as water level varied from 4 metre to 18 metres. Earth Pressure Balance (EPB) Tunnel Boring Machine (TBM) Depending on the geological parameter and construction programme tunnel boring machines of M/s Herenknecht, Mitsubishi, Kawasaki and OMC etc. were selected for the project. The time taken for the delivery of the machines exworks to site arrival was around 10 to 12 month (manufacturing time being 8 10 months and shipping and road transportation of 23 months). TBMX Section Specification of the TBM TBM's used for the project were of the same specification with an external cut diameter of 6640 mm, 35000 KN thrust force and 630KW available power. TBM's were provided with an articulated tail shield to maneuver the sharp radius of 300m as per the alignment. Other additional features included soil condition and grouting system which was injected behind the tail shield during advancement of the TBM. The cutting wheel consisted of scrapers and bucket teeth for soft ground tunneling and disc cutters to ease the cutting of boulders and diaphragm walls on exit and entrance to/from the TBM launch and receiving shafts. A VMT guidance system was selected for survey to control the TBM alignment. The TBM parts consist of cutter head, front , shield, middle section, tail kin, manlock, screw conveyor, erector, erector carrier beam, bridge & back up gantries/systems. Construction of Launching and Retrieval Shaft Before the arrival of the TBM at site, the launching shaft upto the drop base slab was made ready for lowering of the TBM. Shafts were constructed by Diaphragm Wall with RCC/structural steel waler beams and struts at various levels as per design to support the D'walls against Earth and water pressures. Shafts were constructed at the ends of each station. In D'walls, glass fibre reinforced polymer (GFRP) rebars were placed at the location of TBM breaking and break out points known as the Soft Eye, instead of the usual steel bars, to avoid damaging the cutter head of the TBM. In addition, a false concrete wall of M10 strength was cast behind the D'Wall to limit ground forces and water pressure during TBM break out and break in. Similarly retrieval shafts were made ready before the TBM arrival out at the other end of the tunnel. Print (/articles/metrotunneling/29091tunnellingbyepbtunnelboringmachinein dmrc.html?tmpl=component&print=1&page=) Email (/component/mailto/? tmpl=component&template=protostar&link=77413eb37a1b22afb3c0d2afd6f99a5e69c313d0)

Upload: himanshu-kumar

Post on 12-Jan-2016

44 views

Category:

Documents


9 download

DESCRIPTION

EPB machine

TRANSCRIPT

LOGIN  CREATE AN ACCOUNT (/component/comprofiler/registers.html)HOME (/) ABOUT US (/about­us.html) CONTACT US (/contact­us.html)      ADVERTISE WITH US (/advertise­with­us.html)

(/component/banners/click/183.html)(/)

Search...

(/component/banners/click/98.html)

(/component/banners/click/177.html)

Currently Online

We  have  154  guests  andno members online

(http://www.alexa.com/data/details/main?url=http://www.nbmcw.com)(http://www.alexa.com/siteinfo/www.nbmcw.com)

MAGAZINES NEWS (/news.html) ARTICLES PRODUCTS EQUIPMENTS REPORTS INTERVIEWS (/interviews.html)

SUBSCRIPTION (/subscription/levels.html) PEOPLE WATCH (/people­watch.html) EVENTS (/events.html)

(/component/banners/click/14.html)

View Online(http://nbmcw.com/Online_Edition/NBMCW/June­

2015/index.htm)Download Latest Issue

(http://nbmcw.com/index.php?option=com_ars&view=download&id=167)

Previous Issues(http://nbmcw.com/index.php?option=com_content&view=article&id=32475:nbmcw­

archives­2014&catid=9:nbmcw­issue­

archive&Itemid=216)

View Online(http://nbmcw.com/Online_Edition/MGS/June­

2015/index.htm)Download Latest Issue

(http://nbmcw.com/index.php?option=com_ars&view=download&id=168)

Previous Issues(http://nbmcw.com/index.php?option=com_content&view=article&id=32726:mgs­

TBM at Factory

Tunnelling by EPB Tunnel Boring Machine in DMRC

Jitendra Tyagi, Director (Works) DMRC, Saleem Ahmad, AGM/Civil, DMRC

Background

Delhi Metro Rail Corporation has been entrusted with the task ofproviding  an  MRTS  network  to  the  city  of  Delhi  and  NationalCapital  Region.  The  network  is  partly  at  grade,  elevated  andunderground.  At  present,  190  km  of  metro  network  isoperational  out  of  which  48  km  is  underground.  In  Phase  IIIalso,  45  km  of  section  is  planned  to  be  underground.  Theunderground network comprises stations built by cut and covermethod,  while  tunnels  are  constructed  by  Cut  &  Cover,  NATM(New Austrian Tunnelling Method) or earth pressure balance orslurry type shield machine depending on the geological strata ofthe  project.  Selection  of  TBM  depends  on  ground  conditions,surface  features  and  dimension  of  the  tunnel.  DMRC  used  14  tunnel  boring  machines  in  Phase­II  toconstruct the tunnel of finished diameter of 5.8 meter.

Soil Investigation

The geological strata of Delhi varies along the project alignment and consists of compacted alluvium soilwhich is also known as Delhi silt, this is generally a fine grained material consisting of different variationbetween clay and silt with variable fine sand content. The strata consist of coarse sand, gravel and kankar.Soil  investigation  was  carried  out  throughout  the  tunnel  alignment  before  the  start  of  the  project  tofinalise the type of machine to be deployed for the project. The cross section of the tunnel varied in levelabove and below the ground water  table. The overburden was between 3.5  to 22 meter as water  levelvaried from 4 metre to 18 metres.

Earth Pressure Balance (EPB) Tunnel Boring Machine (TBM)

Depending  on  the  geological  parameter  and  construction  programme  tunnel  boring  machines  of  M/sHerenknecht, Mitsubishi,  Kawasaki  and OMC etc. were  selected  for  the  project.  The  time  taken  for  thedelivery of the machines ex­works to site arrival was around 10 to 12 month (manufacturing time being 8­10 months and shipping and road transportation of 2­3 months).

TBM­X Section

Specification of the TBM

TBM's used  for  the project were of  the  same  specification with  an external  cut  diameter  of  6640 mm,35000 KN thrust force and 630KW available power. TBM's were provided with an articulated tail shield tomaneuver the sharp radius of 300m as per the alignment. Other additional features included soil conditionand grouting system which was injected behind the tail shield during advancement of the TBM. The cuttingwheel consisted of scrapers and bucket teeth for soft ground tunneling and disc cutters to ease the cuttingof boulders and diaphragm walls on exit and entrance to/from the TBM launch and receiving shafts. A VMTguidance system was selected for survey to control  the TBM alignment. The TBM parts consist of cutterhead, front , shield, middle section, tail kin, manlock, screw conveyor, erector, erector carrier beam, bridge& back up gantries/systems.

Construction of Launching and Retrieval Shaft

Before  the arrival  of  the TBM at  site,  the  launching  shaft  upto  the drop base  slab was made  ready  forlowering of the TBM. Shafts were constructed by Diaphragm Wall with RCC/structural steel waler beamsand struts at various levels as per design to support the D'walls against Earth and water pressures. Shaftswere constructed at the ends of each station. In D'walls, glass fibre reinforced polymer (GFRP) rebars wereplaced at the location of TBM breaking and break out points known as the Soft Eye, instead of the usualsteel bars, to avoid damaging the cutter head of the TBM. In addition, a false concrete wall of M10 strengthwas cast behind the D'Wall to limit ground forces and water pressure during TBM break out and break in.Similarly retrieval shafts were made ready before the TBM arrival out at the other end of the tunnel.

  Print    (/articles/metro­tunneling/29091­tunnelling­by­epb­tunnel­boring­machine­in­dmrc.html?tmpl=component&print=1&page=)M  Email  (/component/mailto/?tmpl=component&template=protostar&link=77413eb37a1b22afb3c0d2afd6f99a5e69c313d0)

architecture­archives­2014&catid=12:mgs­issue­archive&Itemid=217)

View Online(http://nbmcw.com/Online_Edition/Pullout/April­

2015/index.htm)Download Latest Issue

(http://nbmcw.com/index.php?option=com_ars&view=download&id=161)

Previous Issues(http://nbmcw.com/index.php?option=com_content&view=article&id=32949:lifting­and­specialised­transport­

archives­2014&catid=92:lifting­and­

specialised­transport&Itemid=234)

View OnlineDownload Latest Issue

(http://nbmcw.com/index.php?option=com_ars&view=download&id=169)

Previous Issues(http://nbmcw.com/index.php?option=com_content&view=article&id=6455:iitw­

issue­archive&catid=84:iitw&Itemid=218)

TBM at Initial Drive Stage

Launching Shaft

Segment Yard

Tunnel Lining

The  tunnel  lining  wasprovided  with  precastsegments of 5.8 meterinternal  diameter  witheach ring comprising 5segments  and  1  keysegment, each 1.2 and1.5  m  long  and  275mm  thick.  Thesegments were precastwith  M50  gradeconcrete at the casting yard at the extreme limit of the city, MUndka, 30 kms away from the site. Thetransportation  of  the  segment was  only  allowed  at  night  time  and  added  a  challenge  to  the  tunnelingworks. PVC sheet was used in plastic sheath in tunnel segment as a conduit to accommodate curve boltinstallation. Curve bolts were used to connect two segments. Grout pipes with lifting socket were used forgrouting  material  &  lifting  during  tunnel  segment  installation.  Segments  were  cured  by  covering  withtarpaulin  sheet  and  in  winter  season  steam  curing  was  carried  out.  The  segments  were  stored  inmaximum  8­10  layers.  A  combined  Gasket made  of  an  EPDM  profile  with  hydrophilic  top  layer  of  size33x16.1mm rated at 3bars working pressure was used at segment joints to prevent ingress of water. Atrial Master Ring was formed at the casting factory before fabrication starts in full swing.

Arrangements in Launching Shaft for Lowering and Asse­ mbly of TBM Parts

RCC  Entrance  packing  was  installed  around  outer  periphery  of  the  circular  soft  eye  of  the  D'Wall  forguidance of  the TBM during the start of excavation. A Cradle  frame fabricated  from structural steel wasplaced on the drop base slab for supporting the TBM components and alignment of the Shield machine. 2Nos. 100 T hydraulic jacks at the bottom of the shaft were used to push the assembly through the SafeEye. After completion of TBM assembly, a shoving frame made from structural steel members was installedon the back side of the TBM. The shoving frame was erected to provide reaction to the forces required topropel the TBM into the tunnel during excavation. The backup gantry was set up at the ground level alongwith the power unit and was connected to the assembled TBM in the launching shaft through a number ofhoses. Test run of TBM was done before actual starting tunnel excavation.

Assembly of TBM

TBM Initial Drive

Ring segments were prepared  (after  installing gasket and  timber packing) and  inspected on  the surfacebefore sending down to the Tisted down from the surface into the shaft bottom by 15T Gantry crane. First,temporary segments & (dummy ring) were installed behind the TBM with the help of an Erector placed inthe middle  section  of  the  TBM  shield machine  to make  contact with  the  shoving  frame.  The  TBM waspushed forward by means of TBM thrust Jack for a distance of approximately 1.5 m by taking reaction fromthe shoving frame. The shove rams are retracted and another temporary ring installed. In this way, by the3rd  temporary  ring,  the  TBM  cutter  face  almost  touches  the  D'wall  face  entrance  rubber  packing  isinstalled. The TBM then started cutting  the D'wall  through special  type of cutter  installed on  the cutterhead upto a length of approximately 1.5 m. The TBM was stopped and another temporary segment wasinstalled behing dhe shield machine. In this way, total 7­8 numbers temporary rings were installed.

After installation of 7­8 number segment rings, excavation for the first permanent segment ring started.After TBM advanced of about 1.5 m the first segment ring was installed and grouted from the shield tail tofill the voids (annulus) behind tunnel lining by means of a pump located at the backup gantry. Groutingmaterial consisting of a mixture of bentonite and cement with stabilizer (Liquid A) was mixed at the groundlevel in a grouting plant. Sodium silicate (Liquid B) was mixed with grout material at the tail skin of theTBM.

Muck was removed by means of a small muck car and transported to the muck pit at ground level a 35 TGantry crane. A muck pit of capacity 900m3 was constructed beside the shaft wall at the ground for eachtunnel drive. One excavator was used for each tunnel to load the excavated spoil inside the muck pit ontodump trucks for off­site disposal.

The muck car was working with  the help of electric winches. Asegment  car  was  used  for  transportation  of  segmenting  ringsinside  the  tunnel.  Two  segment  cars  could  take  one  full  ringconsisting of five segments plus one key segment. It was pushedinside the tunnel for erection of rings by erector of TBM. In themean time, a temporary belt conveyor was installed at the outletof  the  screw  conveyor  for  handling  of  muck.  Sleepers  wereinstalled at 1m intervals, laid on the invert segment. The lateralmovement  of  the  sleeper  is  restricted  by  the  invert  segment.Safe and elevated pedestrian walkways were also erected insidethe tunnels.

A ventilation duct was provided for circulation of air from tunnel to atmosphere. The ventilation fan wasinstalled at the surface and was provided with silencer in order to reduce sound pollution.

After excavation of about 80­100 meters (which was subject to design), excavation was stopped when theinitial  drive  was  completed.  Average  progress  during  the  initial  drive  was  2­3  rings/day.  Sufficient  ringsegments were stored at the shaft surface to ensure continuous TBM advancement. The segment erection

Segment Loading on Segment Car

TBM Breakthrough

plan was developed by the engineer prior  to starting excavation on each shift. Drainage or waste waterfrom the tunnel was pumped from the sumps in the shaft to the water treatment plant  located on thesurface so that muddy water or grout is not directly discharged into the public drains.

A maintenance  team was  assigned  to  perform daily  inspections  of  the  condition  of  the  track  (includingwalkway) and maintenance  in  the tunnel. At  the end of a shift,  tunnel workers were deployed to cleanmuck spilled over from the muck skips inside the tunnel invert.

In order to minimize disturbance to the ground surface, it was important to control the excavation methodduring TBM advance. Adequate earth pressure balance in the TBM mixing chamber was maintained and thequantity  of  spoil  being  removed  during  excavation  for  a  complete  shove  was  closely  monitored  andrecorded.  The  TBM  operated  in  untreated  ground with  a  pressure  greater  than  or  equal  to  hydrostaticpressure at all times.

Arrangements for Transition from Initial to Main Drive

Temporary segments, cradle and shoving frame were taken out of launching shaft. Then, 05 nos. back upgantries consisting of the following were installed behind the TBM: Gantry No. 1 Grout Tank Gantry No. 2Power Unit and Bentonite Tank Gantry No. 3 Electrical panel and Grease Pump Gantry No. 4 Transformerand cooling unit Gantry No. 5 Cooling unit and First aid kit The above Gantries were transported into thetunnel  and  connected  to  the  Bridge  Gantry.  Before  back­up  gantries  were  transported  into  tunnel,segment hoists and other accessories were fitted on the top of back up gantries. The belt conveyor wasthen installed on the top of the rear gantry. On completion of installation, all power cables and hydraulichoses were connected from back up gantries to the TBM. A car shifter (for changing of tracks) and workingplatform were installed in the shaft. The locomotive along with the Muck car and segment car were drivenby diesel locomotive inside the tunnel, N and Y points were installed at the initial length of the tunnel andthe  single  track  was  converted  to  double  track  from  Y­point  to  the  shaft  bottom.  A  walkway  wasconstructed and a water pipeline attached for circulation of water for the cooling unit as well as for heatgenerated by the TBM. A cooling tower was provided at the ground level. A permanent belt conveyor wasinstalled  at  the  discharge  point  of  the  screw  conveyor  of  the  TBM  for  carrying  muck  from  the  screwconveyor to the muck car placed beneath the conveyor belt. Separate supply lines for grouting made of MS3" pipe  for Liquid A and 1"  for Liquid B were  laid  from the grout plant  to  the holding  tanks at back upgantries in tunnel. The ventilation duct was 'hung' at the crown of the tunnel. The communication cables,lighting cables, CCTV cables, data management,  the system cable and VMT guidance system cable werehanged on separate brackets  fixed with  the curved bolt of  the segment. For 6.6 KV high voltage cable,separate hooks were provided at higher level along the tunnel. Extension of High Voltage (HV) cables in thetunnels was carried out by Licensed Cable Jointers.

TBM Main Drive

After  installation  and  testing  of  TBM  back  up  and  all  otherassociated  equipments,  TBM  was  restarted  to  commenceexcavation of the main drive. Soil was excavated until the spaceat the shield tail sufficed for the erection of one ring 2x3 muckskips  (2  No's  of  train,  each  train  consisting  of  3  muck  skip)having capacity of 12m3 excavated soil was enough for a ring ofsegments  erection.  During  excavation,  segments  on  the  2segment  cars were unloaded  to  the  stock area near  the  shieldtail. Excavation was done concurrently whilst grouting from theshield  tail.  Once  the  excavation  sequence  was  finished,  thelocomotive hauled the skips and segment carrier cars out to theshaft.  The  erection  sequence  started  while  the  locomotive  was  being  hauled  out.  The  segments  wereassembled  individually by the erector  from the bottom until  the  last segment piece. The next  train washauled  into  the  tunnel  consisting  of  segment  cars  and  empty  skips  after  unloading muck  as  explainedearlier. Initially the progress of work was quite slow. About 7­8 rings were erected in one day. However,the progress of the work picked up and 12­15 rings average were erected in one day. Surveyor also checksthe alignment and level to enable control of the next tunnel sequence to be made. The trigger value onalignment of TBM was set to be 50 mm.

TBM Retrieval Shaft

When the TBM approached, the retrieval shaft earth pressure on TBM was gradually reduced to zero. TBMproceeded to cut through the M10 concrete panels cast behind the M35 D'wall. After the TBM excavationstopped,  the D'wall  face was  partly  broken  and  TBM pushed  through  the  shaft  on  to  the  arrival  cradleplaced on the drop base slab of the retrieval shaft. Before disassembly of the TBM, a Gantry crane of 125MT with 2 numbers of crab of 100T capacities were installed in the shaft at GL. The TBM was dismantledsection  by  section  and  shoved  into  the  retrieval  (arrival)  shaft.  The  TBM  parts  were  then  transportedthrough trailers to the next launching shaft for starting another TBM drive as described above.

Settlement Control and Monitoring System

As per the project requirement, ground movements were to bekept  to  a  minimum  and  during  design  stage  all  existingstructures needs to be assessed. Extensive instrumentation andmonitoring  plans  were  installed  by  forming  arrays  at  regulardistance  intervals  along  the  project  route  to  check  the  actualsettlement  values  obtained  during  TBM  excavation.  During  thedesign phase a volume loss of 1% was used for the calculationsof  predicted  settlement  along  the  route.  Maximum  allowablesettlement of 15 mm was proposed. Following instruments wereused  for  general  instrumentation:  Ground  settlement  markerswere used based on survey of the actual ground conditions:1.  Soft ground – a rebar 300 mm long was fixed into the ground and the top part surrounded by concrete

and if protection required then a plastic or metal cover was provided.2.  Hard ground – the majority of ground settlement markers was placed in existing roadway by using a

simple Hilti nail and this is hammered into the road surface or concrete.

The inclinometers and logging system were used for recording movements in both directions (i.e biaxial).Piezometers  to  monitor  pore  warer  pressure  (eg.  Grount  water  drawdown)  and  water  pressure.  Crackmeters were used to monitor propagation of existing cracks. The tunnel passed under important heritagestructures and structures of national importance along the alignment. The tunnel crossed below buildingswith basements, multi­storeyed building,  railway crossing etc. Some of  the structures were  less  than 1tunnel diameter above the tunnel crown and hence additional  investigations were done to minimize thesettlement under the structure which included the following:

Extensive monitoring of the building including settlement points and reflective targets on the buildingwere  fixed.  Glass  slides  were  fixed  within  the  structure  to  give  an  early  visual  indication  of  any

TERMS & CONDITIONS (/terms­conditions.html)      PRIVACY POLICY (/privacy­policy.html)     

CANCELLATION / REFUND POLICY (/cancellation­refund­policy.html)      DISCLAIMER (/disclaimer.html)

Back to Top© 2015 NBM Media Pvt. Ltd.

< Prev (/articles/metro­tunneling/29092­pushing­the­limits­of­u­shaped­viaducts.html)

Next > (/articles/metro­tunneling/29090­metro­construction­phase­iii­an­overview.html)

movement within  the building. An extensometer was modified with a dial gauge to give continuousreadings. In addition a series of sub­surface settlement points were drilled in the basement which wereattached to automatic dial gauges that display the settlement continuously on an analogue display.Calculations of the TBM parameters to be adhered to while tunneling under these structures included i)earth pressure balance criteria ii) thrust pressure iii) excavation speed iii)rpm iv) grouting pressure andtheoretical  volume  pumped  into  the  area  –  in  normal  operations  around  100%  of  the  theoreticalvolume was  used  but  in  the  case  of  tunneling  under  the  structures  this  was  increased  to  140  to150%.Additional measures such as injection of bentonite around the front shield to limit settlement aroundthe TBM.Extensive technical support  including survey teams with senior personnel around the clock deployedduring excavation.Additional precautions for safety with emergency call out set up in case the alarm value was exceededor other associated problems occurred.Precautions and discussions were held with the relevant personnel  involved  in these operations andthis included the residents of the properties.

Conclusion

Tunnelling  under  varying  geological  conditions  was  carried  out  successfully  without  causing  anydisturbance to the city especially within the tight construction programme. In addition, settlement controland  other  precautions  taken  while  tunneling  under  sensitive  structure  proved  successful.  Thoughtfulplanning  and  effective  communication  including  identifying  problems  and  proposing  realistic  solutionstogether proved a positive factor in successful tunneling operation.

NBMCW June 2012