tratamiento térmico

28
Tratamientos Térmicos y Ensayos INTRODUCCIÓN A LOS TRATAMIENTOS TÉRMICOS La utilización de tratamientos térmicos permite lograr las más diversas características del acero y sus aleaciones, así como de otros muchos metales. En consecuencia dichos tratamientos tienen una importancia primordial en las distintas fases de fabricación de la industria moderna. En este artículo se pretende dar una somera información sobre los diferentes tratamientos térmicos, sus procedimientos y resultados. G. Cimiano de Bautermic, S.A. Los procedimientos en los tratamientos térmicos son muy numerosos y variados según el fin que se pretende conseguir. La gran cantidad de tratamientos térmicos, las distintas aleaciones y sus reacciones y las diferentes exigencias técnicas requieren soluciones y conocimientos profundos de la materia. El tratamiento térmico pretende endurecer o ablandar, eliminar las consecuencias de un mecanizado, modificar la estructura cristalina o modificar total o parcialmente las características mecánicas del material. Podemos distinguir dos razones principales para efectuar

Upload: clarivel-palacios-yalico

Post on 05-Aug-2015

60 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Tratamiento térmico

Tratamientos Térmicos y EnsayosINTRODUCCIÓN A LOS TRATAMIENTOS TÉRMICOS

La utilización de tratamientos térmicos permite lograr las más diversas características del acero y sus aleaciones, así como de otros muchos metales. En consecuencia dichos tratamientos tienen una importancia primordial en las distintas fases de fabricación de la industria moderna. En este artículo se pretende dar una somera información sobre los diferentes tratamientos térmicos, sus procedimientos y resultados.

G. Cimianode Bautermic, S.A.

Los procedimientos en los tratamientos térmicos son muy numerosos y variados según el fin que se pretende conseguir. La gran cantidad de tratamientos térmicos, las distintas aleaciones y sus reacciones y las diferentes exigencias técnicas requieren soluciones y conocimientos profundos de la materia. El tratamiento térmico pretende endurecer o ablandar, eliminar las consecuencias de un mecanizado, modificar la estructura cristalina o modificar total o parcialmente las características mecánicas del material. Podemos distinguir dos razones principales para efectuar tratamientos térmicos en los cuales se pretende conseguir un endurecimiento (temple) o un ablandamiento (recocido).

TempleEl temple consiste en calentar el acero a una temperatura determinada por encima de su punto de transformación para lograr una estructura cristalina determinada (estructura austenítica), seguido de un enfriamiento rápido con una velocidad superior a la crítica, que depende de la composición del acero, para lograr una estructura austenítica, martensítica o bainítica, que proporcionan a los aceros una dureza elevada.

Page 2: Tratamiento térmico

Para conseguir un enfriamiento rápido se introduce el acero en agua, aceite, sales o bien se efectúa el enfriamiento con aire o gases. La velocidad de enfriamiento depende de las características de los aceros y de los resultados que se pretenden obtener.En casos determinados se interrumpe el enfriamiento en campos de temperatura comprendidos entre 180-500 ºC., alcanzándose de esta manera un temple con el mínimo de variación en las dimensiones de las piezas, un mínimo riesgo de deformación y consiguiéndose durezas y resistencias determinadas, de acuerdo con las estructuras cristalinas en lo que se refiere a austenita, martensita o bainita.Los procedimientos de temple descritos se refieren a un temple total del material, otros tratamientos permiten una más amplia variación de las características añadiendo carbono o nitrógeno a la superficie de las piezas.

CementaciónLa difusión de carbono sobre la superficie se denomina cementación. Este procedimiento consiste en el calentamiento de las piezas a una temperatura de aproximadamente 900 ºC en un medio en el que el carbono penetre en la superficie del acero en función del tiempo. Se puede efectuar este procedimiento con medios sólidos (carbón de madera con aditivos, baño de sales con cianuros), o con medios gaseosos CO, H2, N2, CmHn. La utilización de medios gaseosos es la más utilizada ya que permite un control de la profundidad del tratamiento.Después de la cementación se efectúa un enfriamiento rápido para alcanzar la dureza superficial necesaria de forma que los aceros con bajo contenido en carbono, alcancen una superficie dura con un núcleo dúctil que proporcione a las piezas su máxima resistencia.

NitruraciónLa adición de nitrógeno a la superficie se denomina nitruración, dicho procedimiento consiste en el enriquecimiento de la superficie manteniendo el acero (de aleación especial con cromo, vanadio, aluminio), a una temperatura de aproximadamente 550 ºC, sea en baño de sales o en una atmósfera de amoniaco durante un tiempo determinado. Sin más tratamientos se alcanza de ésta manera una dureza superficial extremadamente alta con un mínimo de deformaciones, debido a la baja temperatura del tratamiento.

RevenidoNormalmente, a continuación del temple se efectúa un tratamiento, denominado revenido. Si un acero se templa correctamente, alcanza su máxima dureza, que depende en primer lugar de su contenido en carbono, pero el acero en este estado es muy frágil y en consecuencia debe ser revenido a una temperatura entre 150 ºC y el punto de transformación del mismo. Los revenidos efectuados entre 150-220 ºC influyen poco en la dureza pero mejoran la resistencia, eliminando una parte de las tensiones producidas durante el enfriamiento. Esta clase de revenido se utiliza sobre todo

Page 3: Tratamiento térmico

en aceros para herramientas que requieren una gran dureza, en otros casos se efectúan los revenidos entre los 450-600 ºC. En estos casos el acero templado pierde parte de la dureza conseguida pero se aumenta la resistencia y la elasticidad. Variando la temperatura y la duración del revenido se influye sobre el resultado final en lo referente a dureza y resistencia del acero. Una prolongación del tiempo de mantenimiento a temperatura, visto desde el punto de la dureza, significa lo mismo que un aumento de la temperatura, pero no en absoluto en lo referente a la estructura, por lo tanto, la temperatura y duración del tratamiento depende de los resultados finales exigidos, (dureza, resistencia ).En casos determinados se precisan dos revenidos consecutivos, ya que en el temple puede no transformarse la austenita en su totalidad, permaneciendo en la estructura parte de la misma no transformada (austenita residual). Esta austenita puede transformarse en el curso de un revenido, ya sea en el calentamiento a temperatura o en periodo de mantenimiento de ésta, o bien en el enfriamiento después del revenido, lográndose martensita o bainita. Un segundo revenido puede ser necesario para eliminar la fragilidad debida a las tensiones producidas por la transformación en las distintas fases. Loa aceros que poseen una asutenita residual muy estable, como algunos aceros rápidos, requieren a veces tres revenidos.

CarbonitruraciónLa difusión de carbono y nitrógeno se denomina carbonitruración, tratamiento térmico muy frecuente debido a sus numerosas ventajas. Dicho tratamiento se realiza en las mismas condiciones que la cementación ya sea en baño de sales de una composición determinada o en atmósfera gaseosa con adición de nitrógeno por medio de la disociación de amoniaco.

Máquinas para el lavado, desengrase y tratamiento de superficies de todo tipo de piezas (fosfatado, pasivado, decapado, secado, etc...

RecocidoEl recocido pretende conseguir lo contrario que el temple, es decir un ablandamiento del material que se consigue al poner en equilibrio la estructura cristalina que se había deformado por el frío, por tratamientos térmicos o por la mecanización de la pieza.

NormalizadoEl normalizado es un recocido que se efectúa para proporcionar una buena y fácil mecanización de las piezas, lo cual depende de su estructura cristalina. El normalizado se efectúa antes del temple, ya que el resultado de éste depende del estado inicial de la estructura de las mismas. También se realizan recocidos para la eliminación

Page 4: Tratamiento térmico

de tensiones a temperaturas inferiores al punto de transformación.Muchas veces se efectúan recocidos en piezas que previamente fueron templadas y revenidas. Para ello debe elegirse una temperatura que logre la disminución de la dureza y la resistencia.La temperatura baja exigida puede ser compensada por la duración del recocido. La velocidad de enfriamiento después del recocido tiene una gran importancia, ya que un enfriamiento rápido puede provocar nuevas tensiones y si es demasiado lento existe el peligro de fragilidad.

Diversas piezas tratadas Recocido isotérmico

Otros recocidos se efectúan para modificar la repartición de los componentes de la estructura cristalina (transformación de la perlita laminar), a éste recocido denominado isotérmico el cual es muy frecuente en piezas estampadas para la industria de automoción.Aparte de los tratamientos indicados existe un gran número de otros muy específicos como envejecimiento, boronizado, sulfinizado, desgasificado, oxidación, recristalización , reducción sinterizado, etc.

Tratamiento térmico.

Page 5: Tratamiento térmico

Se conoce como tratamiento térmico el proceso que comprende el calentamiento de los metales o las aleaciones en estado sólido a temperaturas definidas, manteniéndolas a esa temperatura por suficiente tiempo, seguido de un enfriamiento a las velocidades adecuadas con el fin de mejorar sus propiedades físicas y mecánicas, especialmente la dureza, la resistencia y la elasticidad. Los materiales a los que se aplica el tratamiento térmico son, básicamente, el acero y la fundición, formados por hierro y carbono. También se aplican tratamientos térmicos diversos a los sólidos cerámicos.

Contenido

1 Propiedades mecánicas o 1.1 Mejora de las propiedades a través del tratamiento térmico o 1.2 Propiedades mecánicas del acero

2 Tratamientos térmicos del acero 3 Tratamientos del acero 4 Ejemplos de tratamientos

o 4.1 Endurecimiento del acero o 4.2 Temple y revenido: Bonificado o 4.3 Recocido

4.3.1 Recocido de Homogeneización 4.3.2 Recocido de Regeneración 4.3.3 Recocido de Globulización

4.3.3.1 Ejemplo 4.3.4 Recocido de Subcrítico

o 4.4 Cementado o 4.5 Carburización por empaquetado o 4.6 Carburización en baño líquido o 4.7 Carburización con gas o 4.8 Carburado, cianurado y nitrurado

5 Véase también 6 Enlaces externos

Propiedades mecánicas

Las características mecánicas de un material dependen tanto de su composición química como de la estructura cristalina que tenga. Los tratamientos térmicos modifican esa estructura cristalina sin alterar la composición química, dando a los materiales unas características mecánicas concretas, mediante un proceso de calentamientos y enfriamientos sucesivos hasta conseguir la estructura cristalina deseada.

Entre estas características están:

Resistencia al desgaste : Es la resistencia que ofrece un material a dejarse erosionar cuando está en contacto de fricción con otro material.

Page 6: Tratamiento térmico

Tenacidad : Es la capacidad que tiene un material de absorber energía sin producir fisuras (resistencia al impacto).

Mecanizabilidad : Es la facilidad que posee un material de permitir el proceso de mecanizado por arranque de viruta.

Dureza : Es la resistencia que ofrece un acero para dejarse penetrar. Se mide en unidades BRINELL (HB), unidades ROCKWEL C (HRC), VICKERS (HV),etc.Dureza Vickers mediante el test del mismo nombre.

Mejora de las propiedades a través del tratamiento térmico

Las propiedades mecánicas de las aleaciones de un mismo metal, y en particular de los aceros, reside en la composición química de la aleación que los forma y el tipo de tratamiento térmico a los que se les somete. Los tratamientos térmicos modifican la estructura cristalina que forman los aceros sin variar la composición química de los mismos.

Esta propiedad de tener diferentes estructuras de grano con la misma composición química se llama polimorfismo y es la que justifica los térmicos. Técnicamente el poliformismo es la capacidad de algunos materiales de presentar distintas estructuras cristalinas, con una única composición química, el diamante y el grafito son polimorfismos del carbono. La α-ferrita, la austenita y la δ-ferrita son polimorfismos del hierro. Esta propiedad en un elemento químico puro se denomina alotropía.

Por lo tanto las diferentes estructuras de grano pueden ser modificadas, obteniendo así aceros con nuevas propiedades mecánicas, pero siempre manteniendo la compisición química. Estas propiedades varían de acuerdo al tratamiento que se le de al acero dependiendo de la temperatura hasta la cual se lo caliente y de como se enfría el mismo. La forma que tendrá el grano y los microconstituyentes que compondrán al acero, sabiendo la composición química del mismo (esto es porcentaje de Carbono y Hierro (Fe3))y la temperatura a la que se encuentra, se puede ver en el Diagrama Hierro Carbono.

A continuación se adjunta a modo de ejemplo una figura que muestra como varía el grano a medida que el acero es calentado y luego enfriado. Los microconstituyentes a los que antes se hizo referencia en este caso son la Perlita, la Austenita y la Ferrita.

En la figura que se adjunta a continuación se puede ver con mayor claridad como varía el grano del latón de acuerdo a la variación de temperatura en un tratamiento térmico.

Propiedades mecánicas del acero

El acero es una aleación de hierro y carbono que contiene otros elementos de aleación, los cuales le confieren propiedades mecánicas específicas para su utilización en la industria metalmecánica.

Los otros principales elementos de composición son el cromo, tungsteno, manganeso, níquel, vanadio, cobalto, molibdeno, cobre, azufre y fósforo. A estos elementos químicos

Page 7: Tratamiento térmico

que forman parte del acero se les llama componentes, y a las distintas estructuras cristalinas o combinación de ellas constituyentes.

Los elementos constituyentes, según su porcentaje, ofrecen características específicas para determinadas aplicaciones, como herramientas, cuchillas, soportes, etcétera. La diferencia entre los diversos aceros, tal como se ha dicho depende tanto de la composición química de la aleación de los mismos, como del tipo de tratamiento térmico.

Tratamientos térmicos del acero

El tratamiento térmico en el material es uno de los pasos fundamentales para que pueda alcanzar las propiedades mecánicas para las cuales está creado. Este tipo de procesos consisten en el calentamiento y enfriamiento de un metal en su estado sólido para cambiar sus propiedades físicas. Con el tratamiento térmico adecuado se pueden reducir los esfuerzos internos, el tamaño del grano, incrementar la tenacidad o producir una superficie dura con un interior dúctil. La clave de los tratamientos térmicos consiste en las reacciones que se producen en el material, tanto en los aceros como en las aleaciones no férreas, y ocurren durante el proceso de calentamiento y enfriamiento de las piezas, con unas pautas o tiempos establecidos.

Para conocer a que temperatura debe elevarse el metal para que se reciba un tratamiento térmico es recomendable contar con los diagramas de cambio de fases como el de hierro-carbono. En este tipo de diagramas se especifican las temperaturas en las que suceden los cambios de fase (cambios de estructura cristalina), dependiendo de los materiales diluidos.

Los tratamientos térmicos han adquirido gran importancia en la industria en general, ya que con las constantes innovaciones se van requiriendo metales con mayores resistencias tanto al desgaste como a la tensión. Los principales tratamientos térmicos son:

Temple : Su finalidad es aumentar la dureza y la resistencia del acero. Para ello, se calienta el acero a una temperatura ligeramente más elevada que la crítica superior Ac (entre 900-950 °C) y se enfría luego más o menos rápidamente (según características de la pieza) en un medio como agua, aceite, etcétera.

Revenido : Sólo se aplica a aceros previamente templados, para disminuir ligeramente los efectos del temple, conservando parte de la dureza y aumentar la tenacidad. El revenido consigue disminuir la dureza y resistencia de los aceros templados, se eliminan las tensiones creadas en el temple y se mejora la tenacidad, dejando al acero con la dureza o resistencia deseada. Se distingue básicamente del temple en cuanto a temperatura máxima y velocidad de enfriamiento.

Recocido : Consiste básicamente en un calentamiento hasta temperatura de austenitización (800-925 °C) seguido de un enfriamiento lento. Con este tratamiento se logra aumentar la elasticidad, mientras que disminuye la dureza. También facilita el mecanizado de las piezas al homogeneizar la estructura, afinar el grano y ablandar el material, eliminando la acritud que produce el trabajo en frío y las tensiones internas.

Page 8: Tratamiento térmico

Normalizado : Tiene por objeto dejar un material en estado normal, es decir, ausencia de tensiones internas y con una distribución uniforme del carbono. Se suele emplear como tratamiento previo al temple y al revenido.

Tratamientos del acero

Los tratamientos termoquímicos son tratamientos térmicos en los que, además de los cambios en la estructura del acero, también se producen cambios en la composición química de la capa superficial, añadiendo diferentes productos químicos hasta una profundidad determinada. Estos tratamientos requieren el uso de calentamiento y enfriamiento controlados en atmósferas especiales.

Entre los objetivos más comunes de estos tratamientos están aumentar la dureza superficial de las piezas dejando el núcleo más blando y tenaz, disminuir el rozamiento aumentando el poder lubrificante, aumentar la resistencia al desgaste, aumentar la resistencia a fatiga o aumentar la resistencia a la corrosión.

Cementación (C): aumenta la dureza superficial de una pieza de acero dulce, aumentando la concentración de carbono en la superficie. Se consigue teniendo en cuenta el medio o atmósfera que envuelve el metal durante el calentamiento y enfriamiento. El tratamiento logra aumentar el contenido de carbono de la zona periférica, obteniéndose después, por medio de temples y revenidos, una gran dureza superficial, resistencia al desgaste y buena tenacidad en el núcleo.

Nitruración (N): al igual que la cementación, aumenta la dureza superficial, aunque lo hace en mayor medida, incorporando nitrógeno en la composición de la superficie de la pieza. Se logra calentando el acero a temperaturas comprendidas entre 400 y 525 °C, dentro de una corriente de gas amoníaco, más nitrógeno.

Cianuración (C+N): endurecimiento superficial de pequeñas piezas de acero. Se utilizan baños con cianuro, carbonato y cianato sódico. Se aplican temperaturas entre 760 y 950 °C.

Carbonitruración (C+N): al igual que la cianuración, introduce carbono y nitrógeno en una capa superficial, pero con hidrocarburos como metano, etano o propano; amoníaco (NH3) y monóxido de carbono (CO). En el proceso se requieren temperaturas de 650 a 850 °C y es necesario realizar un temple y un revenido posterior.

Sulfinización (S+N+C): aumenta la resistencia al desgaste por acción del azufre. El azufre se incorporó al metal por calentamiento a baja temperatura (565 °C) en un baño de sales.

Ejemplos de tratamientos

Endurecimiento del acero

El proceso de endurecimiento del acero consiste en el calentamiento del metal de manera uniforme a la temperatura correcta (ver figura de temperaturas para endurecido de metales)

Page 9: Tratamiento térmico

y luego enfriarlo con agua, aceite, aire o en una cámara refrigerada. El endurecimiento produce una estructura granular fina que aumenta la resistencia a la tracción (tensión) y disminuye la ductilidad. El acero al carbono para herramientas se puede endurecer al calentarse hasta su temperatura crítica, la cual se adquiere aproximadamente entre los 790 y 830 °C, lo cual se identifica cuando el metal adquiere el color rojo cereza brillante. Cuando se calienta el acero la perlita se combina con la ferrita, lo que produce una estructura de grano fino llamada austenita. Cuando se enfría la austenita de manera brusca con agua, aceite o aire, se transforma en martensita, material que es muy duro y frágil.

Temple y revenido: Bonificado

Después que se ha endurecido el acero es muy quebradizo o frágil lo que impide su manejo pues se rompe con el mínimo golpe debido a la tensión interior generada por el proceso de endurecimiento. Para contrarrestar la fragilidad se recomienda el temple del acero (en algunos textos a este proceso se le llama revenido y al endurecido temple). Este proceso hace más tenaz y menos quebradizo el acero aunque pierde algo de dureza. El proceso consiste en limpiar la pieza con un abrasivo para luego calentarla hasta la temperatura adecuada (ver tabla), para después enfriarla con rapidez en el mismo medio que se utilizó para endurecerla.

Tabla de temperaturas para revenido de acero endurecido

Color Grados C Tipos de aceros

Paja claro 220 Herramientas como brocas, machuelos

Paja mediano

240 Punzones dados y fresas

Paja oscuro 255 Cizallas y martillos

Morado 270 Árboles y cinceles para madera

Azul obscuro 300 Cuchillos y cinceles para acero

Page 10: Tratamiento térmico

Azul claro 320 Destornilladores y resortes

Recocido

El recocido es el tratamiento térmico que, en general, tiene como finalidad principal el ablandar el acero u otros metales, regenerar la estructura de aceros sobrecalentados o simplemente eliminar las tensiones internas que siguen a un trabajo en frío. (Enfriamiento en el horno).

Recocido de Homogeneización

En el recocido de homogeneización, propio de los aceros hipoeutectoides, la temperatura de calentamiento es la correspondiente a A3+200ºC sin llegar en ningún caso a la curva de sólidos, realizándose en el propio horno el posterior enfriamiento lento, siendo su objetivo principal eliminar las heterogeneidades producidas durante la solidificación.

Recocido de Regeneración

También llamado normalizado, tiene como función regenerar la estructura del material producido por temple o forja. Se aplica generalmente a los aceros con más del 0.6% de C, mientras que a los aceros con menor porcentaje de C sólo se les aplica para finar y ordenar su estructura

Ejemplo:

Después de un laminado en frío, donde el grano queda alargado y sometido a tensiones, dicho tratamiento devuelve la microestructura a su estado inicial.

Recocido de Globulización

Usado en aceros hipoeutectoides para ablandarlos después de un anterior trabajo en frío. Por lo general se desea obtener globulización en piezas como placas delgadas que deben tener alta embutición y baja dureza. Los valores más altos de embutición por lo general están asociados con la microestructura globulizada que solo se obtiene en un rango entre los 650 y 700 grados centígrados. Temperaturas por encima de la crítica producen formación de austenita que durante el enfriamiento genera perlita, ocasionando un aumento en la dureza no deseado. Por lo general piezas como las placas para botas de protección deben estar globulizadas para así obtener los dobleces necesarios para su uso y evitar rompimiento o agrietamiento. Finalmente son templadas para garantizar la dureza. Es usado para los aceros hipereutectoides, es decir con un porcentaje mayor al 0,89 % de C, para conseguir la menor dureza posible que en cualquier otro tratamiento, mejorando la maquinabilidad de la pieza. La temperatura de recocido está entre AC3 y AC1.

Ejemplo

Page 11: Tratamiento térmico

- El ablandamiento de aceros aleados para herramientas de más de 0.8% de C.

Recocido de Subcrítico

Para un acero al carbono hipoeutectoide: La microestructura obtenida en este tratamiento varía según la temperatura de recocido. Por lo general las que no excedan los 600 grados liberarán tensiones en el material y ocasionaran algún crecimiento de grano (si el material previamente no fue templado). Generalmente mostrando Ferrita-Perlita. Por encima de los 600 y bajo los 723 se habla de recocido de globulización puesto que no sobrepasa la temperatura crítica. En este caso no hay grano de perlita, los carburos se esferoidizan y la matriz es totalmente ferrítica. Se usa para aceros de forja o de laminación, para lo cual se usa una temperatura de recocido inferior a AC1, pero muy cercana. Mediante este procedimiento se destruyen las tensiones internas producidas por su moldeo y mecanización. Comúnmente es usado para aceros aleados de gran resistencia, al Cr-Ni, Cr-Mo, etcétera. Este procedimiento es mucho más rápido y sencillo que los antes mencionados, su enfriamiento es lento.

Cementado

Consiste en el endurecimiento de la superficie externa del acero al bajo carbono, quedando el núcleo blando y dúctil. Como el carbono es el que genera la dureza en los aceros en el método de cementado se tiene la posibilidad de aumentar la cantidad de carbono en los aceros de bajo contenido de carbono antes de ser endurecido. El carbono se agrega al calentar al acero a su temperatura crítica mientras se encuentra en contacto con un material carbonoso. Los tres métodos de cementación más comunes son: empacado para carburación, baño líquido y gas.

Carburización por empaquetado

Este procedimiento consiste en meter al material de acero con bajo contenido carbónico en una caja cerrada con material carbonáceo y calentarlo hasta 900 a 927 °C durante 4 a 6 horas. En este tiempo el carbono que se encuentra en la caja penetra a la superficie de la pieza a endurecer. Cuanto más tiempo se deje a la pieza en la caja con carbono de mayor profundidad será la capa dura. Una vez caliente la pieza a endurecer a la temperatura adecuada se enfría rápidamente en agua o salmuera. Para evitar deformaciones y disminuir la tensión superficial se recomienda dejar enfriar la pieza en la caja para posteriormente sacarla y volverla a calentar entre 800 y 845 °C (rojo cereza) y proceder al enfriamiento por inmersión. La capa endurecida más utilizada tiene un espesor de 0,38 mm, sin embargo se pueden tener espesores de hasta 0.4 mm.

Carburización en baño líquido

El acero a cementar se sumerge en un baño de cianuro de sodio líquido. También se puede utilizar cianuro de potasio pero sus vapores son muy peligrosos. Se mantiene la temperatura a 845 °C durante 15 minutos a 1 hora, según la profundidad que se requiera. A esta temperatura el acero absorberá el carbono y el nitrógeno del cianuro. Después se debe

Page 12: Tratamiento térmico

enfriar con rapidez al acero en agua o salmuera. Con este procedimiento se logran capas con espesores de 0,75 mm.

Carburización con gas

En este procedimiento se utilizan gases carburizantes para la cementación. La pieza de acero con bajo contenido carbónico se coloca en un tambor al que se introduce gas para carburizar como derivados de los hidrocarburos o gas natural. El procedimiento consiste en mantener al horno, el gas y la pieza entre 900 y 927 °C. después de un tiempo predeterminado se corta el gas carburizante y se deja enfriar el horno. Luego se saca la pieza y se recalienta a 760 °C y se enfría con rapidez en agua o salmuera. Con este procedimiento se logran piezas cuya capa dura tiene un espesor hasta de 0,6 mm, pero por lo regular no exceden de 0,7 mm.

Carburado, cianurado y nitrurado

Existen varios procedimientos de endurecimiento superficial con la utilización del nitrógeno y cianuro a los que por lo regular se les conoce como carbonitrurado o cianurado. En todos estos procesos con ayuda de las sales del cianuro y del amoníaco se logran superficies duras como en los métodos anteriores.

Tratamiento Medio Temperatura Espesor Dureza

Cementación Carbón sólido Austenitica Mayor Menor

Carbo Nutruración

Gas (metano + amoníaco Austenitica

Cianuración Baño de sales Austenitica

Menor MayorNitruración Gas 500 a 560° C

Proceso de fabricación

Page 13: Tratamiento térmico

Esquema de bloques general del proceso de producción de poliolefinas.

Un proceso de fabricación, es el conjunto de operaciones necesarias para modificar las características de las materias primas. Dichas características pueden ser de naturaleza muy variada tales como la forma, la densidad, la resistencia, el tamaño o la estética. Se realizan en el ámbito de la industria.

Para la obtención de un determinado producto serán necesarias multitud de operaciones individuales de modo que, dependiendo de la escala de observación, puede denominarse proceso tanto al conjunto de operaciones desde la extracción de los recursos naturales necesarios hasta la venta del producto como a las realizadas en un puesto de trabajo con una determinada máquina-herramienta.

En el ámbito industrial se suelen considerar convencionalmente los procesos elementales que se indican, agrupados en dos grandes familias:

Tecnología mecánica:

Moldeoo Fundición o Pulvimetalurgia o Moldeo por inyección o Moldeo por soplado o Moldeo por compresión

Conformado o deformación plástica.o Laminación o Forja o Extrusión o Estirado o Conformado de chapa o Encogimiento o Calandrado

Procesos con arranque de materialo Mecanizado

Torneado Fresadora Taladrado

o Electroerosión

Page 14: Tratamiento térmico

Tratamiento térmico o Templado o Revenido o Recocido

o Nitruración o Sinterización

Tratamientos superficiales; Acabadoo Eléctricos

Electropulido o Abrasivos

Pulido

Tecnología química

Procesos físicos Procesos químicos

o Tratamientos superficiales Pasivado

Recocido por cortocircuito El recocido por cortocircuito es el tratamiento térmico mediante corriente eléctrica que tiene como fin principal ablandar el metal usando el Efecto Joule para regenerar la estructura molecular de metales sobrecalentados que al enfriarse han acumulado tensiones internas y que es imprecindible eliminarlas para en el caso del cobre obtener un cobre de alta conductividad eléctrica y para logralo se debe necesariamente recocer o renenir el metal.

Contenido

1 Historia 2 Usando el método antiguo 3 Recocido dinámico del hilo de cobre por medio de un cortocircuito controlado 4 Usos y características del recocido por cortocircuito 5 Descripción del proceso 6 Electrónica de la máquina 7 Electrónica de la coordinación 8 Referencias 9 Enlaces externos 10 Véase también

Page 15: Tratamiento térmico

Historia

Tiempo atrás, la tarea de fabricar alambre de cobre de temple suave (C.R.U ≈ 20 kg/mm²), utilizaba métodos que daban resultado, pero los fabricantes sabían que eran costosos, necesarios y tomaban largo tiempo, era la única forma de recocer el alambre de cobre y darle un uso eléctrico apropiado para los cables de uso general, energía y telefonía.

Hoy en día con el desarrollo de la ciencia en la rama de la electrónica hace posible el uso de semiconductores como tiristores, PLCs, circuitos integrados, que facilitan enormemente la tarea en Control de Potencia.

Estos avances en la electrónica moderna han hecho posible diseñar máquinas más sofisticadas y eficientes en diversas ramas de la industria, y así obtener excelentes resultados dentro de un gran marco de confiabilidad dando lugar al recocido del hilo de cobre por medio de un cortocircuito controlado.

Usando el método antiguo

Hilera de Trefilado.

Page 16: Tratamiento térmico

Proceso engorroso en el que se introducía a un horno de temperaturas reguladas, cierta cantidad de cobre trefilado en carretes de fierro y dejándolo a condiciones prefijadas de temperatura y tiempo para obtener el temple adecuado, pasándolo de una C.R.U ≈ 40 kg/mm² a C.R.U ≈ 20 kg/mm²,es decir lo recocían ó revenían para ablandarlo y luego procesarlo en una etapa posterior en máquinas cableadoras y obtener así una reunión de hilos de cobre suave además de darle paso a la próximo proceso que es formar cuerdas y/o torones de hilos de cobre blando, con las cuales se podrán fabricar cables de cualquier dimensión y características requeridas.

Pero este método ya ha sido superado con el recocido continuo, es decir se recoce en la misma máquina sin necesidad de tener que parar el proceso de trefilado y acumular carga para el horno de recocido, con el cual se ahorra tiempo, personal, espacio, nitrógeno; este gas se usa para para evitar la oxidación del hilo y es necesario para romper el vacío inicial al cual se puso la carga de cobre y así enfriar el cobre bajo un ambiente inerte lejos de la posibilidad de una oxidación .

Recocido dinámico del hilo de cobre por medio de un cortocircuito controlado

El proceso consiste poner en el camino de salida del cobre trefilado unas poleas que estén a potencial eléctrico llamadas poleas de paso, este potencial de poleas es aplicado al tramo de resistencia del hilo de cobre creando una corriente de cortocircuito y a su vez esta produce el Efecto Joule,que es el encargado de recocer el cobre al darle temperatura para cambiarle sus propiedades electromecánicas, tenemos que tomar en cuenta que el cobre se está moviendo a velocidad determinada y calentándose solo un instante cuando pasa por entre poleas aprovechando para esto el efecto Efecto Joule .

Usos y características del recocido por cortocircuito

Se emplea para ablandar el cobre y darle uso eléctrico en la fabricación de conductores eléctricos.

Se obtiene un incremento de la conductividad en el caso del cobre. La temperatura de recocido ligeramente por encima de los 400 °C. Enfriamiento rápido. Incremento en la velocidad de producción. Confiabilidad en el proceso. Reducción significativa de los tiempos muertos en producción. Proceso limpio y probabilidad de errores al mínimo.

Descripción del proceso

Page 17: Tratamiento térmico

Trefiladora de cobre.

Se podrá ver claramente que al tener un tramo de cobre entre polea y polea con una diferencia de potencial esto ocasionará por la Ley de Ohm una corriente. Ahora bien, la tensión aplicada sobre el tramo de resistencia eléctrica del tramo de cobre forzará a que circule una corriente que puede alcanzar valores grandes y que es justamente la dinámica del equilibro térmico entre el Efecto joule y la velocidad de paso del tramo de cobre, la que va a regular la cantidad de calor que puede absorber el tramo de cobre este al recocerse y así cambiar sus condiciones de cobre duro a cobre suave o semi-blando, todas estas condiciones térmicas se desprenden de la leyes de equilibrio térmico que para este caso es el Efecto Joule

Este principio de recocido continuo tiene que verse como el calor aplicado a una masa de cobre que se está moviendo a través de las poleas de paso, en consecuencia la masa de cobre está pasando de un ambiente caliente (≈400 °C ) a un ambiente más frío que viene a ser una tina con refrigerante a temperatura ambiente, si observamos la figura de la máquina de trefilado la tina con el refrigerante está final del circuito de paso del hilo de cobre previo a llegar al carrete de devanado final (spooler).

Ecuación final en estado estable para el recocido del cobre.

T = ((KV²) / (RPM))+t(a)

Donde

RPM = KV² / [T-t(a)] RPM = KV² / Δt

Se ve la relación de las RPM y la tensión de recocido V

Page 18: Tratamiento térmico

Como dato adicional tenemos que la temperatura de recocido T del cobre es aproximadamente 400 °C, con lo que:

Δt = Diferencia de la temperatura de recocido con la temperatura ambiente en °C. Δt = 400-20 = 380 °C T = Temperatura de recocido en °C. RPM = Velocidad angular en revoluciones por minuto. t(a) = Temperatura ambiente ≈ 20 °C. V = Tension aplicada en Volts. To = Tiempo de exposición del cobre entre poleas en seg.

Donde K es una constante que depende del diámetro de las poleas de paso en las cuales está aplicado el Potencial eléctrico, resistividad del cobre, del equivalente mecánico del calor. 1 Caloría = 4.186 Joule.

Podemos decir, como conocemos la temperatura del recocido del cobre ≈ 400 °C y t(a) la temperatura ambiente 20 °C, tendremos una Parábola de la siguiente forma :

Ecuación en estado estable

KV² = 380.(RPM) , a la que llamaremos Parábola de carga eléctrica.

Ecuación final que liga la tensión de recocido y la velocidad angular de la poleas de recocido y que si introducimos el diámetro de las mismas en la ecuación tendremos relación de tensión eléctrica de recocido y velocidad lineal del cobre al pasar por las poleas y que es justamente esta velocidad lineal la velocidad de trefilado es la velocidad del proceso. Esta ecuación puede ser usada para considerar el recocido de cualquier otro metal distinto al cobre, solo hay que tener en cuenta la temperatura de recocido del metal y la termperatura ambiente.

También podemos inducir por simple inspección de la Parábola, que el recocido de un calibre cualquiera solo dependerá de la relación entre las dos variables Tensión vs Velocidad angular, entonces para lograr reducir tiempos de producción será necesario imprimir a la línea de recocido la máxima velocidad, a máxima velocidad aparecerá según la parábola de carga eléctrica una tensión que le corresponda y que cumpla con la ecuación.

Esta importante ecuación liga la temperatura de recocido del metal con la velocidad en rpm de las poleas y la tensión eléctrica aplicada. se puede ver claramente que a mayor velocidad , mayor tensión aplicada y manteniéndose la resistencia ohmica del tramo de cobre constante entonces la corriente será mayor , lo cual es lógico y además se desprende de la

sencilla ecuación de la resistencia ohmica entonces diremos : mayor tensión mayor corriente mayor velocidad en el recocido.

Para conocer la ley de dependencia entre las variables de velocidad y tensión de recocido en estado transitorio, será necesario aplicar ecuaciones diferenciales a la función de estado

Page 19: Tratamiento térmico

estable, combinando con las condiciones de estado en arranque y parada de la máquina trefiladora, el resultado es una ecuación de forma exponencial.

Veamos de donde obtuvimos la ecuación principal para el recocido :

Partiendo de la Conservación de la energía

Calor ganado por el cobre = calor cedido por el transformador

Q(cal)= M Ce Δt (4.186)= V².Tο/R siendo Tο = el tiempo involucrado en el cálculo de la energía.

Multiplicando por una distancia D(entre poleas),que en este caso es la longitud de cobre expuesta entre fases del transformador, tenemos.

D.V².Tο/R = D.M.Ce.Δt D.V²/R = (D/Tο).M.Ce.Δt (D /(R.M.Ce)).V² = v.Δt

Convirtiendo la velocidad lineal v en angular RPM y haciendo (D /(R.M.Ce)) = K y de los datos reales Δt = 380 °C tendremos la Ecuación en estado estable.

KV² = 380 (RPM)

Ecuación específica para mi máquina en estudio, que es la forma esperada reemplazando todos los datos dimensionales de la máquina en cuestión, siendo:

V = Tension aplicada en Volts. v = D/Tο = ΔD/ΔTo, velocidad lineal , que es reemplazada en la ecuación por una

función de velocidad angular en RPM y para esto se ha tomando en cuenta los datos y dimensiones físicas de la máquina

RPM = Velocidad angular en revoluciones por minuto 1 Caloría= 4.186 Joule D = Distancia entre las poleas que están a potencial eléctrico en km, usualmente

solo son de unos metros, pero se tienen que convertir a km . Δt = Variación de la temperatura = Temperatura de recocido - temperatura ambiente

en °C Ce = calor específico del cobre en cal /(kg°C) M = Masa de cobre entre poleas en kg R = Resistencia del tramo de cobre entre poleas en Ω Tο = Tiempo de exposición del cobre entre poleas en seg

Electrónica de la máquina

Para dar una idea del trabajo complejo de la electrónica del CPU , describiremos un Transitorio de arranque hasta su régimen permanente , así como la finalización del llenado

Page 20: Tratamiento térmico

de un carrete de maniobra y el corte del hilo de cobre para el siguiente carrete, así también en la parada de la máquina.

Una vez ensartada la serie de hileras comienza el trefilado simultaneo con el proceso de recocido,hay que tener en cuenta que durante el transitorio de arranque la velocidad es reducida y se va incrementado a medida que transcurre el tiempo, con lo cual ya hemos visto que de que también se irá incrementando la tensión aplicada en las poleas para garantizar un recocido homogéneo el cual es dirigido por un CPU que actúa sobre las partes de la máquina necesarias para el control.

Electrónica de la coordinación

Se ha de resaltar que la operación que realiza este CPU es compleja puesto que a cada instante del transitorio de arranque los cambios de velocidad que llevan hacia el régimen permanente exigen incrementos en forma continua de la tensión de recocido , El CPU ordena a un banco de tiristores( mediante señal ) que se disparen con mayor ángulo cada vez y así conseguir un nivel de tensión de recocido en valor eficaz justo el necesario para obtener el cobre suave durante el transitorio de arranque.

La coordinación del CPU no es solo la sincronización de la velocidad lineal del trefilado con la tensión (Voltaje)de recocido, también intervienen el sincronismo de otras partes de la máquina, como es la velocidad del capstán de salida que posee su propio motor independiente, también el motor para bobinar el hilo ya trefilado y recocido, el sincronismo debe ser perfecto para evitar roturas del hilo de cobre debido al estiramiento excesivo por un fuera de sincronismo de las partes de máquina involucradas.