transient conduction lumped thermal capacitance method analytical method: separation of variables...

45
TRANSIENT CONDUCTION Lumped Thermal Capacitance Method Analytical Method: Separation of Variables Semi-Infinite Solid: Similarity Solution Numerical Method: Finite Difference Method

Upload: garry-griffin

Post on 13-Dec-2015

234 views

Category:

Documents


5 download

TRANSCRIPT

TRANSIENT CONDUCTION

• Lumped Thermal Capacitance

Method

• Analytical Method: Separation of Variables

• Semi-Infinite Solid: Similarity Solution

• Numerical Method: Finite Difference Method

Lumped Thermal Capacitance Methodnegligible spatial

effect( , , , ) ( )T x y z t T t

,h T

in g out stE E E E st out 0E E

out ( ) ,sE hA T t T st

dTE Vc

dt

( ) 0s

dTVc hA T t T

dt

volume Vsurface area As

,c

(0) iT T( )T t

excess temperature:

( ) ( )t T t T

( ) 0s

dTVc hA T t T

dt

0,shAd

dt Vc

( ) exp shAt C t

Vc

initial condition:

(0) (0) i iT T T T

(0) i C

( ) ( )

i i

t T t T

T T

exp shA

tVc

thermal time constant

1t

shAVc

: convection resistance

ttR C

1t

s

RhA

tC Vc : lumped thermal capacitance

Thermocouple?

( )exp s

i

hAtt

Vc

Transient temperature response of lumped capacitance solids for different thermal time constant t

Seebeck effect and Peltier effect

2

1

( ) ( )T

B ATV S T S T dT

2 1B AS S T T A B

T2

T1

V

+

-

Seebeck effect (1821)

AB

↑I

B A ABQ I I

Peltier effect (1834)

T2

T1

volume Vsurface area As

( )T t,h T

,c

(0) iT T

total energy transfer in time t q

0

t

Q qdt

( ) ( ) ( )s sq t hA T t T hA t

0( ) ,

t

shA t dt

1 expi

t

tVc

( )exp s

i

hAtt

Vc

Validation of Lumped Capacitance Method ,21 ,2, ss s

kAT hA T

LT T

,2

,2

,1 /

1/s

s

sT

T

T L kA

T hA

hL

k Bi

Bi : Biot number

x L

,1sT

,T h

,2sT

Bi 1

Bi 1

Bi 1

condq convq

,2sT

,2sT

Transient temperature distributions for different Biot numbers in a plane wall symmetrically cooled by convection

When

spatial effect is negligible.i 0 ,B .1chL

k

Lc : characteristic length c

s

VL

A

( )exp s

i

hAtt

Vc

s

c

hA t ht

Vc cL

2c

c

hL kt

k cL

2c

chL

k

t

L

FBi o

( )exp Bi Fo

i

t

Fo : Fourier number (dimensionless time)

Find: Total time tt required for the two-step process

Assumption: Thermal resistance of epoxy is negligible.

Example 5.3

sA

2

,

=40 W/m K=175 C

o

o

hT

sur , 175 CoT

Step 1: Heating(0 )ct t

2

,

=10 W/m K=25 C

c

c

hT

sur , 25 CcT

Step 2: Cooling( )e tt tt

t = 0

Ti,o = 25°C

t = tc t = te t = tt300 s

Tc = 150°C Te = ?°C Tt = 37°C

heating

coolingcuring

aluminum T(0) = Ti,o = 25°C T(tt) = 37°C

epoxy = 0.8

2L = 3 mm

,h T

Epoxy

sA

2 L surT

Biot numbers for the heating and cooling processes

4Bi 3.4 10 ,oh

h L

k 5Bi 8.5 10c

c

h L

k

3177 W/m K, 875 J/kg K, 2770 kg/mk c Aluminum:

Thus, lumped capacitance approximation

can be applied.

2 s

dTc LA

dt

4 4sur( ) ( )

cLdTdt

h T T t T T t

qconv

qrad

2 ( )sh A T t T 4 4sur2 ( )sA T t T

T(t)

st in out gE E E E

Heating process

Curing process

Cooling process

tc = 124 s

Te = 175°C

tt = 989 s

t = 0

Ti,o = 25°C

t = tc t = te t = tt300 s

Tc = 150°C Te = ?°C Tt = 37°C

heating

coolingcuring

Numerical solutions

,4 40

, sur,( ) ( )

c

i o

cT

To o o

cLdTdt

h T T t T T t

t

4 4sur( ) ( )

cLdTdt

h T T t T T t

4 4, sur,( ) ( )

e

c c

et

t To o o

T cLdTdt

h T T t T T t

4 4, sur,( ) ( )

t

e e

t T

t Tc c c

t cLdTdt

h T T t T T t

Total time for the two-step process :

989 stt

Intermediate times : 124 sct 424 set

Plane wall with convection

Separation of Variables

L Lx

i.c.

b.c.

Analytical Method

,T h ,T h

2

2

T T

t x

( ,0) iT x T

0

0x

T

x

( , )x L

Tk h T L t T

x

( , , , , , , , )iT T x t T k L h T

( , )T x t

( ,0)

i

T x

T

Dimensional analysis

dimensionless variables

Fo: Fourier number, Bi: Biot number

L: m [L]

( , , , , , , , )iT T x t T k L h T

, , : K [ ],iT T T D : m [ ],x L : s [ ]t T2 2 1: m /s [ ],L T

3 -3 1: W/m K kg m/s K [ ]k LMT D 2 3 -3 1: W/m K kg/s K [ ]h MT D

* ,i

T T

T T

* ,

xx

L *

2F ,o

tt

L

Bi

hL

k

* * * *( , ;Bi)x t

Equation in dimensionless form2

2,

T T

t x

* * *

2, , , Bi

i

T T x t hLx t

T T L L k

T

t

*

iT Tt

* *

*i

tT T

t t

*

2 *iT TL t

2

2

T

x

T

x x

* * *

* *i

x xT T

x x x x

2 *

22 *

iT T

L x

* 2 *

2* *t x

initial condition boundary conditions

* * *

2, , , Bi

i

T T x t hLx t

T T L L k

( ,0) iT x T * *( ,0) 1x

0x

T

x

*

*

*

0

0i

x

T T

L x

*

*

*

0

0x

x

( , )x L

Tk h T L t T

x

*

*

*

1

i

x

k T T

L x

* *(1, )ih T T t

*

** *

*

1

Bi (1, ) 0x

tx

Drop out * for convenience afterwards

2

2t x

0 1

, ,( ,0) 1 0 Bi (1, ) 0x x

x tx x

( , ) ( ) ( )x t X x t

,X X X

X

2

2 0,X X 2 0

boundary conditions

0

(0) ( ) 0x

X tx

(0) 0X

1

Bi (1, )x

tx

(1) ( )X t Bi (1) ( )X t

(1) Bi (1) ( ) 0X X t (1) Bi (1) 0X X

0 1

0, Bi (1, ) 0x x

tx x

b.c.

( ) :X x 2 0X X (0) 0,X (1) Bi (1) 0X X

1 2( ) sin( ) cos( )X x C x C x

1 2( ) cos( ) sin( )X x C x C x

1(0) 0X C

2 2(1) Bi (1) sin Bi cosX X C C

2 Bicos sin 0C tan Bi

( ) cos( )n n nX x a x

tan Bi,n n n such that 1,2,3,n

initial condition

( ) :t 2 0 2( ) exp( )n n nt b t

2

1

( , ) exp( )cos( )n n nn

x t c t x

( ) cos( )n n nX x a x

1

( ,0) 1 cos( )n nn

x c x

1

01

2

0

cos( )

cos ( )

n

n

n

x dxc

x dx

4sin

2 sin(2 )n

n n

Approximate solution

at x = 0, Bi = 1.0Fo = 0.1 Fo = 1

1 1.0393 0.53392 -0.0469 -1.22 10-5

3 0.0007 4.7 10-20

2

1

( , ) exp( )cos( )n n nn

x t c t x

2

1 1 1( , ) exp( )cos( )x t c t x 2

2 2 2exp( )cos( )c t x

1 2

When

,Fo 0.2t 2

2 2 22

1 1 1

exp( )cos( )1

exp( )cos( )

c t x

c t x

See Table 5.1

21 1 1( , ) exp( )cos( )x t c t x

Approximate solution

When

Fo 0.2,t

21 1(0, ) exp( )t c t 0

1

0

( , )cos( )

x tx

tan Bin n

10

( , )cos( )

x tx

20 1 1exp( )c t

( , ) ic T x t T dV ( , ) iT x t dVTc

total energy transfer (net out-going)

maximum amount of energy transfer

( , ) iT x t T( )Q t

0 iQ cV T T

0

Q

Q

i

i

c T TdV

cV T T

1 i

i

T T T TdV

V T T

11 dV

V

1

0 10

1 cos( )x dx 1

0

1

sin1

Radial systems with convection

i.c.

b.c.

rT T

rt r r r

,T h

( ,0) iT r T

0

0r

T

r

( , )o

or r

Tk h T r t T

r

or

(0, )T t finite

ro

dimensionless variables

T Tr

t r r r

* * *2

, , Fo, Bi o

i o o

hrT T r tr t

T T r r k

Drop out * for convenience afterwards 1

rt r r r

i.c.

b.c.

( ,0) 1r

0

0rr

o

r(0, )t finite

1

Bi (1, ) 0r

tr

( , ) ( ) ( )r t R r t

1r

t r r r

R 1rR

r r

1R rR

r

1 R Rr

r R R

2

2 0,R R

r rR R

2 0

( ) :R r 210R R R

r

2 2 2 0r R rR r R

(0, )t finite (0)R finite1 0 2 0( ) ( ) ( )R r C J r C Y r

0 (0)Y , 2 0C thus

1

Bi (1, ) 0r

tr

(1) Bi (1) 0R R

01 1 0

1

( )Bi ( ) 0

r

dJ rC C J

dr

2 2 2 2( ) 0 ( ) ( )v vx y xy m x v y y AJ mx BY mx

1 1

2( ) ( ) ( )n n n

nJ x J x J x

x

0 1 1( ) ( ) ( )d

J x J x J xdx

Since

1( ) ( ) n nn n

dx J x x J x

dx

00

1

( )Bi ( ) 0

r

dJ rJ

dr

00

1

( )Bi ( )

r

dJ rJ

dr

1 0( ) Bi ( ) 0J J

0( ) ( ), n n nR r a J r 1

0

( ) Bi

( )n

n n

n

J

J

such that

initial condition

( ) :t 2 0 2( ) exp( )n n nt b t

20

1

( , ) exp( ) ( )n n nn

r t c t J r

01

( ,0) 1 ( )n nn

r c J r

1

001

20

0

( )

( )

n

n

n

rJ r drc

rJ r dr

0( ) ( )n n nR r a J r

Approximate solution

Total energy transfer (net out-going)

Since V = L, dV = 2rdrL

21 1 0 1( , ) exp( ) ( )r t c t J r

2 21 1 0 1 1 0(0, ) exp( ) (0) exp( )t c t J c t

0 1

0

( , )( )

x tJ x

( ) ( , ) iQ t c T x t T dV , 0 iQ cV T T

1

0 0 10

0

1 11 1 ( )

QdV J r dV

Q V V

1

0 0 10

0

2 1 ( )Q

J r rdrQ

1 10

1

2 ( )1

J

Assumption:Pipe wall can be approximated as plane wall, since L

<< D.

Example 5.4

x 40mmL

260 C500 W/m K

Th

oil

( , )C

020i

T xT

1mD

insulation

Steel, AISI 1010

( , )T L t

( , )0T t

Find: 1) Biot and Fourier numbers after 8 min2) Temperature of exterior pipe surface after 8 min, T(0, 8 min)3) Heat flux to the wall at 8 min, (8 min)4) Energy transferred to pipe per unit length after 8 min, Q

q

260 C500 W/m K

Th

oil

( , )C

020i

T xT

( , )T L t

( , )0T t

1) Bi and Fo at t = 8 min

500 0.040.313

63.9Bi

hL

k

6

2 2F

18.8 10 8 605.64

0.04o

t

L

With Bi = 0.313, the lumped capacitance method is inappropriate.However, since Fo > 0.2, approximate solution can be applicable.

* 00

i

T T

T T

2) T(0, 8 min)

21 1exp( Fo)c 0.214

*0 ( ) 60(0,8m 0.214 20 60 42.9in C) iT TT T

AISI 1010: 3

6 2

7823 kg/m , 434 J/kg K,

63.9 W/m K, 18.8 10 m / s

c

k

x

0T ( , )T L t

( , )C

020i

T xT

40mmL

260 C

500 W/m KTh

from Table 5.1 1 11.047, 0.531c

(40 ( m48 m,0 s) 480 s)h Tq T

4) The energy transfer to the pipe wall over the 8-min interval

*10

0 1

sin( )1

Q

Q

3)

0.80

0.80 ic TQ V T

*0 1( , ) cos( )iT L t T T T

2500 45.2 60 7400 W/mq

0.80 ic DL T TQ 72.73 10 J/m

x

0T ( , )T L t

( , )C

020i

T xT

40mmL

2

60 C

500 W/m K

Th

* * * * * *0 1

( , )( , ) ( )cos( )

i

T x t Tx t t x

T T

(40 mm,480 s) 60 ( 20 60) 0.214 cos(0.531) 45.2T

(480 s)q

sin(0.531)1 0.214

0.531

( , ) i

s i

T x t T

T T

( )

x

t

i.c.b.c.

Ti x

Ts

similarity solution

similarity variable

1

1

x1 = (t1) x2 = (t2)

2

2

T T

t x

( ,0) iT x T(0, ) sT t T( , ) iT t T ( , )

( , ) i

s i

T x t Tx t

T T

( )

x

t

( )

( )

x

t

Semi-Infinite Solid: Similarity Solution

Scaling analysisTs

Tix

x = (t)

2

2

T T

t x

~T

t

T

t

2

2

T T

x x x

2~

T

2~

T T

t

2 ~ t ~ t

Let( )

x

t

2

x

t

2

x

t

T

t

s iT Tt

s i

dT T

d t

1

2 2s i

x dT T

dt t

2

s iT T d

t d

T

x

s iT Tx

s i

dT T

d x

1

2s i

dT T

dt

( , )( , ) ( ),i

s i

T x t Tx t

T T

1

2s i

T dT T

x dt

,

2

x

t

2

2

T

x

T

x x

1

2s i

dT T

x dt

1

2s i

d dT T

d d xt

2

2

1

4s i

dT T

t d

2

2

T T

t x

2

s iT T d

t d

2

2

1

4s i

dT T

t d

merge into one

2 0

i.c. ( ,0) :iT x T

b.c. (0, ) sT t T

( , ) iT t T

( , )( , ) i

s i

T x t Tx t

T T

2

x

t

, ( ) 0

0, (0) 1

, ( ) 0

Ts

Tix

x = (t)

Similarity solution

integrating factor

2 0 : (0) 1, ( ) 0 2

e

2

0d

ed

2

1

dC e

d

2

1 d C e d

2

10 0

ud C e du

2

10

( ) (0) uC e du

or

2

10

( ) 1 uC e du

2

10

( ) 0 1 uC e du

erfc: complimentary error function

error function:

2

0

2erf ( ) ,

xux e du

erf ( ) 1

2

10

( ) 0 1 uC e du

2

0 2ue du

1

2C

2

0

2( ) 1 ue du

1 erf ( )

( , )( , ) 1 erf

2i

s i

T x t T xx t

T T t

erfc

2

x

t

Ts

Ti

x1 = (t1) x2 = (t2)x

( , )( , ) i

s i

T x t Tx t

T T

( , ) s s i

s i

T x t T T T

T T

( , )

1 s

i s

T x t T

T T

( , )1 ( , )s

i s

T x t Tx t

T T

1 1 erf ( )

erf2

x

t