totally integrated power technical series edition 3...2 technical series edition 3 technical series...

10
siemens.com/tip-cs Totally Integrated Power Technical Series Edition 3 Modeling of systems for Uninterrup- tible Power Supply (UPS) in SIMARIS® design for application in data centers

Upload: others

Post on 24-Jan-2021

13 views

Category:

Documents


4 download

TRANSCRIPT

Technical Series - Edition 3 - ENTotally Integrated Power
Technical Series Edition 3 Modeling of systems for Uninterrup- tible Power Supply (UPS) in SIMARIS® design for application in data centers
2
Technical Series Edition 3
Technical Series Edition 3
Modeling of systems for Uninterruptible Power Supply (UPS) in SIMARIS® design for application in data centers
1. Basics
Uninterruptible power supply to the servers is of funda- mental importance for data centers in order to have those available 24 hours a day and 365 days a year. To achieve this goal, the power supply must be thoroughly planned. This includes the coordination between the components to be used, taking into account that the selection and inte- gration of UPS systems in the power supply concept is essential in this process.
AAA
The characteristic value describes the depen- dency of the UPS output supply in normal ope- ration in case of change of voltage and fre- quency at the input AC supply.
"VFD" (Voltage and Frequency Dependent): UPS systems with VFD classification must pro- tect the load against power failure.
In this case, the UPS output is influenced by changes of the input AC voltage and the fre- quency, and it is not suitable for assuming additional correction functions which may arise from the application of an autotransformer.
"VI" (Voltage Independent): Like UPS systems with VFD, UPS systems with VI classification must protect the load against power failure, and also additionally ensure the supply in case of
• undervoltage permanently applied to the input
• overvoltage permanently applied to the input.
The output of a UPS with VI classification depends on the frequency of the AC voltage input, and the output voltage must remain within the prescribed limit voltage values.
"VFI" (Voltage and Frequency Dependent): UPS systems with VFI classification are inde- pendent of (mains) supply voltage and fre- quency fluctuations, and must protect the load against negative effects of such fluctuations without discharging the energy storage system.
i Designation code: AAA BB CCC
e.g.: VFI SS 111 (highest classification)
Meaning of the code elements:
BB
Characteristic values dependent on the voltage curve. A difference is made between the following operating modes:
• Normal or bypass operation (first character) • Energy storage operation (second character)
"S": The voltage curve is sinusoidal. In case of linear and non-linear reference load (the exact specification can be found in IEC 62040-3), the total harmonic distortion is lower than 8 %. The curve shape is defined as sinusoidal.
"X": The curve shape is only sinusoidal in case of linear load. In case of non-linear refe- rence load, the curve shape is no longer sinusoidal, as the total harmonic distortion exceeds the limit value of 8 %.
"Y": The voltage curve is not sinusoidal, neither for linear nor for non-linear reference loads. The limit value of 8 % is exceeded in both cases.
In accordance with the IEC 62040-3 standard (DIN EN 62040-3; VDE 0558 Part 530), UPS manufacturers can designate their devices according to the classification described therein. The assessment criteria are shown hereafter as an excerpt:
CCC
Characteristic values for the dynamic behavior of the UPS output voltage:
• First numeral: in case of change of the operating mode • Second numeral: in case of linear load step in normal or battery operation
(specification for the worst case) • Third numeral: in case of non-linear load step in normal or battery operation
(specification for the worst case)
"1": required operating behavior for sensitive, critical loads. The UPS output voltage remains within the limit values of curve 1 (see IEC 62040-3) in this section.
"2": permissible operating behavior for most of the critical loads. The UPS output voltage remains within the limit values of curve 2 (see IEC 62040-3) in this section.
"3": permissible operating behavior for most of the general IT loads, e.g. switched-mode power supplies. The UPS output voltage remains within the limit values of curve 3 (see IEC 62040-3) in this section.
3
Technical Series Edition 3
With SIMARIS design, electrical networks can be dimen- sioned with minimum input effort on the basis of real products – from the medium-voltage level down to the power consumer (which in the case of a data center means down to the rack where the ICT equipment (ICT: Informa- tion and Communication Technology) is supplied with power). This reduces your efforts for the overall planning of the power distribution a lot, and thus the time for selecting and dimensioning the electrical equipment – with a high level of planning security.
When UPS systems are integrated for planning the power distribution, the functionality is structured in SIMARIS design, both • as a load for selecting the components of the infeed
(transformers, generators, cables, busbars, switching devices)
• and as a power source to depict the effects on the downstream network regarding the maximum short-cir- cuit currents in case of transformer infeed, as well as the minimum short-circuit currents in case of inverter opera- tion mode.
Following the standard EN 50600-2-2, Clause 6.3.2, the functional elements of a power distribution system must be selected in accordance with the selectivity and short- circuit withstand strength requirements in all operating modes and during different operating phases.
To supply the connected loads, the • supply via the UPS • supply via a UPS bypass must be considered. Infeed takes places either through a supply network (e.g. primary infeed for VFI operation and secondary supply in case of internal bypass operation of the UPS), or through an additional supply (e.g. generator).
With SIMARIS design it is possible to verify – for the down- stream network – the compliance with the electrotechnical conditions according to the standard, such as the switch- off condition according to IEC 60364-4-41 (DIN VDE 0100 Part 410), as well as the selectivity.
4
Technical Series Edition 3
In power distribution networks, UPS systems are installed to protect critical consumers for which an interruption of the power supply or failures of the supply quality would lead to serious consequences such as data loss, production breakdown, or safety problems. The purpose of use usually determines the functionality of a UPS, and thus the associ- ated UPS classification. When the UPS is integrated in the power distribution network, the functionality of the UPS must be observed in order to avoid malfunctioning and undesirable effects in case of fault or operational changes.
UPS systems with double instrument transformers (mostly with UPS classification VFI) offer the maximum safety by decoupling the load supply from the UPS input (see Fig. 1), and are taken as a basis for the following considerations.
The integration of a static UPS system in a concept for a power supply network will be shown in the following by means of a specific planning example, including the simu- lation of the UPS in SIMARIS design.
Based on the assumption that the input for the static bypass is supplied by the NPS busbar (transformer infeed, low-voltage main distribution LVMD of the normal power
2. Integration of UPS systems in power distribution networks
-
Battery
supply NPS) and the rectifier input is supplied by the SPS busbar (generator, LVMD of the safety power supply SPS), the resulting conditions from the perspective of the UPS output side (main distribution SD UPS) are shown in a simplified way in Fig. 2.
The static bypass is supplied by the LVMD NPS (trans- former). This considers the high short-circuit currents of a transformer supply.
In double conversion operating mode, the UPS rectifier supply through the LVMD SPS (generator) is decoupled from the inverter output, which means that, in inverter operation, the fault currents at the UPS output are exclusi- vely determined by the inverter, and must be taken into account in accordance with the manufacturer data.
Fig. 2: Supply of a short circuit on the output side by the transformer through the bypass or/and through the inverter
5
3. Simulation of UPS systems in SIMARIS design
SIMARIS design offers various options for simulating UPS systems, of which only the detailed simulation according to Fig. 3 is represented. In this context, it must be observed that the UPS function modes are simulated together via SIMARIS design elements and the setting of various operating modes.
In Fig. 3, the essential components required for the func- tionality of the UPS are identified by means of color boxes. The red box marks the UPS as a symbol:
Yellow: Internal, static UPS bypass at one outgoing circuit-breaker from the LVMD NPS to the UPS output
Green: Inverter as power source connected to the UPS output
Dark red: Rectifier as load for rectifier supply and battery charging at the incoming distribution from the generator busbar
2x2x
LV-S 1 Busbar 5 m LI-AM32005H-55
Coupling NPS/SPS Circuit-breaker In = 3.200 A 3WL12402NB711AA2/LSIN
S 1 Busbar 25 m LI-AM32005H-55
LV-CB Transformer Circuit-breaker In = 3,200 A 3WL12402NG611AA2/LSING
Transformer 1 Sn = 2,000 kVA / AN ukr = 6 % 20/0.4 kV Dyn5 4GX63643E
LVMD NPS
Generator switch Circuit-breaker In = 4,000 A 3WL12402NG711AA2/LSING
Generator 1 Pn = 1,800 kW Sn = 2,250 kVA Un = 400 V
Output switch to rectifier Circuit-breaker In = 2.500 A 3WL12322NG711AA2/LSING
S 2.1 Busbar 5 m LI-AM25005H-55
S 1.2 Busbar 5 m LI-AM25005H-55
Internal Bypass Circuit-breaker In = 2,500 A 3WL12322NB711AA2/LSING
UPS inverter output In = 1,732 A Un = 400 V
Dummy inv. output Circuit-breaker In = 2,500 A 3WL12252NG711AA2/LSING
UPS OUT
S 2 Busbar 10 m LI-AM40005H-55
MV-CB 5.1 Circuit-breaker CB-f NAR In (switch) = 630 A Trans. current = 75/1A 7SJ8011
S 1.1 Busbar 5 m LI-AM20005H-55
External bypass CB 1 Circuit-breaker In = 2,000 A 3WL11202EB611AA2/LSIN
B 31.1 Busbar 50 m BD2A-3-630
CB 31.1a Circuit-breaker In = 630 A 3VA24635HN320AA0/LSI
UPS IN
TN-S Un = 400 V
Rectifier + Battery Inner zone In = 1,890 A Un = 400 V 3-poleDummy bypass output
Circuit-breaker In = 2,500 A 3WL12322NB711AA2/LSIN
SD UPS
S 29.2 Busbar 25 m BD2A-3-800
UPS CB 2 Circuit-breaker - 3VA with LSI characteristics In = 800 A 3VA25805KQ320AA0/LSIG
S 24.1 Busbar 25 m BD2A-3-630
S 3 Busbar 5 m LI-AM20005H-55
UPS output Circuit-breaker In = 2,000 A 3WL11202EG711AA2/LSING
B 30.1 Busbar 25 m BD2A-3-400
CB 30.1a Circuit-breaker In = 400 A 3VA23405HN320AA0/LSI
UPS load 2
C/L 29.2 Cable/line 25 m Cu 1(3x240/240/120)
Fu-SD 29.2a Fuse Switch Disc. In = 300 A 3 x 3NA3250 Size 2 3NJ41333BF01 Size 2
S 4.2 Busbar 10 m BD2A-3-630
UPS CB 3 Circuit-breaker In = 630 A 3VA24635HN320AA0/LSI
Load SD SPS Dummy load In = 271 A Un = 400 V 3-pole
SD SPS
TN-S Un = 400 V
Load SD NPS Dummy load In = 451 A Un = 400 V 3-pole
SD NPS
MV-C/L 5.1 N2XS2Y 5 m XLPE 3 x 35
Total load 3 Inner zone In = 577 A Un = 400 V 3+N-pole
Total load 2 Inner zone In = 241 A Un = 400 V 3+N-pole
C/L 24.2 Cable/line 25 m Cu 1(3x240/240/120)
Fu-SD 24.2a Fuse Switch Disc. In = 300 A 3 x 3NA3250 Size 2 3NJ41333BF01 Size 2
Total load 1 Inner zone In = 241 A Un = 400 V 3+N-pole
UPS load 1
TN-S Un = 400 V
UPS CB 1 Circuit breaker - 3VA with ELISA characteristics In = 630 A 3VA24635HK320AA0/LI
External bypass CB 2 Circuit-breaker In = 2,000 A 3WL11202EB611AA2/LSIN
Fig. 3: Detailed simulation of UPS systems in SIMARIS design
Remark: Regarding the rectifier requirements, not only the battery charging, but also the UPS losses in operation must be considered.
Moreover, Fig. 3 shows the three types of power supply via the corresponding sub-distributions: • Normal power supply NPS (sub-distribution SD NPS) • Safety power supply SPS (sub-distribution SD SPS) • Uninterruptible power supply (sub-distribution SD UPS)
In addition, Fig. 3 shows a comparison between a molded- case circuit-breaker 3VA with the ELISA tripping unit and a 3VA circuit-breaker with an LSI tripping unit at the UPS sub-distribution. The advantages of adjusting the ELISA tripping characteristic to the one of a fuse are suggested. The example can also be found in the enclosed SIMARIS design file. Please contact your TIP partner at Siemens for more information.
6
Inverter Rectifier & battery loading
Fig. 4: Functional UPS simulation by determination of operating modes in SIMARIS design
For the different functionalities of the UPS, individual operating modes can be defined and calculated in SIMARIS design (Fig. 4): • Normal UPS operation VFI :
Double conversion operating mode of the UPS via recti- fier and inverter fed by the transformer
• Normal UPS operation VFI via generator : Double conversion operating mode of the UPS via recti- fier and inverter fed by the generator
• Internal bypass operation of the UPS : The rectifier and inverter of the UPS are bypassed; the UPS sub-distribution MD UPS is supplied through the transformer
• External bypass operation for UPS service purposes : The UPS is isolated and all loads are supplied through the transformer.
UPSInternal bypass
Inverter Rectifier & battery loading
Operating mode : UPS in VFI double conversion operating mode, infeed from transformer
Operating mode : UPS in VFI double conversion operating mode, infeed from generator
Operating mode : Internal bypass operation, infeed from transformer
Operating mode : External bypass operation, infeed from transformer
7
Inverter Rectifier & battery charging
Transformer infeed NPS-SPS coupling Generator infeed External bypass Feeder to internal bypass of UPS Feeder to UPS rectifier UPS output feeder UPS distribution



Tab. 1: Observance of operating mode determination when dimensioning with SIMARIS design
To illustrate the correlations between the operating modes and the calculations in SIMARIS design, the different operating modes are itemized in Tab. 1 and Tab. 2: • Tab. 1 shows the relevant circuits for dimensioning in the
respective operating mode (illustration in Fig. 5)
Dimensioning of products and systems (x identifies operating modes to be considered during dimensioning)
Circuit (see Fig. 5)
Operating mode
x x x x
External bypass operation
x x x x
• Tab. 2 shows the current paths for determining the selectivity and the switch-off conditions, and assigns them to the respective operating modes (illustration in Fig. 6).
Fig. 5: Illustration of circuits for dimensioning during UPS simulation
8


Transformer infeed - NPS distribution Transformer infeed - external bypass - UPS distribution Transformer infeed - internal bypass - UPS distribution Transformer infeed - NPS-SPS coupling - Rectifier infeed Transformer infeed - NPS-SPS coupling - SPS distribution Generator infeed - Rectifier infeed Generator infeed - SPS distribution Inverter infeed - UPS distribution
Tab. 2: Observance of operating mode determination for considerations of selectivity and switch-off conditions with SIMARIS design
Fig. 6: Illustration of current paths for considerations of selectivity and switch-off conditions during UPS simulation
Selectivity and switch-off conditions (x identifies current paths to be observed)
UPS VFI operation via transformer
UPS VFI operation via generator
Internal bypass operation External bypass operation
Current paths (see Fig. 6)
x x x
4. Technical UPS data for simulation in SIMARIS design
For the example shown in here, manufacturer information for a specific UPS with an apparent power of 1,200 kVA was taken as a basis (see Tab. 3).
Tab. 3: Technical data for the example UPS1) (used in the enclosed SIMARIS design file)
Rated value of the apparent power in kVA 1,200
Rated active power in kW 1,200
Rated voltage in V 400 (380/415 selectable, 3ph + N)
Rated frequency in Hz 50 (60 selectable)
Rated output current in A 1,731
Maximum input current in A 1,890
Maximum short-circuit current (short-circuit withstand strength of the UPS) in A
3,877
Minimum short-circuit current (overload capability of the UPS2)) in A 2,597 1) The UPS data corresponds to a Liebert® Trinergy™ Cube of Vertiv™ with an apparent power of 1,200 kVA 2) Information of Vertiv™: 150 % overload at rated output voltage for 1 min
5. Critical issues regarding the integration of UPS systems in power supply networks
Regardless of the simulation of a UPS in SIMARIS design, the following issues must be especially observed when integrating UPS systems in power supply networks: • Faults on the SD UPS are critical and must be avoided
preventively – using high-quality components (busbar trunking systems including design verified connection; SIVACON S8 in rootless design, ...)
• In inverter operation, faults on the SD UPS can be a problem for switching off according to IEC 60364-4-41 (DIN VDE 0100 Part 410) if the fault currents are almost as high as the rated currents. In case of 1-pole faults to earth, high-quality circuit-breakers with G releases (e.g. Siemens 3WL circuit-breakers with ETU45B, ETU76B and 3VA circuit-breakers with ETU550/560, ETU 850/860) can be the solution
• When switching off according to IEC 60364-4-43 (DIN VDE 0100 Part 430) and in order to implement selectivity, it is advisable – due to the UPS short-circuit behavior – to limit the rated currents of the switching devices in the outgoing feeders of the SD UPS to 30 % of the UPS rated output current
• For low-range UPS systems (< 100 kVA), RCDs can be used for 1-pole faults to earth. In case of unfavorable design of the SD UPS, an optimized calculation of the minimum short-circuit currents under consideration of the regular UPS behavior can be an advantage for the design
• In case of short circuit at the UPS output, the permissible load of the static bypass must be compared with the information of the UPS manufacturer
• If the UPS manufacturer uses a a semiconductor fuse for protecting the static bypass, this must be observed in the selectivity considerations
• When integrating the UPS systems in a TN-S system, the central earthing point and the number of poles of the switching devices (3- or 4-pole) must be defined, among others
• In case of UPS systems connected in parallel, a fault analysis in the downstream distribution network can reveal a possible additional protection requirement.
6. Sample file for SIMARIS design
Enclosed with the document you will find the SIMARIS design model network (.sdx) with a static UPS system for integration in your own projects. The file has been created with SIMARIS design 10.
Further information as well as the SIMARIS suite, which allows you to access planning tools such as SIMARIS design 10, can be found at siemens.com/simaris.
Imprint
E-mail: [email protected]
For the U.S. published by Siemens Industry Inc.
100 Technology Drive Alpharetta, GA 30005 United States
Subject to change without prior notice • 10/20 © Siemens 2020 • All rights reserved
Subject to changes and errors. The information given in this document only contains general descriptions and/or perfor- mance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.
SIMARIS® is a registered trademark of Siemens AG. Any unauthorized use is prohibited. All other designations in this document may represent trademarks whose use by third parties for their own purposes may violate the proprie- tary rights of the owner.
TS3_UPS_Simulation_EN.pod
¬ísr,com.siemens.simaris.design.model.ElecProjectæ¾J=ÞDL mDefaultst?Lcom/siemens/simaris/design/Project/Knoten/Verwaltung/CVorgabe;LmEnergyCalculationTypet6Lcom/siemens/simaris/enc/kernel/EnergyCalculationType;L mIDfactoryt-Lcom/siemens/simaris/design/model/IDRegistry;LmNetstLjava/util/List;LmProjecttLCommon/Stammdaten/CProject;L mStateMngrtHLcom/siemens/simaris/design/Project/Knoten/Einspeisung/SourceSwitchMngr;xpsr=com.siemens.simaris.design.Project.Knoten.Verwaltung.CVorgabe–›F^Ÿs ZmSPcommunicationZmVDropOnlyLVLmDefaultsConnectionMVtZLcom/siemens/simaris/design/Project/Knoten/Verwaltung/Mittelspannung/CVorgabeVerbindungMS;LmDefaultsSourceMVt[Lcom/siemens/simaris/design/Project/Knoten/Verwaltung/Mittelspannung/CVorgabeEinspeisungMS;LmEnergyCalcTypetLjava/lang/String;LmFrequencyConverterBuildTypeq~L$mFrequencyConverterInstallationPlaceq~LmFrequencyConverterLineEmcTypeq~L mFrequencyConverterOutputEmcTypeq~LmInstallPlaceMoveConsq~LmInstallationPlaceq~LmSumVoltageDropReferencetFLcom/siemens/simaris/design/model/calculation/SumVoltageDropReference;LmSurgeProtectiontLLcom/siemens/simaris/design/Project/Geraete/protection/SurgeProtection$Type;xrBcom.siemens.simaris.design.Project.Knoten.Verwaltung.CVorgabeBasic¾=—Ÿ7ý\'xrFcom.siemens.simaris.design.Project.Knoten.Verwaltung.CVorgabeAllgemein.2¡V{ý!Lm_Paramst:Lcom/siemens/simaris/design/Globals/Component/CParamTable;xpsr8com.siemens.simaris.design.Globals.Component.CParamTable®êoîÇxrjava.util.Hashtable»%!Jä¸F loadFactorI thresholdxp?@Œw»„tID_VorgabeSchalter_Auswahlt,pod_combo_Schalter_Auswahl_Leistungsschaltert ID_VorgabeMotor_NennWirkleistungsrjava.lang.Double€³ÂJ)kûDvaluexrjava.lang.Number†¬•”à‹xp@ÍLtID_VorgabeBezeichnungNSUVt#pod_combo_BezeichnungVerteiler_NSUVt ID_VorgabeVerbrMehr_AnzahlPhasentpod_combo_AnzahlPhasen_1tID_StreckeRefSchalterMStpod_switch_mv_ls_lsttID_VorgabeMotor_SourceFactor_ydsq~@tID_VorgabeAuswahlGeraetetpod_combo_AuswahlGeraete_IcutID_VorgabeMotor_SourceFactorsq~?ðtID_VorgabeMotor_CosPhisq~?é™™™™™štID_VorgabeBezeichnungNSTSEt$pod_combo_BezeichnungVerteiler_NSTSEtID_VorgabeVerbrKondFrequenzsq~@It!ID_VorgabeMotor_AusnutzungsFaktorsq~?ðtID_VorgabeMotor_StartClass_softtpod_combo_Motor_Class10t#ID_VorgabeECar_IntegratedProtectiont#sd_e_car_with_integrated_protectiont$ID_VerbindAllg_Fire_Protection_Class~rTcom.siemens.simaris.design.Project.Geraete.Verbindung.FireProtection$ProtectionClassxrjava.lang.EnumxptE60t#ID_VorgabeVerbindung_LeiterMaterialt&pod_combo_Verbindung_LeiterMaterial_Cut$ID_VorgabeSammelSchiene_AnzahlPhasentpod_combo_AnzahlPhasen_3PlusNtID_iSelKurzUndUebersrjava.lang.Integerâ ¤÷‡8Ivaluexq~tID_MotorBuildTypet"pod_combo_motor_build_without_fuset ID_VorgabeVerbrMehrBelastungsartt,pod_combo_Verbraucher_BelastungsArt_induktivtID_VorgabeECar_DeviceTypetsd_e_car_type_wallboxt!ID_VorgabeMotor_SourceFactor_softsq~?û333333t$ID_VorgabeMotor_AusnutzungsFaktor_ydsq~?ðt(ID_VorgabeMotor_AusnutzungsFaktor_directsq~?ðtID_VorgabeGAusloeserBeiACBsrjava.lang.BooleanÍ r€ÕœúîZvaluexpt'ID_VorgabeMotor_StartCurrentRel_reversesq~@t#ID_VorgabeVerbrMehrNennWirkleistungsq~@¹û9ÀëîtID_VorgabeBezeichnungNSHVt#pod_combo_BezeichnungVerteiler_NSHVtID_VorgabeSelAbstandsq~?ðtID_VorgabeDiBausteinBeiMCCBsq~LtID_VerbindAllg_Fire_Protection~rDcom.siemens.simaris.design.Project.Geraete.Verbindung.FireProtectionxq~5tNO_FIRE_PROTECTIONtID_VorgabeBezeichnungNSTTt#pod_combo_BezeichnungVerteiler_NSTTtID_VorgabeCminNSsq~?ìÌÌÌÌÌÍt$ID_VorgabeVerbrAllgAusnutzungsFaktorsq~?ðtID_VorgabeBezeichnungNSTSt#pod_combo_BezeichnungVerteiler_NSTStID_VorgabeMotor_RToX_dynsq~?ÚáG®zátID_VorgabeVerbrAllgNennStromsq~@YtID_VorgabeKabelQuerschnittMaxsq~@nt ID_VorgabeAnzahlParallelSchienensq~=tID_VorgabeTminIKmaxsq~=tID_VorgabeECar_AnzahlPhasentpod_combo_AnzahlPhasen_3PlusNtID_VorgabeCmaxNSsq~?ñ™™™™™št+ID_VorgabeMotor_AusnutzungsFaktor_frequencysq~?ðtID_RCDbyFuse_Grundq~WtID_VorgabeECar_Locationtsd_e_car_location_privatetID_VorgabeFiSchutzBeiMCBsq~LtID_VorgabeMotor_Efficiencysq~?ìÌÌÌÌÌÍtID_VorgabeMotor_StartCurrentRelsq~@tID_VorgabeSpannungsfallsq~@tID_VorgabeTAbschaltBusbarsq~=PtID_VorgabeSumLoadNominalLoadsq~@ë4ᛑtID_VorgabeECar_Belastungsartt-pod_combo_Verbraucher_BelastungsArt_kapazitivtID_VorgabeBezeichnungNSGSt!pod_combo_BezeichnungVerteiler_GStID_VorgabeIcmFaktorsq~@tID_VorgabeSumLoadCosPhisq~?é™™™™™štID_VorgabeSumLoadNominalCurrentsq~@YtID_VorgabeSpannungsfallMotorsq~@t&ID_VorgabeMotor_AusnutzungsFaktor_softsq~?ðtID_NennSpannungNSsq~=tID_VorgabeVerbindung_Auswahlt"pod_combo_Verbindung_Auswahl_Kabelt%ID_VorgabeMotor_SourceFactorFrequencysq~?ðtID_VorgabeTUmgebungGeraetsq~=-tID_VorgabeKabelFgesTUmgebungsq~=t"ID_VorgabeMotor_StartCurrentRel_ydsq~?û333333tID_VorgabeFiSchutzBeiSichq~Mt&ID_VorgabeVerbrKondStufenBlindLeistungsq~@ØjtID_VorgabeRealVoltageFactorsq~?ðt$ID_VorgabeVerbindung_IsolierMaterialt*pod_combo_Verbindung_IsolierMaterial_PVC70t"ID_VorgabeVerbrKondVerlustleistungsq~?àtID_VorgabeBezeichnungMSHVt#pod_combo_BezeichnungVerteiler_MSHVt ID_VorgabeECar_AusnutzungsFaktorsq~?ðt(ID_VorgabeMotor_StartCurrentRelFrequencysq~?ðtID_VorgabeECar_NennSpannungsq~@ytID_MotorStartTypetpod_combo_motor_type_directtID_VorgabeTAbschaltq~€tID_iSelDimTargetq~>tID_VorgabeTminIKmaxBusbarq~mtID_MotorRelationTypetpod_combo_motor_mapping_type_2tID_VorgabeVerbindung_DS_Auswahlt$pod_combo_Verbindung_Auswahl_SchienetID_VorgabeECar_CosPhisq~?ðtID_VorgabeVerbrAllgCosPhisq~?é™™™™™štID_VorgabeSumLoadBelastungsartt,pod_combo_Verbraucher_BelastungsArt_induktivt&ID_VorgabeVerbrKondStufenEingeschaltetsq~=tID_VorgabeFrequenzsq~=2tID_VorgabeVerbrKondNennSpannungsq~@yt ID_VorgabeVerbrAllgBelastungsartt,pod_combo_Verbraucher_BelastungsArt_induktivtID_VorgabeVerbrKondAnzahlStufensq~= tID_VorgabeECar_NominalCurrentsq~@@tID_VorgabeVerbrMehrCosPhisq~?é™™™™™štID_VorgabeMotor_RToX_statsq~?¹™™™™™štID_VorgabeVerbindung_VerlegeArtt!pod_combo_Verbindung_Verlegeart_CtID_VorgabeI2Defaultsq~?÷333333tID_Vorgabe_RequestedPolzahlq~>t'ID_VorgabeVerbindung_ReducedQuerschnittq~WtID_MotorConfVoltagesq~@yt)ID_VorgabeMotor_AusnutzungsFaktor_reversesq~?ðt"ID_VorgabeVerbraucher_AnzahlPhasentpod_combo_AnzahlPhasen_3PlusNtID_MotorOverloadRelaisTypet$pod_combo_motor_overload_relais_nonet ID_FrequenzNSq~ÀtID_VorgabeMotor_StartClass_ydtpod_combo_Motor_Class10t"ID_Default_SurgeProtectionFuseTypet-pod_combo_Schalter_Auswahl_SicherungMitSockelt"ID_VorgabeMotor_StartClass_reversetpod_combo_Motor_Class10tID_VorgabeFiSchutzBeiMCB_Grundsq~LtID_VorgabeVerbrMehrNennStromsq~@)t$ID_VorgabeMotor_StartCurrentRel_softsq~@tID_VorgabeNormBezeichnungq~kt$ID_VorgabeVerbrMehrAusnutzungsFaktorsq~?ðtID_VorgabeMaxVoltageDropsq~@ tID_Vorgabe_MotorCircuittpod_motorstartertID_iSelDimModusCircToCircq~>tID_VorgabeVerbrAllgNennSpannungsq~@yt&ID_VorgabeMotor_StartCurrentRel_directsq~@tID_VorgabeGAusloeserBeiMCCBq~Mt#ID_VorgabeMotor_StartClassFrequencytpod_combo_Motor_Class10tID_VorgabeAnzahlParallelKabelq~mt$ID_VorgabeMotor_SourceFactor_reversesq~?ðtID_VorgabeMotor_StartClasstpod_combo_Motor_Class10tID_VorgabeVerbindung_Anordnungt pod_combo_VA_Kabeltyp_mehradrigetID_VorgabeBeruerungsSpannungsq~=tID_DefaultDisconnectorDesignt)pod_combo_LasttrennschalterMitSich_Leistet#ID_VorgabeVerbrAllgNennWirkleistungsq~@ë4ᛑtID_VorgabeTSpannungsfallBusbarsq~=7t#ID_VorgabeMotor_SourceFactor_directsq~?ðt!ID_VorgabeMotor_StartClass_directtpod_combo_Motor_Class10tID_VorgabeKabelQuerschnittMinsq~?øtID_VorgabeVerbrMehrNennSpannungsq~@ytID_VorgabeBezeichnungNSTSSt$pod_combo_BezeichnungVerteiler_NSTSStID_VerbindAllg_Theta_Firesq~tID_VorgabeSelektivitaetq~WtID_VorgabeMotor_AnzahlPhasentpod_combo_AnzahlPhasen_3tID_VorgabeTSpannungsfallq~tID_VorgabeMotor_NennSpannungsq~@yxsrXcom.siemens.simaris.design.Project.Knoten.Verwaltung.Mittelspannung.CVorgabeVerbindungMSexTs”ЇIm_Index_AnordnungIm_Index_VerbindungArtDm_dQuerschnittMaxDm_dQuerschnittMinxq~p@n@A€srYcom.siemens.simaris.design.Project.Knoten.Verwaltung.Mittelspannung.CVorgabeEinspeisungMS3$ùïRÔ* DmNominalVoltageMVIm_Index_SternPunktBehandlungDm_R0zuX0maxDm_R0zuX0minDm_Z0zuZ1maxDm_Z0zuZ1minDm_dErdKurzSchlussStromDm_dErdSchlussRestStromDm_dKapazitiverErdSchlussStromL mSchaltGruppeq~xq~sq~?@wt ID_EinspKurzschlussLeistungMinMSsq~@YtID_EinspNennSpannungMSsq~@ÓˆtID_EinspR1_X1maxMSsq~?É™™™™™štID_VorgabeCmaxMSsq~?ñ™™™™™št ID_EinspKurzschlussLeistungMaxMSsq~@@tID_VorgabeCminMSsq~?ðtID_EinspR1_X1minMSsq~?É™™™™™šx@Óˆ?ð?ð?ð?ð?ð?ø@ItDyn5tPHASE_SPECIFICtsd_fused_frequency_convertertsd_fc_distributedtsd_emc_type_withouttsd_emc_type_withouttpod_interiortpod_interior~rDcom.siemens.simaris.design.model.calculation.SumVoltageDropReferencexq~5tVDROP_SECONDARY~rJcom.siemens.simaris.design.Project.Geraete.protection.SurgeProtection$Typexq~5tNONE_SPD~r4com.siemens.simaris.enc.kernel.EnergyCalculationTypexq~5tPHASE_SPECIFICsr+com.siemens.simaris.design.model.IDRegistryƶ®›/¹ImDistributionIDI mElementIDImNetIDxp*+sr&java.util.Collections$SynchronizedList”cïãƒD|Llistq~xr,java.util.Collections$SynchronizedCollection*aøM œ™µLctLjava/util/Collection;LmutextLjava/lang/Object;xpsrjava.util.ArrayListxÒ™ÇaIsizexpwsr(com.siemens.simaris.design.model.ElecNet¨[¬ùÌDmCmaxLVDmCmaxMVDmCminLVDmCminMVD mFrequencyImIDImIndexNetSystemImNetIDDmR0zuX0maxMSDmR0zuX0minMSDmR1zuX1maxMSDmR1zuX1minMSD mSscMVmaxD mSscMVminDmVoltageFactorDmZ0zuZ1maxMSDmZ0zuZ1minMSLmConnectionSetsq~LmDefaultNameq~LmNameq~LmNodesq~LmSlackNodeMVt-Lcom/siemens/simaris/design/model/ElecSource;LmStrIDq~LmUnomLVt(Lcom/siemens/simaris/enc/model/IVoltage;LmUnomMVq~GLmVDropGettert@Lcom/siemens/simaris/design/model/calculation/VoltageDropGetter;L mVDropRefq~xp?ñ™™™™™š?ñ™™™™™š?ìÌÌÌÌÌÍ?ð@I?ð?ð?É™™™™™š?É™™™™™š@@@Y?ð?ð?ðsr&java.util.Collections$UnmodifiableListü%1µìLlistq~xr,java.util.Collections$UnmodifiableCollectionB€Ë^÷Lcq~@xpsq~Cwsr:com.siemens.simaris.design.model.TransformerConnectionLineË<¥g¼I×LmPrimaryConnectiont8Lcom/siemens/simaris/design/model/TransformerConnection;LmSecondaryConnectionq~OLmTransformerConnectiont>Lcom/siemens/simaris/design/model/TransformerDeviceConnection;xr2com.siemens.simaris.design.model.ElecConnectionSetkøë*5ÒÆxr/com.siemens.simaris.design.model.ElecConnectionÐc"pg I mConnectionIDImCopyIDImNetSystemIndexD mPlossAbsD mPlossRelD mRaOnlyITD mReOnlyTTImRequestedNetSystemIndexImSelDimModeCircToCircI mSelDimTargetDmSelDistanceImSelKurzUndUeberLmCircuitTypet.Lcom/siemens/simaris/design/model/CircuitType;LmConnectiont:Lcom/siemens/simaris/design/model/IDimableImpedanceHolder;LmDefaultNameq~L mFixImpedancetDLcom/siemens/simaris/design/Project/Geraete/Verbindung/FixImpedance;LmInnerConnSubnetPos0t>Lcom/siemens/simaris/design/Berechnung/Kernel/InnerConnSubnet;LmInnerConnSubnetPos1q~VL mMcbSelectiont8Lcom/siemens/simaris/design/Project/Knoten/McbSelection;LmNameq~LmOVPU0tNLcom/siemens/simaris/design/Project/Geraete/protection/OvervoltProtectionUnit;LmOVPU1q~XLmSeparateProtectiontBLcom/siemens/simaris/design/Project/Knoten/SeparateProtectionType;LmSourcet+Lcom/siemens/simaris/design/model/ElecNode;LmStrIDq~LmSwitchingDevice0t6Lcom/siemens/simaris/design/model/device/SwitchDevice;LmSwitchingDevice1q~[LmTargetq~ZLmTargetDistributiontELcom/siemens/simaris/design/Project/Geraete/Verteiler/CVerteilerAllg;xr.com.siemens.simaris.enc.model.impl.EConnectionC!¼º¨+ImIDLmDifferenceVoltageq~GL mLFcurrentt,Lcom/siemens/simaris/enc/model/ILoadCurrent;LmSourcet*Lcom/siemens/simaris/enc/model/impl/ENode;LmTargetq~_L mZloadFlowt*Lcom/siemens/simaris/enc/model/IImpedance;LmZmaxq~`LmZminq~`xpgsr*com.siemens.simaris.enc.model.impl.Voltage0Ü^bQó±LmUlinesNt-Lorg/apache/commons/math3/linear/FieldVector;LmUsymq~cxpsr0org.apache.commons.math3.linear.ArrayFieldVectorj#Ñy 'FŠ[datat([Lorg/apache/commons/math3/FieldElement;Lfieldt Lorg/apache/commons/math3/Field;xpur+[Lorg.apache.commons.math3.complex.Complex;2[/(Ç›æxpsr(org.apache.commons.math3.complex.Complexª“ò·[ôD imaginaryDrealxpq~lq~lsr-org.apache.commons.math3.complex.ComplexFieldªì“[®OÂxpsq~euq~iq~lq~lq~lq~nsr.com.siemens.simaris.enc.model.impl.LoadCurrentEj4…\áÐLmIlinesq~cLmIsymq~cLmPhasest+Lcom/siemens/simaris/enc/model/impl/EPhase;xpsq~euq~iq~lsq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~n~r)com.siemens.simaris.enc.model.impl.EPhasexq~5tL1L2L3pppppÿÿÿÿ?ð~r,com.siemens.simaris.design.model.CircuitTypexq~5tTRANSFORMER_MV_LVptNSHV 5.1ppp~r6com.siemens.simaris.design.Project.Knoten.McbSelectionxq~5tICNppp~r@com.siemens.simaris.design.Project.Knoten.SeparateProtectionTypexq~5tSP_NONEpt5.1pppsrCcom.siemens.simaris.design.Project.Geraete.Verteiler.CVerteilerAllg ärwˆÞfZmHasGroupRCDZm_bL1Zm_bL2Zm_bL3LmSeparateProtectionq~Yxr:com.siemens.simaris.design.Project.Geraete.CloneableDevice/®—±xr2com.siemens.simaris.design.Project.Geraete.CDeviceiÕšÛ§9ydLmUserdefinedNameq~Lm_Paramsq~xppsq~?@wtID_ZielVerNennLeistungsq~t ID_Netzsystemsq~=tID_Bezeichnungtt!ID_ZielVerGleichZeitigkeitsFaktorsq~?ðtID_Spannungsfallsq~@t ID_Polzahlsq~=xq~ˆsr6com.siemens.simaris.design.model.TransformerConnectionèIÉ>ˆbˆøZmPrimaryLmTransformerConnectionLinet<Lcom/siemens/simaris/design/model/TransformerConnectionLine;xq~Rjsq~bsq~euq~iq~lq~lq~lq~nsq~euq~iq~lq~lq~lq~nsq~qsq~euq~iq~lsq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~ppppp?ð~q~€tTRANSFORMER_MVsr>com.siemens.simaris.design.Project.Geraete.Verbindung.CKabelMSPÌÚ»ÆD m_Inominalxr@com.siemens.simaris.design.Project.Geraete.Verbindung.CKabelAllg¢ÚQ™Ð…ËxxrEcom.siemens.simaris.design.Project.Geraete.Verbindung.CVerbindungAllg’@2›÷aZmBuildingTransitionLmFireProtectiontFLcom/siemens/simaris/design/Project/Geraete/Verbindung/FireProtection;LmFireProtectionClasstVLcom/siemens/simaris/design/Project/Geraete/Verbindung/FireProtection$ProtectionClass;xq~Œt MV-C/L 5.1sq~?@!w- tID_KEY_Polzahltpod_combo_AnzahlPhasen_1tID_MS_iAnordnungsq~=tID_KabelAllg_IndexAnordnungsq~=tID_KabelAllg_EinhalbPENsq~Lt#ID_VerbindAllg_Querschnitt_n_Leitersq~?øtID_VerbindAllg_Laengesq~@t(ID_VerbindAllg_Querschnitt_aussen_Leitersq~?øtID_Kabel_AnzahlParallelerLeiterq~“tID_VerbindAllg_Theta_minsq~@4tID_MS_Kabel_dx1sq~?Êe+ÓÃatID_MS_Kabel_dx0sq~øtID_MS_dUmrechnungsfaktorsq~?ðtID_MS_Kabel_dr1sq~?á/Ÿ¾vÉtID_MS_iBemessungsspannungsq~=tID_MS_Kabel_dr0sq~øt ID_VerbindAllg_NotYetDimensionedsq~Lq~šq~½tID_KabelAllg_VerlegeArttpodMS_combo_Verbindung_LufttID_VerbindAllg_Theta_maxsq~@TtID_MS_dNennFrequenzsq~@Iq~’q~½tID_MS_iKabelTypq~»t!ID_KabelAllg_IndexIsolierMaterialq~½tID_MS_iKabelbauartq~»t"ID_VerbindAllg_IndexLeiterMaterialq~½tID_KabelAllg_UmrechnungsFaktorsq~?ðq~”t MS-K/L 5.1t$ID_VerbindAllg_Querschnitt_pe_Leitersq~?øtID_VerbindAllgWireMaterialt&pod_combo_Verbindung_LeiterMaterial_CutID_MS_iQuerschnittsq~=tID_VerbindAllg_TypNrsq~=tID_Schalter_AutoDimsq~Lxpp@m`q~ƒpsr<com.siemens.simaris.design.Berechnung.Kernel.InnerConnSubnet~HœH2Âxr?com.siemens.simaris.design.model.internals.AbstrInternalConnSetÅá=d‚ôVoLmBaseConnectiont1Lcom/siemens/simaris/design/model/ElecConnection;L mInternalNodet9Lcom/siemens/simaris/design/model/internals/InternalNode;LmLowerConnectionsq~LmUpperConnectionsq~xq~Rksq~bsq~euq~iq~lq~lq~lq~nsq~euq~iq~lq~lq~lq~nsq~qsq~euq~iq~lsq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppÿÿÿÿRÿÿÿÿÿÿÿÿ?ðq~®pppppq~…pppq~ˆppppppq~sr7com.siemens.simaris.design.model.internals.InternalNodeôÐîØ”2- L mBaseNodeq~ZLmConnectionsq~xr)com.siemens.simaris.design.model.ElecNodeá])«à¯ZmCentralEarthPointImCopyIDImDistributionIDZmMaindistributionImNetSystemIndexImRequestedNetSystemIndexLmCircuitTypeq~SL mDistributionq~\LmLeftConnectiont/Lcom/siemens/simaris/design/model/ElecCoupling;LmNett*Lcom/siemens/simaris/design/model/ElecNet;LmNodeVoltaget*Lorg/apache/commons/math3/complex/Complex;LmRightConnectionq~LmStrIDq~LmSurgeProtectionq~ xr(com.siemens.simaris.enc.model.impl.ENode œ ô24bdImIDLmConnectionsq~LmLoadsq~LmNameq~LmOperatingVoltageq~GLmSourcesq~L mTransformersq~xplsq~Jsrjava.util.Collections$EmptyListz¸´<§Þxpq~sq~Jq~q~psq~bsq~euq~isq~k@lÞ\±OÞsq~kÀiÀ\Þ\±OÞsq~k@iÀ\Þ\±OÞq~nsq~euq~isq~ksq~k@lÞ\±OÝsq~k=q~nsq~Jq~q~sq~Jq~q~Sÿÿÿÿÿÿÿÿÿÿÿÿ~q~€tINTERNALpppppq~•q~7sr+com.siemens.simaris.design.model.ElecSourceM’M˜,*EDZmLinesSourceZmNsourceLmMainDevicetELcom/siemens/simaris/design/Project/Geraete/Hauptgeraet/CHauptGeraet;xq~sq~Jsq~Cwq~xq~ sq~Jq~q~psq~bsq~euq~isq~k@lÞ\±OÞsq~kÀiÀ\Þ\±OÞsq~k@iÀ\Þ\±OÞq~nsq~euq~isq~ksq~k@lÞ\±OÝsq~k=q~nsq~Jsq~Cwq~xq~.sq~Jsq~Cwq~asq~Nsq~bsq~euq~isq~kq~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppgÿÿÿÿ?ðq~pt NSHV 10.1pppq~…pppq~ˆpt10.1pppsq~‹psq~?@wtID_ZielVerNennLeistungsq~t ID_Netzsystemsq~=tID_Bezeichnungtt!ID_ZielVerGleichZeitigkeitsFaktorsq~?ðtID_Spannungsfallsq~@t ID_Polzahlsq~=xq~ˆsq~œ sq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppj?ðq~®sq~°psq~?@!w-tID_KEY_Polzahltpod_combo_AnzahlPhasen_1tID_MS_iAnordnungsq~=tID_KabelAllg_IndexAnordnungq~gtID_KabelAllg_EinhalbPENsq~Lt#ID_VerbindAllg_Querschnitt_n_Leitersq~?øtID_VerbindAllg_Laengesq~@t(ID_VerbindAllg_Querschnitt_aussen_Leitersq~?øtID_Kabel_AnzahlParallelerLeiterq~ItID_VerbindAllg_Theta_minsq~@4tID_MS_Kabel_dx1sq~?Êe+ÓÃatID_MS_Kabel_dx0sq~øtID_MS_dUmrechnungsfaktorsq~?ðtID_MS_Kabel_dr1sq~?á/Ÿ¾vÉtID_MS_iBemessungsspannungsq~=tID_MS_Kabel_dr0sq~øt ID_VerbindAllg_NotYetDimensionedsq~Lq~Pq~gtID_KabelAllg_VerlegeArttpodMS_combo_Verbindung_LufttID_VerbindAllg_Theta_maxsq~@TtID_MS_dNennFrequenzsq~@Iq~Hq~gtID_MS_iKabelTypq~gt!ID_KabelAllg_IndexIsolierMaterialq~gtID_MS_iKabelbauartq~gt"ID_VerbindAllg_IndexLeiterMaterialq~gtID_KabelAllg_UmrechnungsFaktorsq~?ðq~JtMS-K/L 10.1t$ID_VerbindAllg_Querschnitt_pe_Leitersq~?øtID_VerbindAllgWireMaterialt&pod_combo_Verbindung_LeiterMaterial_CutID_MS_iQuerschnittsq~=tID_VerbindAllg_TypNrsq~=xpp@m`q~Bpsq~îsq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppÿÿÿÿkÿÿÿÿÿÿÿÿ?ðq~®pppppq~…pppq~ˆppppppq~Rsq~sq~Jq~q~sq~Jq~q~psq~bsq~euq~isq~k@lÞ\±OÞsq~kÀiÀ\Þ\±OÞsq~k@iÀ\Þ\±OÞq~nsq~euq~isq~ksq~k@lÞ\±OÝsq~k=q~nsq~Jq~q~sq~Jq~q~lÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~Kq~7q~sq~Cwsr=com.siemens.simaris.design.model.internals.InternalConnectionBiAk'§DmImpedanceFactorLmBaseConnectionq~ðL mImpedanceq~`LmSourceq~ZLmTargetq~Zxq~R sq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppÿÿÿÿmÿÿÿÿÿÿÿÿ?ðq~®pppppq~…pppq~ˆpppppp?ðq~Rsr,com.siemens.simaris.enc.model.impl.ImpedanceâÏíãÞö>LmY0_nq~LmY0_peq~LmY1q~xpsq~kÁ½ÍdÿÿÿÿA½Ídÿÿÿÿq~Ëq~Ëpq~§sq~¸sq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppÿÿÿÿnÿÿÿÿÿÿÿÿ?ðq~®pppppq~…pppq~ˆpppppp?ðq~Rpq~§pxsq~Cwq~Ìxsq~Cwq~¹xsq~îsq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppÿÿÿÿoÿÿÿÿÿÿÿÿ?ðq~®pppppq~…pppq~ˆppppppq~Rsq~sq~Jq~q~sq~Jq~q~psq~bsq~euq~isq~k@lÞ\±OÝsq~kÀiÀ\Þ\±OÝsq~k@iÀ\Þ\±OÝq~nsq~euq~isq~ksq~k@lÞ\±OÝsq~k=q~nsq~Jq~q~sq~Jq~q~pÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~Kq~7sr0com.siemens.simaris.design.model.TransformerNode$ªê–$WµÈZmPrimaryLmTransformert?Lcom/siemens/simaris/design/Project/Geraete/Hauptgeraet/CTrafo;LmVoltageq~Gxq~sq~Jsq~Cwxq~sq~Jq~q~pq~ñsq~Jq~q~sq~Jsq~Cwsr<com.siemens.simaris.design.model.TransformerDeviceConnectionfhJöÞwLmTransformerConnectionLineq~xq~Rsq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~ppppps?ð~q~€tTRANSFORMERsr=com.siemens.simaris.design.Project.Geraete.Hauptgeraet.CTrafo2‹ÊA-iã×xrCcom.siemens.simaris.design.Project.Geraete.Hauptgeraet.CHauptGeraetèð¼ø–|aD mFrequencyD mInfeedFactorxq~Œpsq~?@!w-tID_TrafoFreiKurzSchlussVerlustsq~@›XtID_TrafoFrequenzsq~@ItID_TrafoOberSpannungsq~@ÓˆtID_TrafoFreiIsolationtkey_isolation_drytID_TrafoVerhaeltnisR0zuR1sq~?ðtID_TrafoVentilationq~jtID_TrafoSchaltGruppetDyn5tID_TrafoUnterSpannungsq~@ytID_HauptGerManufacturerTypq~KtID_TrafoFreiLeerlaufVerlustsq~?Ù™™™™™štID_TrafoAusfuehrungt GEAFOL NeotID_TrafoVentilationRequestq~jtID_TrafoFreiAusfuehrungq~KtID_Knotentypsq~=¸tID_TrafoKurzSchlussVerlustsq~@Ï@t!ID_TrafoBemessKurzSchlussSpannungsq~@tID_TrafoKeyBemessungsAuswahlt.pod_combo_Trafo_BemessungsAuswahlListe_SIEMENStID_TrafoNennLeistungsq~@Ÿ@tID_KnotenNotYetDimsq~LtID_TrafoIsolationtkey_isolation_dryq~Pq~Qq~Hq~gq~Jt Trafo 10.1t%ID_TrafoFreiBemessKurzSchlussSpannungsq~@tID_TrafoFreeTypq~jtID_KnotenAutoDimFlagq~jtID_TrafoVerhaeltnisX0zuX1sq~?îfffffftID_Schalter_AutoDimq~jtID_TrafoFreiNennLeistungsq~@YtID_TrafoMLFBt 4GX63643EtID_TrafoLeerlaufVerlustsq~@¸Që…¸x@I?ðq~Bpppq~…pppq~ˆpq~Cppppq~1xq~h q~sq~‹psq~?@wq~Fq~Gq~Hq~Iq~Jq~Kq~Lsq~?ðq~Nsq~@q~Pq~}xq~ˆppsq~k@Óˆpq~Kq~7q~sq~bsq~euq~isq~køøq~Xq~Xq~nsq~euq~iq~5q~Xq~Xq~nsq~Cwsq~¸sq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppÿÿÿÿqÿÿÿÿÿÿÿÿ?ðq~®pppppq~…pppq~ˆpppppp?ðq~Rppq~îsq~¸sq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppÿÿÿÿrÿÿÿÿÿÿÿÿ?ðq~®pppppq~…pppq~ˆpppppp?ðq~Rq~Êq~îpxsq~Cwq~lxsq~Cwq~\xq~…pppq~ˆpq~Csr4com.siemens.simaris.design.model.device.SwitchDevice:gàüc,þLmSwitchtHLcom/siemens/simaris/design/Project/Geraete/Schalter/CSchalterAllgemein;xpsrAcom.siemens.simaris.design.Project.Geraete.Schalter.MSSchalterLST3Ä`+y•ÞxrHcom.siemens.simaris.design.Project.Geraete.Schalter.CLeistungsSchalterMS*ø†ØL®lLmCurrentTransformerTypeq~L m_oProdHoldertILcom/siemens/simaris/design/Project/Geraete/Schalter/CProdCircuitBreaker;xr?com.siemens.simaris.design.Project.Geraete.Schalter.CSchalterMS_Û˜ ÒŠ³,LmBaseNominalCurrenttLjava/lang/Double;xrFcom.siemens.simaris.design.Project.Geraete.Schalter.CSchalterAllgemein¢¶Š3îìyZmMcbSelectionIcuZmRCD_ACBLmBaseDevicetHLcom/siemens/simaris/design/Project/Geraete/Schalter/ISchalterAllgemein;LmCurvesProxytALcom/siemens/simaris/design/Project/Geraete/Schalter/CurvesProxy;xq~psq~?@&w3%tID_dTSelShortCirsq~øtID_Schalter_TyptLeistungsschalter CB-f NARtID_Schalter_FiSchutzBeiMCBsq~LtID_Schalter_GAusloeserBeiACBq~tID_Schalter_NumberOfPolessq~=tID_Schalter_MLFBttID_Bezeichnungt MS-LS 10.1tID_RCDbyFuse_Grundsq~LtID_MS_iPrimNennStromIndexsq~=t ID_Schalter_PositionImStromkreissq~=tID_Schalter_Unsq~@yt$ID_LtsSchalter_SchutzRelaisZeitGrosssq~?¹™™™™™št ID_LtsSchalter_SchutzRelaisStromsq~@\(õÂtID_Schalter_NetzSystemIndexsq~=tID_MS_dAbZeitErdFehlersq~?¹™™™™™štID_Schalter_GAusloeserBeiMCCBq~t)ID_LtsSchalter_SchutzRelaisZeitGrossGrosssq~?PbMÒñ©ütID_Switch_iMultiplysq~=tID_Schalter_TypNrsq~=tID_LtsSchalter_SchutzRelaisZeitsq~?ã333333tID_Schalter_AutoDimq~tID_MS_iSekNennStromIndexsq~=tID_FI_hasToHaveq~™tID_Schalter_TypKeytpod_switch_mv_ls_lsttID_MS_iPrimNennStromsq~@RÀtID_LtsSchalter_BelastungsStromsq~t ID_Schalter_FiSchutzBeiMCB_Grundq~™tID_dTselSCCsq~øtID_MS_iSekNennStromsq~?ðt#ID_Schalter_DiBausteinBeiMCCB_Grundq~™tID_Schalter_FiSchutzBeiSichq~t%ID_LtsSchalter_SchutzRelaisStromGrosssq~@/LÌÌÌÌÍt*ID_LtsSchalter_SchutzRelaisStromGrossGrosssq~@?LÌÌÌÌÍtID_Schalter_bRCDselektivitaetsq~LtID_dTSelOverloadsq~øtID_ProtectiveDevicesr>com.siemens.simaris.tripchar.model.device.MVCurrentChangerImplG0/ˆÖøçDfactorL devWrappert4Lcom/siemens/simaris/tripchar/model/device/MVDevice;xp@RÀsr6com.siemens.simaris.tripchar.model.device.MVDeviceImpl*­Ö`yäD lowVoltageD mediumVoltageDratedCurrentL devWrappertDLcom/siemens/simaris/tripchar/model/device/IProtectiveDeviceWrapper;xp@y@Óˆ?ðsr=com.siemens.simaris.tripchar.model.tripunitold.BaseSwitchUnitô>m1ÿö³Z mUncuttedDvalIcuL cutOffCurrentt?Lcom/siemens/simaris/tripchar/model/curve/ICharacteristicCurve;LletThroughEnergyq~ÒL reverseMaptLjava/util/Map;L tripUnitsq~ÓxpAO€ppsrjava.util.HashMapÚÁÃ`ÑF loadFactorI thresholdxp?@wsr;com.siemens.simaris.tripchar.model.tripunitold.BaseTripUnit@MyR†Eä…ZmCurrentLockedZmGroupLockedZmTimeLockedLtripUnitt9Lcom/siemens/simaris/tripchar/model/tripunitold/TripUnit;xpsr7com.siemens.simaris.tripchar.model.tripunitold.TripUnitœú#pÖ?ZmDisengageableZmEngagedZ mFullRangeLmActiveCharacteristict<Lcom/siemens/simaris/tripchar/model/constant/Characteristic;L mBuilderClassq~L mCharPropsq~ÓLmCurveMultipliersq~ÓLmMultipliersq~Óxp~r:com.siemens.simaris.tripchar.model.constant.Characteristicxq~5tDEFAULTpsrjava.util.EnumMap]}÷¾|¡LkeyTypetLjava/lang/Class;xpvq~Ýwq~ÞsrGcom.siemens.simaris.tripchar.model.tripunitold.CharacteristicPropertiesUmC_ãÚDcurrentDtimeLallCurrentSettingst=Lcom/siemens/simaris/tripchar/model/device/setting/ISettings;LcurrentSettingsq~åLmLowert4Lcom/siemens/simaris/tripchar/model/curve/CurveData;LmUpperq~æL refMatchesq~ÓLtimeSettingsq~åxp?©™™™™™šsrGcom.siemens.simaris.tripchar.model.device.setting.MultiSettingGeneratorC¡'.ExvLboundt8Lcom/siemens/simaris/tripchar/model/device/setting/Pair;L generatorsq~[indicest[I[settingst[Dxpsr6com.siemens.simaris.tripchar.model.device.setting.PairùAPòÁÉfLfirstq~ALsecondq~Axpsq~?©™™™™™šsq~@A€sq~Cwsr9com.siemens.simaris.tripchar.model.device.setting.FromMin}›ð˜Eâ$DmaxDminIsizeDstepxp@A€?©™™™™™š ¨?„záG®{xur[IMº`&vê²¥xp §ur[D>¦Œ«cZxp@A€q~ìppsq~Õ?@wxsq~èsq~ísq~sq~@Nsq~Cwsq~ò@Nq?„záG®{xuq~ôpuq~ö@Nxsq~àvr3com.siemens.simaris.tripchar.model.constant.Currentxq~5wxsq~àq~wx~r>com.siemens.simaris.tripchar.model.constant.ProtectiveFunctionxq~5tMV_Gsq~×sq~Úq~Þt=com.siemens.simaris.tripchar.model.tripunitold.MVIPartBuildersq~àq~ãwq~Þsq~ä@?LÌÌÌÌÍ?PbMÒñ©üsq~èsq~ísq~?¹™™™™™šsq~@A€sq~Cwsq~ò@A€?¹™™™™™š £?„záG®{xuq~ô ¢uq~ö@A€q~ sr2com.siemens.simaris.tripchar.model.curve.CurveDataÔ¦p^o$DmMinYDmOffsetYDmToleranceX[mIntermediatePointst6[Lcom/siemens/simaris/tripchar/model/curve/CurvePoint;xp?îffffffur6[Lcom.siemens.simaris.tripchar.model.curve.CurvePoint;D†êZ8˜Qxpsr:com.siemens.simaris.tripchar.model.curve.CurvePoint$DoublefÏQ WöûºDxDyxr3com.siemens.simaris.tripchar.model.curve.CurvePointyùXQI×ðYL mPartTypet>Lcom/siemens/simaris/tripchar/model/curve/CurvePoint$PartType;LmTagsq~Óxp~r<com.siemens.simaris.tripchar.model.curve.CurvePoint$PartTypexq~5tPART_Ip?îffffff?ðsq~q~p@D?ðsq~q~pAb¬?ðsq~?©™™™™™š?ðÌÌÌÌÌÍuq~sq~q~p?ðÌÌÌÌÌÍ?ðsq~q~p@D?ðsq~q~pA.„€?ðsq~Õ?@wxsq~èsq~ísq~?PbMÒñ©üsq~@Nsq~Cwsq~ò?„záG®{?PbMÒñ©ü?‚n—Oß;sq~ò@N?„záG®{p?„záG®{xuq~ôpuq~ö?„záG®{@Nxsq~àq~wxsq~àq~wx~q~tMV_Isq~×sq~Ú~q~ÝtSTDt=com.siemens.simaris.tripchar.model.tripunitold.MVSPartBuildersq~àq~ãwq~8sq~ä@/LÌÌÌÌÍ?¹™™™™™šsq~èsq~ísq~?¹™™™™™šsq~@A€sq~Cwsq~ò@A€?¹™™™™™š £?„záG®{xuq~ô ¢uq~ö@A€q~=sq~uq~sq~~q~tPART_Sp?îffffff?ðsq~q~Hp?îfhEZ}?ðsq~q~Hp@øj?ðsq~?©™™™™™šuq~sq~q~Hp?ðÌÌÌÌÌÍ?ðsq~q~Hp?ðÌÍÙ<FØ?ðsq~q~Hp@øj?ðsq~Õ?@wxsq~èsq~ísq~?PbMÒñ©üsq~@Nsq~Cwsq~ò?„záG®{?PbMÒñ©ü?‚n—Oß;sq~ò@N?„záG®{p?„záG®{xuq~ôpuq~ö?„záG®{@Nxsq~àq~wxsq~àq~wx~q~tMV_Ssq~×sq~Ú~q~ÝtUMZt=com.siemens.simaris.tripchar.model.tripunitold.MVLPartBuildersq~àq~ãwq~asq~ä@\(õÂ?ã333333sq~èsq~ísq~?¹™™™™™šsq~@A€sq~Cwsq~ò@A€?¹™™™™™š £?„záG®{xuq~ô ¢uq~ö@A€q~fsq~?ðuq~sq~~q~tPART_Lp?îffffffA[w@sq~q~qp?îfhEZ}?ðsq~q~qp@È?ðsq~?©™™™™™š?ðuq~sq~q~qp?ðÌÌÌÌÌÍA[w@sq~q~qp?ðÌÍÙ<FØ?ðsq~q~qp@È?ðsq~Õ?@wxsq~èsq~ísq~?PbMÒñ©üsq~@Nsq~Cwsq~ò?„záG®{?PbMÒñ©ü?‚n—Oß;sq~ò@N?„záG®{p?„záG®{xuq~ôpuq~ö?„záG®{@N~q~ÝtISIsq~ä?ð?ðsq~èsq~ísq~?¹™™™™™šsq~@sq~Cwsq~ò@?¹™™™™™š‡?„záG®{xuq~ô†uq~ö@q~‡sq~?ðuq~sq~q~qp?ð¸Që…¸@¼ sq~q~qp?ð¹w…r›(@R?†Â&€sq~q~qp?ñ‚Ó„vó@MûƧï²sq~q~qp?ñ‰7KƧð@H¥ÈK]Ìsq~q~qp?ò"¦óõ0@DEjOvsq~q~qp?òÂŒûü@@°è§æ›sq~q~qp?ó™÷øÊ™@;‡RT`ªesq~q~qp?ô©²€ñ,(@6ÀoiDg8sq~q~qp?õþ°t§qÉ@2ÜL˜_sq~q~qp?÷ª®)s–Ñ@/cñA [Àsq~q~qp?ùÀˆP›ú@*A–R½<6sq~q~qp?üchð„aú@&ÀëíúDsq~q~qp?ÿ©¼ýKð™@"½ÐR“JËsq~q~qp@ݧ°³‘’@ á›êsq~q~qp@aÊÀƒo@¨ð„aùðsq~q~qp@{¼¾aÐ@•-#Nºsq~q~qp@GÝ[email protected]áG®sq~q~qp@í(Œç°@É~+Uïsq~q~qp@˧2ßP]@Î,­®sq~q~qp@>Œ?>@LáÅ‚U°sq~q~qp@nŠqÞi­@‚É.4sq~q~qp@„w…@ #ñA [Àsq~q~qp@"Ù$ò'Ð)@¡‹Öbxsq~q~qp@&˜y=Ùc@[µÜysq~q~qp@+#¯·éù@Ó¸ä¸{Ýsq~q~qp@0SS&Â@zÜ €²Bsq~q~qp@3© 'RTa@H1&éxÕsq~q~qp@È@H1&éxÕsq~?ðuq~sq~q~qp?òzáG®{@¼ sq~q~qp?òzëÄØí@RoRT`ªesq~q~qp?òßrï å@Nm?|í‘hsq~q~qp?óY@x–Ó@Iö”Ftsq~q~qp?óï4Ö¡aå@DÁTÉ…ðosq~q~qp?ô¨Âzc@A*=p£× sq~q~qp?õuy(àÊ@<n쿱[Wsq~q~qp?ö°H@ár@7™…ðoiDsq~q~qp?øG„#Ð@3¤ðØDÐsq~q~qp?ùâàŸèh4@0j)Çy¦µsq~q~qp?ü:}ªOÊ@+‘·Xâsq~q~qp?þé}‚Ô@'K¹Œ~($sq~q~qp@2 {5@#Ô–gµñ¿sq~q~qp@[ Ø/×^@!q!«Ksq~q~qp@¼£n/@|ygÊêsq~q~qp@ LT6¸ù±@ÅýŠÚ¹õsq~q~qp@ Mͳ|™¯@¼gßã*sq~q~qp@—Ì9ÿÖ@;«!Zsq~q~qp@}Vlô@'~äâmHsq~q~qp@¦{_ïJ@i­BÃÉïsq~q~qp@'RT`ª@ áÕ<ÝÖàsq~q~qp@ ¡Z³S@_”…]¢ssq~q~qp@#ÏÆTÇ@ 8q`•l sq~q~qp@'§y¦µ@Z•BCsq~q~qp@,K)^ @¸7´¢3œsq~q~qp@0ò‚@·€4@G5~g,sq~q~qp@4Sˆe”¯O@þG™ÅXsq~q~qp@È@þG™ÅXsq~Õ?@wxsq~èsq~ísq~?©™™™™™šsq~@ ™™™™™šsq~Cwsq~ò@ ™™™™™š?©™™™™™š<?„záG®{xuq~ô;uq~ö@ ™™™™™š~q~ÝtIVIsq~ä?ð?ðsq~èsq~ísq~?¹™™™™™šsq~@sq~Cwsq~ò@?¹™™™™™š‡?„záG®{xuq~ô†uq~ö@q~×sq~?ðuq~sq~q~qp?ð¸Që…¸@¼ sq~q~qp?ð¹bŒ½E@`ÊE¡ÊÀƒsq~q~qp?ñ,'¦76Î@ZD1&éysq~q~qp?ñ¹à`þG™@T»˜Çâ‚sq~q~qp?òk¯#c²@Pø7´¢4sq~q~qp?óJ¡!B@IDÖ¡aä÷sq~q~qp?ôcS÷ÎÙ@CÜq²•êsq~q~qp?õÄú;÷@?M\ú¬Ùèsq~q~qp?÷}ó¶E¡Ë@8¾Åm\ú­sq~q~qp?ù QC¿rq@3¢ÊW§†Âsq~q~qp?üAæ¯Ìâ@/LL˜_sq~q~qp?ÿx-8Go*@)æ1ø sq~q~qp@°÷¹à`þ@$(è§æ›sq~q~qp@–»˜È@ LSâÖ$sq~q~qp@ë@öjU@xW)²€ñsq~q~qp@ ZøßzN{@–ÿÁßesq~q~qp@z–»™@­Ëeè’sq~q~qp@´‚¾‹Áj@ !–R½<sq~q~qp@§Z1¤½º@ólß&k¥sq~q~qp@,¯öÓ0”@ÌL˜_sq~q~qp@`$³=¯@g¨mqósq~q~qp@ ±Z³R¨?û<j~ùÛ#sq~q~qp@#® þ†ƒ<?ö§íåKIsq~q~qp@'=IQ‚©“?òÞJ82vusq~q~qp@+z¬Ùè>B?ïxgðª!§sq~q~qp@0C•$Ý?êE€<ÑA§sq~q~qp@3DÉ…ðoi?åòõU‚”sq~q~qp@È?åòõU‚”sq~?ðuq~sq~q~qp?òzáG®{@¼ sq~q~qp?òzëÄØí@`ôÄ›¥ãTsq~q~qp?ò÷—{@Z˜bMÒñªsq~q~qp?ó‘ÑN;Í6@TÞ³g ù sq~q~qp?ôSâÖ#¤@Pd‡ü¹#£sq~q~qp?õG0@9«ó@IÉ[W>«6sq~q~qp?öy‘¼U†D@DQÿ.Hè§sq~q~qp?÷û½{ 1Ï@@ ãS÷ÎÙsq~q~qp?ùÝx“@9r¶®}Vmsq~q~qp?ü2VÿÁß@4>쿱[Wsq~q~qp?ÿÿ—$tT@0-!ÿ.Hésq~q~qp@IÄÚï@)øQë…¸sq~q~qp@l1&éy@$òa|ÚQsq~q~qp@Ìxéö©@ ùÕ䣃'sq~q~qp@ Áæ¯Í@¤8… Àsq~q~qp@ØJAc@™”[l7asq~q~qp@¨1&éxÕ@Œ·ÔCésq~q~qp@SË>WS¤@p:û~‘sq~q~qp@ƒx«ˆ¤@ >–=Ć­sq~q~qp@Oºˆ&ª@éiuÍsq~q~qp@Õ²ÔÔK@\àuöý"sq~q~qp@"­­ë?üãÑÌksq~q~qp@%PoiDg8?ø³¦‹¤sq~q~qp@) 4mÅÖ9?ô?‘æFñsq~q~qp@-¨>BZîc?ðÊw—|sq~q~qp@1…!–R½?ì±msq~q~qp@4¸§æšÔ?çƒ-±éòxsq~q~qp@È?çƒ-±éòxsq~Õ?@wxsq~èsq~ísq~?©™™™™™šsq~@ ™™™™™šsq~Cwsq~ò@ ™™™™™š?©™™™™™š<?„záG®{xuq~ô;uq~ö@ ™™™™™š~q~ÝtIEIsq~ä?ð?ðsq~èsq~ísq~?¹™™™™™šsq~@sq~Cwsq~ò@?¹™™™™™š‡?„záG®{xuq~ô†uq~ö@q~'sq~?ðuq~#sq~q~qp?ð¸Që…¸@¼ sq~q~qp?ð¹C¬Äð@w²$Ý/ sq~q~qp?ñ(ËÑ$Jb@rbÄ›¥ãTsq~q~qp?ñ°5½Q.Ç@l‹ÎÙ‡+sq~q~qp?òVWûi˜J@f-XbMÓsq~q~qp?ó îõ@a>éxÔýôsq~q~qp?ô¬Ä@ZÛn—Psq~q~qp?õBã>ÿP@Tñk¹Œ~(sq~q~qp?ö¨ËÑ$Jb@P\C,¥zxsq~q~qp?øPÚãæÄÆ@I›ê³g ùsq~q~qp?úC´f¥@Dýó¶E¢sq~q~qp?ü‡¨ÖM@?vÈ´9Xsq~q~qp?ÿ'Ð(¡ß¹@8Öð¸»sq~q~qp@¡aä÷f@3•öý!ÿ.sq~q~qp@Ñrï å6@.ï'»/ìWsq~q~qp@Êb#ᆘ@(vR½<6sq~q~qp@6eÛ@#]é9êÝYsq~q~qp@ ’ƒBØÃ@²4ëšnsq~q~qp@qÙ+à‹@XÀ>-bsq~q~qp@¯áÚ{9@RìkÎ…4sq~q~qp@«¹Œ~($@±6¤û©sq~q~qp@º`ÔV. @b±pOô4sq~q~qp@ Ã")´@aÏþ°t§sq~q~qp@¤Dú?þÑáÃóàsq~q~qp@›ùÆ*?ø‚¡ Ïsq~q~qp@Øy=Ùc?ó~Ïé·¿sq~q~qp@!C”1zÌO?ïÓ8÷˜Rsq~q~qp@#TxB0üø?è®I#_sq~q~qp@%¥Éã½?ã£pG¸Jsq~q~qp@(?HË’:?ßA•Ì…0sq~q~qp@+) 'RTa?Øà†7½[email protected]}Vlô?ÓÌ-jœVsq~q~qp@1]cˆe•?σ¥;Kˆsq~q~qp@3JŒL˜?ÉY-˜¿sq~q~qp@È?ÉY-˜¿sq~?ðuq~#sq~q~qp?òzáG®{@¼ sq~q~qp?òzëÄØí@wë =p£×sq~q~qp?òô‡ü¹#£@r”bMÒñªsq~q~qp?󉀲B@láOß;dZsq~q~qp?ô@n¹ª@fvfffffsq~q~qp?õŠ Þ@a|Ý/Ÿ¾sq~q~qp?ö/÷¤ç«@[C¥ãS÷Ïsq~q~qp?÷y‘¼U†D@UIVlô!sq~q~qp?ùaùð†@P¥öý!ÿ.sq~q~qp?úØ:S¸ä¸@J1Åsq~q~qp?üýªOÊB¯@D{ä%®æ2sq~q~qp?ÿ}Þ½ç@@ú¬Ùè>sq~q~qp@1Kœ¶„Œ@9e”¯O „sq~q~qp@Û=ÈK^@4wškP±sq~q~qp@©“àß@/³©*0U2sq~q~qp@ç@)üPHðsq~q~qp@ dç«ud0@#äk&¿‡jsq~q~qp@/TK±¯:@U2a|sq~q~qp@V±m@îõì€Çsq~q~qp@rº`@éÔ•*™sq~q~qp@s¶E¡ÊÁ@©Í³|šsq~q~qp@´ëšmÛ@ .ÛµÜsq~q~qp@=Ñ¢£Y@ €²Bsq~q~qp@Æ"¦ô?ÿåÛ Ø0sq~q~qp@I4¬¯öÓ?ùd%®æ1ùsq~q~qp@ ï×^ FÇ?ô7´¢3œsq~q~qp@"óS&Â?ðË«`sq~q~qp@%4É…ðoi?饿­)™Vsq~q~qp@'¼ì¿±[?ämñà‚Œ7sq~q~qp@*’äŠqÞ?àFCEÏíésq~q~qp@-ÀëíúCþ?Ùî=_Üßjsq~q~qp@0¨šu%F?Ô¨¸ñMµ•sq~q~qp@2§Á½¥?Ðu¸d„sq~q~qp@4äohÜ?Ê:§›ºÜ sq~q~qp@È?Ê:§›ºÜ sq~Õ?@wxsq~èsq~ísq~?©™™™™™šsq~@ ™™™™™šsq~Cwsq~ò@ ™™™™™š?©™™™™™š<?„záG®{xuq~ô;uq~ö@ ™™™™™š~q~ÝtILTIsq~ä?ð?ðsq~èsq~ísq~?¹™™™™™šsq~@sq~Cwsq~ò@?¹™™™™™š‡?„záG®{xuq~ô†uq~ö@q~…sq~?ðuq~#sq~q~qp?ð¸Që…¸@¼ sq~q~qp?ð¹XbMÓ@’¨fffffsq~q~qp?ñG0@9¬@˸Që…sq~q~qp?ñtÛßG0@‰l‰7Kƨsq~q~qp?ñî.±Ä2Ê@„ÿáG®{sq~q~qp?ò.Hè§@[?|í‘hsq~q~qp?ó-W¼w¯@|·\(õÂsq~q~qp?óþùÛ"Ðå@wÈ\(õÃsq~q~qp?ôùœ8°J¶@s¹ãS÷ÎÙsq~q~qp?ö$5inX£@pc¡ÊÀƒsq~q~qp?÷†­-Ëf@kIûçl‹Dsq~q~qp?ù)Çy¦µ@fÅ‘hr°!sq~q~qp?ûmÚÎî@c /Ÿ¾wsq~q~qp?ýZ¯xþï_@_÷l‹C•sq~q~qp?ÿÿàŠï²«@Zåp£× =sq~q~qp@Š|ZÄq´@V²vÈ´9Xsq~q~qp@TÙ@x–@S5Ä2ÊW¨sq~q~qp@gÿX:S¹@PN#9Àëîsq~q~qp@Î!–R½<@KÁTÉ…ðosq~q~qp@ ’ñ©ûçm@G¯ö”Ftsq~q~qp@ ÃÔk&¿‡@DAÿ.Hè§sq~q~qp@¸d„@A]”¯O „sq~q~qp@ÔÄGà 0@=Ôýó¶E¢sq~q~qp@B£Y5ü@9«˜Çâ‚Asq~q~qp@¼+”Ù@@6 sq~q~qp@>ùÛ"Ðå@3Îp:ûsq~q~qp@ëâCV—@0&éxÔþsq~q~qp@!Ü3rT@,–»˜Èsq~q~qp@#ûz¢]z@(¼¬1&ésq~q~qp@&Á@N¤©@%qÞi­BÄsq~q~qp@)îËûµt@"šëÄØísq~q~qp@-“œ¾ß¤@ &÷ãÑÌsq~q~qp@0à[À6ã@µIùHVsq~q~qp@3Dã¼ÓZ†@c$È6esq~q~qp@È@c$È6esq~?ðuq~#sq~q~qp?òzáG®{@¼ sq~q~qp?òzëÄØí@’Ö\(õÃsq~q~qp?òײêò@(KƧïsq~q~qp?óFsBí»@‰Æ$Ý/sq~q~qp?óË éͳ@…U`A‰7Lsq~q~qp?ôiDg8~@«"Ðå`Bsq~q~qp?õ'RT`ªe@}JÈ´9Xsq~q~qp?ö4Á¨¬\@xOC•%sq~q~qp?÷ÜygË@t4záG®sq~q~qp?øcû½{ 2@pÑ× =p¤sq~q~qp?ùçB™Øƒº@l÷ÎÙ‡sq~q~qp?û±&éxÔþ@gvñ©ûçmsq~q~qp?ýÌcñA \@c«¾vÈ´9sq~q~qp@"wÄ\»Ã@`‰Oß;dZsq~q~qp@”‰a=2@[â¬1'sq~q~qp@BPr[@W“Ð|„µÝsq~q~qp@5Â\(ö@Sþ§ï²-sq~q~qp@wéùrG@Q0¾ í)sq~q~qp@ ™o¨.ˆ@Ml"h Õsq~q~qp@ L˜_÷@HËP°ò{³sq~q~qp@E—Ne¾¡@E?;dZ¬sq~q~qp@BÉ.4@B?æšÔ,sq~q~qp@‹’:)Çz@?f®}Vlôsq~q~qp@*¦L/ƒ{@;:’£Ssq~q~qp@,LYtæ\@7^cŠ sq~q~qp@˜ÜÛ7Ê@449XbNsq~q~qp@ ÈÓ®h]·@1}jOvsq~q~qp@#ûµsë@.P‰ 'RTsq~q~qp@%£S÷ÎÙ@*L<쿱sq~q~qp@(›/ìVÕÐ@&ÕY³Ð|…sq~q~qp@,:’£S@#×2ßP]sq~q~qp@/å¸Që…@!@MUhÇsq~q~qp@2,wškP±@ p¸ÏÀsq~q~qp@4¸Œç¯¸@ uMUsq~q~qp@È@ uMUsq~Õ?@wxsq~èsq~ísq~?©™™™™™šsq~@ ™™™™™šsq~Cwsq~ò@ ™™™™™š?©™™™™™š<?„záG®{xuq~ô;uq~ö@ ™™™™™šxsq~àq~wxsq~àq~wx~q~tMV_Lxsq~àvq~wq~âq~_q~]q~6q~4q~q~q~ÙxtID_Schalter_NotYetDimensionedq~xpsr?com.siemens.simaris.design.Project.Geraete.Schalter.CurvesProxy¢¶Š3îìzImNonSelectedVisibilityImTypNrZmValidForSelectivityLmDescq~LmSelectivityDevicetBLcom/siemens/simaris/design/tools/tripchar/api/ISelectivityDevice;LmString2ForHeaderBlockq~LmString3ForHeaderBlockq~xpt MS-LS 10.1q~‰t7SJ8011tStromwandler 75/1Asq~@ƒ°tpodMS_combo_WandlerTyp_StandardsrGcom.siemens.simaris.design.Project.Geraete.Schalter.CProdCircuitBreaker¢¶‡Ùí'yxrFcom.siemens.simaris.design.Project.Geraete.Schalter.CProdGeneralSwitch¢¶‡R]yL m_oProducttLCommon/Product/CProduct;xpsrCommon.Product.CProduct : ßòÝS Im_iQuantityL m_Attachmentsq~Lm_Attributesq~Lm_VNecessaryTAKsq~Lm_VOptionalTAKsq~L m_strMlfbq~Lm_strProductgroupq~Lm_strProductgroupIDq~Lm_strTextLanguageq~xpsq~Cwxsq~C?w?sr+Configurator.ErzeugnisAPI.CAttributeWithIDs£ÃטÞSIm_RangfolgeLmTypet+LConfigurator/DataServices/Enums/CDataType;xrCommon.Product.CAttribute : ßòÝSZ m_bIsDiskreteZm_bRelevantForSelectionDm_dConvertFactorToBaseUnitIm_iTypeLm_Valueq~AL m_strBaseUnitq~Lm_strBaseUnitIDq~L m_strNameq~L m_strTAKIDq~L m_strUnitq~Lm_strUnitIDq~xp?ðt0,1-35;0,01pptBEinstellbereich / Ãœberlastfunktion L / Einstellstrom IR / StufungtAAEZ02010400ppsr)Configurator.DataServices.Enums.CDataTypeÕªõi·!sºCm_TypexpTsq~÷?ðtEinstelltabellepptMEinstellbereich / Ãœberlastfunktion L / Einstellstrom IR / Faktor der StufungtAAEZ02010500ppsq~þTsq~÷?ðtApptAEinstellbereich / Ãœberlastfunktion L / Einstellstrom IR / FaktortAAEZ02010300ppsq~þTsq~÷?ðsq~?¹™™™™™šppt?Einstellbereich / Ãœberlastfunktion L / Einstellstrom IR / min.tAAEZ02010100ppsq~þNsq~÷?ðsq~@A€ppt?Einstellbereich / Ãœberlastfunktion L / Einstellstrom IR / max.tAAEZ02010200ppsq~þNsq~÷?ðt0,001-0,01;0,009;0,01-60;0,01pptXEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**2t-Kennlinie / StufungtAAEZ02020104ppsq~þTsq~÷?ðtEinstelltabellepptcEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**2t-Kennlinie / Faktor der StufungtAAEZ02020105ppsq~þTsq~÷?ðtspptWEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**2t-Kennlinie / FaktortAAEZ02020103ppsq~þTsq~÷?ðsq~?PbMÒñ©üpptUEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**2t-Kennlinie / min.tAAEZ02020101ppsq~þNsq~÷?ðsq~@NpptUEinstellbereich / Ãœberlastfunktion L / Verzögerungszeit tR / I**2t-Kennlinie / max.tAAEZ02020102ppsq~þNsq~÷?ðtTppt=Einstellbereich / Ãœberlastfunktion L / Umschaltbar I**4tI**2tAAEZ020600000000pp0sq~þDsq~÷?ðtTppt7Einstellbereich / Ãœberlastfunktion L / Ausschaltbar IRtAAEZ020700000000ppsq~þDsq~÷?ðt 0,1-4;0,01pptCEinstellbereich / Ãœberstromzeitschutz / Einstellstrom Ip / StufungtAAEZ02110400ppsq~þTsq~÷?ðtEinstelltabellepptNEinstellbereich / Ãœberstromzeitschutz / Einstellstrom Ip / Faktor der StufungtAAEZ02110500ppsq~þTsq~÷?ðtApptBEinstellbereich / Ãœberstromzeitschutz / Einstellstrom Ip / FaktortAAEZ02110300ppsq~þTsq~÷?ðsq~?¹™™™™™šppt@Einstellbereich / Ãœberstromzeitschutz / Einstellstrom Ip / min.tAAEZ02110100ppsq~þNsq~÷?ðsq~@ppt@Einstellbereich / Ãœberstromzeitschutz / Einstellstrom Ip / max.tAAEZ02110200ppsq~þNsq~÷?ðt 0,05-3,2;0,01pptCEinstellbereich / Ãœberstromzeitschutz / Einstellstrom tp / StufungtAAEZ021201040000ppsq~þTsq~÷?ðtEinstelltabellepptNEinstellbereich / Ãœberstromzeitschutz / Einstellstrom tp / Faktor der StufungtAAEZ021201050000ppsq~þTsq~÷?ðtspptBEinstellbereich / Ãœberstromzeitschutz / Einstellstrom tp / FaktortAAEZ021201070000ppsq~þTsq~÷?ðsq~?©™™™™™šppt@Einstellbereich / Ãœberstromzeitschutz / Einstellstrom tp / min.tAAEZ021201080000ppsq~þNsq~÷?ðsq~@ ™™™™™šppt@Einstellbereich / Ãœberstromzeitschutz / Einstellstrom tp / max.tAAEZ021201090000ppsq~þNsq~÷?ðtFpptIsd - Ein/AusschaltbartAAEZ06010201ppsq~þDsq~÷?ðt0,1-35;0,01pptgEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / standardI**2t / StufungtAAEZ06010205ppsq~þTsq~÷?ðtEinstelltabellepptrEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / standardI**2t / Faktor der StufungtAAEZ06010206ppsq~þTsq~÷?ðtApptfEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / standardI**2t / FaktortAAEZ06010204ppsq~þTsq~÷?ðsq~?¹™™™™™špptdEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / standardI**2t / min.tAAEZ06010202ppsq~þNsq~÷?ðsq~@A€pptdEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Einstellstrom Isd / standardI**2t / max.tAAEZ06010203ppsq~þNsq~÷?ðt0,001-0,01;0,009;0,01-60;0,01pptiEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (aus) / StufungtAAEZ06020205ppsq~þTsq~÷?ðtEinstelltabelleppttEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (aus) / Faktor der StufungtAAEZ06020206ppsq~þTsq~÷?ðtsppthEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (aus) / FaktortAAEZ06020204ppsq~þTsq~÷?ðsq~?PbMÒñ©üpptfEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (aus) / min.tAAEZ06020202ppsq~þNsq~÷?ðsq~@NpptfEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Verzögerungszeit tsd / I**2t (aus) / max.tAAEZ06020203ppsq~þNsq~÷?ðtTpptLEinstellbereich / Kurzschlussfunktion, kurzverzögerbar S / Ein/AusschaltbartAAEZ060400000000ppsq~þDsq~÷?ðtTpptIi - Ein/AusschaltbartAAEZ07010000ppsq~þDsq~÷?ðsq~?¹™™™™™špptREinstellbereich / Kurzschlussfunktion, unverzögert I / Einstellstrom Ii / minimaltAAEZ07020100ppsq~þNsq~÷?ðsq~@A€pptREinstellbereich / Kurzschlussfunktion, unverzögert I / Einstellstrom Ii / maximaltAAEZ07020200ppsq~þNsq~÷?ðt0,1-35;0,01pptREinstellbereich / Kurzschlussfunktion, unverzögert I / Einstellstrom Ii / StufungtAAEZ07020400ppsq~þTsq~÷?ðtEinstelltabelleppt]Einstellbereich / Kurzschlussfunktion, unverzögert I / Einstellstrom Ii / Faktor der StufungtAAEZ07020500ppsq~þTsq~÷?ðtApptQEinstellbereich / Kurzschlussfunktion, unverzögert I / Einstellstrom Ii / FaktortAAEZ07020300ppsq~þTsq~÷?ðsq~?PbMÒñ©üpptVEinstellbereich / Kurzschlussfunktion, unverzögert I / Verzögerungszeit ti / minimaltAAEZ07030100ppsq~þNsq~÷?ðsq~@NpptVEinstellbereich / Kurzschlussfunktion, unverzögert I / Verzögerungszeit ti / maximaltAAEZ07030200ppsq~þNsq~÷?ðt0,001-0,01;0,009;0,01-60;0,01pptVEinstellbereich / Kurzschlussfunktion, unverzögert I / Verzögerungszeit ti / StufungtAAEZ07030400ppsq~þTsq~÷?ðtEinstelltabellepptaEinstellbereich / Kurzschlussfunktion, unverzögert I / Verzögerungszeit ti / Faktor der StufungtAAEZ07030500ppsq~þTsq~÷?ðtspptUEinstellbereich / Kurzschlussfunktion, unverzögert I / Verzögerungszeit ti / FaktortAAEZ07030300ppsq~þTsq~÷?ðtTpptBEinstellbereich / Erdschlussfunktion G / Ig -Funktion ausschaltbartAAEZ080100000000ppsq~þDsq~÷?ðt0,05-35;0,01ppt]Einstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (aus) / StufungtAAEZ08030204ppsq~þTsq~÷?ðtEinstelltabelleppthEinstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (aus) / Faktor der StufungtAAEZ08030205ppsq~þTsq~÷?ðtAppt\Einstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (aus) / FaktortAAEZ08030203ppsq~þTsq~÷?ðsq~?©™™™™™šppt]Einstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (aus) / minimaltAAEZ08030201ppsq~þNsq~÷?ðsq~@A€ppt]Einstellbereich / Erdschlussfunktion G / Einstellstrom IG, ausgelöst / I**2t (aus) / maximaltAAEZ08030202ppsq~þNsq~÷?ðt 0-60;0,01pptaEinstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (aus) / StufungtAAEZ08050204ppsq~þTsq~÷?ðtEinstelltabellepptlEinstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (aus) / Faktor der StufungtAAEZ08050205ppsq~þTsq~÷?ðtsppt`Einstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (aus) / FaktortAAEZ08050203ppsq~þTsq~÷?ðsq~pptaEinstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (aus) / minimaltAAEZ08050201ppsq~þNsq~÷?ðsq~@NpptaEinstellbereich / Erdschlussfunktion G / Verzögerungszeit tG, ausgelöst / I**2t (aus) / maximaltAAEZ08050202ppsq~þNsq~÷?ðtUMZpptÃœberstromauslösertAAJZ01000000ppPsq~þSsq~÷?ðsq~?ðpptBemessungsstrom IntAAMZ14000000tAt041700sq~þNsq~÷?ðtLSIGpptSchutzfunktionentABHS02000000ppFsq~þTsq~÷?ðt UMZ_IEC-SI_IEC-VI_IEC-EI_IEC-LTIpptSchutztypentABHS03000000ppKsq~þTsq~÷?ðt7SJ80pptGrundtyptACLQ01000000ppsq~þTsq~÷?ðtMS_UMZ_ISI_IVI_IEI_ILTIpptAuslösekennlinie NummertADTA01000000ppsq~þTsq~÷?ðt7SJ80 - Multifunktionsschutzppt AnwendungtADTZ00000000ppxsq~þSxppt7SJ8011t 7SJ Relaist7SJt00pppq~1sq~œsq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppt?ð~q~€tTRANSFORMER_LVsr@com.siemens.simaris.design.Project.Geraete.Verbindung.CSchieneNSÓÏYïÚÞIiBusbarSelectionTypeZmDefaultProtectionZmHasCableSourceI temperaturLm_oFEDataSett8Lcom/siemens/simaris/design/Globals/Tools/BusbarDataSet;Lm_oSSDataSetq~OL m_sBusbarNameq~xq~²psq~?@w%q~„sq~@Tq~dtpod_combo_AnzahlPhasen_3PlusNtID_ConnectionFireSectionStartsq~q~Hq~ItID_VerbindNS_NennFrequenzsq~@Iq~qq~”q~‘t&pod_combo_Verbindung_LeiterMaterial_CutID_ConnectionFireSectionsq~tID_VerbindNS_Spannungsfallsq~@q~•sq~=q~Œsq~?ðq~iq~jq~JtS 10.1q~‹q~”q~rsq~@4q~€q~q~Isq~LtID_VerbindAllg_Theta_dUsq~@K€q~msq~@9q~ksq~@šŒtID_VerbindAllg_Theta_Firesq~q~Pq~Qq~sq~@°xtID_CABLE_ALPHAsq~?pbMÒñ©üq~osq~@šŒxq~Zq~6#sr6com.siemens.simaris.design.Globals.Tools.BusbarDataSet6E·pï4جIIDDaLeadDaNDaPEDiLowerBoundDicwDinominalDkZmCableSourcePossibleDmReductionFactorInetIDIpolIDDr0ph_nDr0ph_peDr1IvoltageDx0ph_nDx0ph_peDx1Lbezeichnungq~LconductorConfigq~Lmaterialq~LmountTypq~L protectionq~Ltypeq~xpÿÿÿÿ¿ð¿ð¿ð¿ð¿ð¿ð¿ðøÿÿÿÿÿÿÿÿ¿ð¿ð¿ð¿ð¿ð¿ðq~Kq~Kpq~Kq~Kq~Ksq~l)@šŒ@šŒ@°x@£ˆ@^@©@QÀøÿÿÿÿ?´¼j~ùÛ#?´záG®{?“t¼j~ùÛè?¸Që…¸?£÷ÎÙ‡+?tzáG®{tLI-AM32005B-55tL3NPEGtALtHHtIP55tLIAq~Kq~Bpsq~îsq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppÿÿÿÿuÿÿÿÿÿÿÿÿ?ðq~Lpppppq~…pppq~ˆppppppq~<sq~sq~Jq~q~sq~Jq~q~pq~ñsq~Jq~q~sq~Jq~q~vÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~Kq~7sq~þ sq~Jsq~Cwxq~Œsq~Jq~q~pq~ñsq~Jq~q~sq~Jsq~Cwq~xq~i q~sq~‹psq~?@wq~Fq~Gq~Hq~Iq~Jt NSHV 10.1q~Lsq~?ðq~Nsq~@q~Pq~Qxq~ˆppsq~k@ypq~Kq~7q~q~Usq~Cwsq~¸sq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppÿÿÿÿwÿÿÿÿÿÿÿÿ?ðq~Lpppppq~…pppq~ˆpppppp?ðq~<q~Êpq~…sq~¸sq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppÿÿÿÿxÿÿÿÿÿÿÿÿ?ðq~Lpppppq~…pppq~ˆpppppp?ðq~<pq~…pxsq~Cwq~¨xsq~Cwq~˜xsq~îsq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppÿÿÿÿyÿÿÿÿÿÿÿÿ?ðq~Lpppppq~…pppq~ˆppppppq~<sq~sq~Jq~q~sq~Jq~q~pq~ñsq~Jq~q~sq~Jq~q~zÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~Kq~7sq~sq~Jsq~Cwxq~Ñsq~Jq~q~pq~ñsq~Jq~q~sq~Jq~q~f ~q~€tMAIN_DISTRIBUTION_NODEsq~‹psq~?@wq~Fq~Gq~Hq~Iq~JtNSHV 10q~Lsq~?ðq~Nsq~@q~Pq~Qxq~ˆppppt10q~7sq~Cwsq~¸sq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppÿÿÿÿ{ÿÿÿÿÿÿÿÿ?ðq~Lpppppq~…pppq~ˆpppppp?ðq~<ppq~Êsq~¸sq~bsq~euq~iq~5q~5q~5q~nsq~euq~iq~5q~5q~5q~nsq~qsq~euq~iq~5sq~k€sq~k€q~nsq~euq~isq~ksq~ksq~kq~nq~~pppppÿÿÿÿ|ÿÿÿÿÿÿÿÿ?ðq~Lpppppq~…pppq~ˆpppppp?ðq~<q~Êq~Êpxsq~Cwq~îxsq~Cwq~Þxq~…pppq~ˆpq~Cpsq~~srHcom.siemens.simaris.design.Project.Geraete.Schalter.CLeistungsSchalterNSÏÜ~'ïWL m_oProdHolderq~ƒxq~†psq~?@!w-t ID_Schalter_PositionImStromkreisq~”tID_Schalter_FiSchutzBeiSichsq~LtID_Schalter_NetzSystemIndexq~¥t ID_Schalter_FiSchutzBeiMCB_Grundsq~LtID_Schalter_bRCDselektivitaetq~ÇtID_Schalter_GAusloeserBeiACBq~tID_Schalter_NumberOfPolessq~=tID_dISelDynsq~@΋±­K'FtID_Schalter_Unsq~@ytID_RCDbyFuse_Grundq~ tID_dTSelShortCirsq~øt%ID_LtsSchalter_SchutzRelaisStromGrosssq~t#ID_Schalter_DiBausteinBeiMCCB_Grundq~ tID_LtsSchalter_BelastungsStromsq~t$ID_LtsSchalter_SchutzRelaisZeitGrosssq~?¹™™™™™št ID_LtsSchalter_SchutzRelaisStromsq~tID_LtsSchalter_SchutzRelaisZeitsq~tID_FI_hasToHaveq~tID_Switch_iMultiplysq~=tID_Schalter_TyptLeistungsschaltertID_dTSelOverloadsq~øq~¼sq~øtID_Schalter_TypNrsq~=tID_Schalter_GAusloeserBeiMCCBq~tID_ProtectiveDevicesq~Ñ@ðsr2com.siemens.simaris.tripchar.model.curve.BaseCurveÍ?¤ÕMJ{Z mProtected[mPointsq~xpuq~sq~pp?ð?ö f;Ísq~pp?ðsq~pp@$sq~pp@$@,HÆ Àsq~ppAO€A å F\kxsq~-uq~ sq~pp@@@ßÓ€sq~pp@³ˆA(Ý0sq~pp@ÈAPIUÀsq~pp@ÈAHÝ0sq~pp@ÓˆAqj( sq~pp@ÓˆApIU°sq~pp@èjAÝlsq~pp@èjA›5Þ´sq~pp@øjA½Ýksq~ppAO€AѽHmÀsq~Õ?@wsq~×sq~Ú~q~ÝtI2tt;com.siemens.simaris.tripchar.model.tripunitold.LPartBuildersq~àq~ãwq~Dsq~ä@©@$sr=com.siemens.simaris.tripchar.model.device.setting.SettingListѦã`ó…‘Zabsolute[settingsq~ëxpuq~ö @”@–€@™@›€@@ @@¡€@¤@¦€@©q~Jsq~?Â\(õÂ?ðuq~sq~q~qp?ðÌÌÌÌÌÍ@¼ sq~q~qp?ðÌÌÌÌÌÍ@:XÐü‡Psq~q~qp@e6fffff?PbMÒñ©üsq~q~qp@øj?PbMÒñ©üsq~?Ñ7KƧï?ðuq~sq~q~qp?ó333333@¼ sq~q~qp?ó333333@9sq~q~qp@g·\(õÂ?PbMÒñ©üsq~q~qp@øj?PbMÒñ©&u