tommaso macrì sissa...ultracold diluted fermi systems some numbers: number of particles: 1.000...

21
 Cold Atom Fermi Systems Tommaso Macrì Tommaso Macrì Sissa Sissa February 13 February 13 th th 2009 2009

Upload: others

Post on 31-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Cold Atom Fermi Systems

Tommaso MacrìTommaso MacrìSissaSissa

February 13February 13thth 2009 2009

Page 2: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Plan of the talk

Cold Atom Fermi Systems

Fermion scattering problem

BCS­BEC crossover

Dynamics and Quenching

Tunneling in Cold Atoms

Conclusions

Page 3: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Ultracold Bosons vs Fermions

Quantum statistics effectsQuantum statistics effects

Bosons: condensation

Fermions: quantum degeneracy

Different temperature scalesDifferent temperature scales

Bosons: condensation temperatureBosons: condensation temperature

Fermions: Fermi temperatureFermions: Fermi temperature    

Evidence for quantum degeneracyEvidence for quantum degeneracy(De Marco, Papp and Jin, 2001)

Page 4: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Ultracold Diluted Fermi Systems 

Some numbers:Some numbers:

Number of particles: 1.000 ­100.000Number of particles: 1.000 ­100.000

Temperature: 100 nK – 1Temperature: 100 nK – 1 K K

Density of particles: 10Density of particles: 101111 particles / cm particles / cm3     3           normal metal: 10normal metal: 102323 particles / cm particles / cm33

Dilution parameter: n |aDilution parameter: n |a33| | ~~ 10 10­3­3

What do these numbers tell us?What do these numbers tell us?

Diluted particles interactingDiluted particles interacting relevance of two body physics!relevance of two body physics!

Moreover: Moreover: possibility of tuning the interaction!possibility of tuning the interaction!

Page 5: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Scattering in QM

Quantum scattering problemQuantum scattering problem

Long away from the potentialLong away from the potential

Partial wave expansionPartial wave expansion

Free         interactingFree         interacting

Partial wave scattering amplitudePartial wave scattering amplitude

Page 6: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Fermion scattering

Identical particle scatteringIdentical particle scattering

Spin wave function: sym.

No s­wave scattering for polarized fermions!

Low energy scatteringLow energy scattering

S­wave dominant

Define a scattering length and an effective radius

    3­d Square well3­d Square wellRepulsive: Repulsive: a > 0a > 0Attractive : barrier height!Attractive : barrier height!

a < 0 a < 0 a > 0 a > 0 : : presence of a bound state

Page 7: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Example

Take the potential:Take the potential:

Explicit solution is available for the s­Explicit solution is available for the s­wavewave

 From this result we get:

  Where CWhere C00 is a  constant depending on  is a  constant depending on   

Page 8: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Feshbach resonances

Tuning the scattering lenghtTuning the scattering lenght

Two channels (e.g. hyperfine states)

Bound state in the closed one

Coupling between the two 

Resonance in cold atomsResonance in cold atoms

Tuning parameter: magnetic field

Broad vs Narrow resonances: |R* |  b     |R* | >> b     

Fermionic atoms: 40K and 6Li

Scattering lenght in Scattering lenght in 66LiLi with B = 834 G with B = 834 G (Bourdel et al. 2003)

Page 9: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Interacting many­body problem

Ideal Gas model for Ideal Gas model for spin­polarized fermionsspin­polarized fermions works well. works well.

When different spin states are occupied When different spin states are occupied  solution of the interacting solution of the interacting many body problem!many body problem!

Ingredients for cold atomsIngredients for cold atoms

Dilute systemDilute systemWeakly interacting to strongly interacting regime by tuning the interactions!Weakly interacting to strongly interacting regime by tuning the interactions!Interplay among different regimes:Interplay among different regimes:

BCS regime as in superconductivityBCS regime as in superconductivityBose­Einstein condensation as in cold atom bosonsBose­Einstein condensation as in cold atom bosonsUnitary limitUnitary limit

Page 10: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

BCS – BEC crossover

Page 11: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

BCS regime (a < 0, kF|a|<<1)

Basic features:Basic features:

Instability of Fermi surface in presence of a weak Instability of Fermi surface in presence of a weak attraction leading to attraction leading to CCooper pairsooper pairs

Exact solution of the reduced BCS hamiltonian:Exact solution of the reduced BCS hamiltonian:

Energy spectrumEnergy spectrum

Critical temperatureCritical temperature

                                                                                                                          (Gorkov 1961)(Gorkov 1961)

Gap at T = 0 Gap at T = 0 

Experimental difficulty in reaching critical Experimental difficulty in reaching critical temperature: too low to observe superfluidity for temperature: too low to observe superfluidity for cold atoms!cold atoms!

Example:Example:

Spin singlet pairing

Page 12: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

BEC (a > 0, kF a<<1)

Scattering lenght a  > 0  and smallScattering lenght a  > 0  and small

Naively repulsive gas Naively repulsive gas (Huang and Yang, (Huang and Yang, 1957)1957)

Gas of composite bosons! Gas of composite bosons! 

e.g. Presence of a bound state in e.g. Presence of a bound state in square wellsquare well

Dimension of dimers > size of Dimension of dimers > size of molecules (deeply bound)molecules (deeply bound)

a >> a >> ||R*R*||

BEC for condensed gases applicable:BEC for condensed gases applicable:

for a uniform gas

 Jila 1995

Page 13: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

BEC emerging from Fermi sea

  Ketterle (2004)Ketterle (2004)

Page 14: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Unitary regime (kF |a|        

KKFF |a| >> 1 with: |a| >> 1 with:

Dilute Fermi gasDilute Fermi gas

Strongly correlatedStrongly correlated

Basic features:Basic features:

Universal behaviorUniversal behavior of the scattering amplitude of the scattering amplitude

Only relevant quantities:Only relevant quantities:  kkFF and and  

Thermodynamic quantities depend only on T/TThermodynamic quantities depend only on T/TFF

Quantity of interest:Quantity of interest:

Chemical potential at T = 0Chemical potential at T = 0

Pameter  Pameter       attractive interactionattractive interaction!!

                                              (quantum MC, Carlson et al., 2003)

Page 15: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

BCS – BEC crossover

Define the microscopic potential Define the microscopic potential 

Minimize Free energy for the Minimize Free energy for the hamiltonian:hamiltonian:

Solve 2 coupled integral equations:Solve 2 coupled integral equations:

For a single parameter potential For a single parameter potential (removing the divergence) (removing the divergence) ((Leggett,1980Leggett,1980))  

  Determine Determine  and  and  as functions of a as functions of a00

  Numerical study for the solution of Numerical study for the solution of the coupled equationsthe coupled equations

Page 16: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

BCS – BEC crossover

  Energy per particleEnergy per particle 

  Critical temperatureCritical temperature

  Astrakharchik et al. (2004)Astrakharchik et al. (2004)     High–Temperature superfluidity High–Temperature superfluidity   Sa de Melo, Randeria et al. (1993)Sa de Melo, Randeria et al. (1993)

  Up to now: equilibrium properties important for ongoing experimentsUp to now: equilibrium properties important for ongoing experiments  But what about dynamics?...But what about dynamics?...

Page 17: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Quenched Fermi Systems

1 particle in harmonic potential1 particle in harmonic potential

Quench the potentialQuench the potential

Compute the dispersion of the packetCompute the dispersion of the packet

N free particles in harmonic potentialN free particles in harmonic potential

Where is N? Not in the frequencyWhere is N? Not in the frequency

What if bosons?What if bosons?

What about interactions? ...What about interactions? ...

Page 18: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Tunneling effects

Tunneling phenomena:Tunneling phenomena: quantum  quantum effecteffect!!

Probability of passing through the Probability of passing through the barrier:barrier:

  Single particle tunnelingSingle particle tunneling   Cooper pair tunnelingCooper pair tunneling

Page 19: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Josephson effect in superconductors

Single particle tunnelingSingle particle tunneling

n­n: Ohm's Lawn­n: Ohm's Law

n­s: j starts from V =  n­s: j starts from V =  

s­s: j starts from V =  2s­s: j starts from V =  2

Quantum effect involving Quantum effect involving coherencecoherence  of the superconductors!of the superconductors!

Where do we see coherence?Where do we see coherence?

Phase dependence of the tunneling Phase dependence of the tunneling currentcurrent

Cooper pairs tunnelingCooper pairs tunneling

Exact formula for the current is Exact formula for the current is availableavailable

Example with  Example with  = 1= 1

Page 20: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Josephson effect along the crossover

Supercurrent as a function of crossover parametersSupercurrent as a function of crossover parameters

Integrate now over all energies!Integrate now over all energies!

Interaction is not limited among particles around Fermi surfaceInteraction is not limited among particles around Fermi surface

 See also recent papers by Links et al. on the Bethe Ansatz solution for a finite number of fermions in the BCS limit

  see e.g. Abrikosov (1988)see e.g. Abrikosov (1988)

Page 21: Tommaso Macrì Sissa...Ultracold Diluted Fermi Systems Some numbers: Number of particles: 1.000 100.000 Temperature: 100 nK – 1 K Density of particles: 1011 particles / cm3 normal

   

Conclusions

Many­body physics in cold atom fermions leads to BEC­BCS crossover

.BEC­BCS crossover and high­temperature superfluidityBEC­BCS crossover and high­temperature superfluidity

On going experiments on dynamics of fermions:On going experiments on dynamics of fermions:

Collective oscillationsCollective oscillations

Dynamics of Bose­ Fermi mixturesDynamics of Bose­ Fermi mixtures

Dynamics close to unitarityDynamics close to unitarity

Work in progress:Work in progress:

Quench of fermions for polarized / non­polarized fermionsQuench of fermions for polarized / non­polarized fermions

Dynamics in double ­ well potentialsDynamics in double ­ well potentials Josephson beyond BCSJosephson beyond BCS