today:’start’chapter14’ - physics and astronomy at...

22
Today: Start chapter 14 Oscilla(ons in terms of amplitude, period, frequency and angular frequency Simple harmonic mo(on Simple harmonic mo(on with energy and momentum T. S(egler 11/24/2014 Texas A&M University

Upload: ngodien

Post on 16-Apr-2018

218 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

Today:  Start  chapter  14  

•  Oscilla(ons  in  terms  of  amplitude,  period,  frequency  and  angular  frequency  

•  Simple  harmonic  mo(on  

•  Simple  harmonic  mo(on  with  energy  and  momentum  

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 2: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

Introduc)on  

•  Periodic  mo(on  is  any  type  of  mo(on  that  repeats  itself  §  heartbeat  §  musical  vibra(ons  §  rocking  chair`  §  pendulum  swinging    §  vibra(ons  of  molecules  in  a  solid  §  AC  current    

•  We  will  concentrate  on  a  par(cular  type  of  periodic  mo(on,  called  simple  harmonic  mo(on  (SHM)  •  Spring-­‐mass  systems  •  Pendulums  

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 3: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

Spring-­‐Mass  System  

k

-A 0 A x

m

•  The  force  of  a  spring  is  given  by  Hooke’s  Law      

•  If  we  apply  Newton’s  2nd  law  we  get  a  2nd  order  differen(al  equa(on    •  Define  the  angular  frequency  as    

•  Second  order  differen(al  equa(on  for  simple  harmonic  mo(on  

•  In  general  simple  harmonic  mo(on  occurs  whenever  a  mechanical  system  gives  rise  to  a  differen(al  equa(on  of  this  form.  

   

F = !kx

!kx =m d 2xdt2

! =km

0 = d2xdt2

+! 2x

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 4: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

Variables  of  periodic  mo)on  

•  A  body  undergoing  periodic  mo(on  always  has  a  stable  equilibrium  posi(on.  •  When  it  is  displaced  from  this  posi(on  there  is  a  force  or  torques  that  will  pull  it  back  

towards  its  equilibrium  posi(on.  •  This  force  causes  the  oscilla(on  of  the  system.  When  it  is  directly  propor,onal  to  the  

displacement  from  equilibrium,  the  resul(ng  mo(on  is  called  simple  harmonic  mo,on.  

•  Amplitude  =  A  è  magnitude  of  maximum  displacement  [m  or  rad]  •  Cycle  è  a  complete  “lap”  of  the  mo(on,  back  to  it’s  star(ng  point  •  Period  =  T  è  the  (me  to  complete  one  full  cycle  [s]  •  Frequency  =  f  è  the  rate  of  comple(ng  a  cycle;  or  #  of  cycles  per  unit  of  (me  [Hz  =  #/s]  •  Angular  frequency  =  ω  è  2π  x  frequency  [rad/s]  

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 5: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

•  Frequency  and  Period  are  related  (as  we  have  seen  before)  

 

•  The  units  of  frequency  are  cycles  per  second.  A  cycle  is  just  a  number,  i.e.  unit-­‐less,  so  the  frequency  is  measured  in  inverse  seconds:  Hertz  =  1/s  

•  Angular  frequency  isn’t  necessarily  related  to  the  angular  velocity;  it  is  the  rate  change  of  the  angular  quan(ty  (whatever  “quan(ty”  happens  to  be)  measured  in  radians.  

 

Rela)ons  in  SHM  

f = 1T!T = 1

f

! = 2" f = 2"T

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 6: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

In  case  you’re  not  so  good  with  differen)al  equa)ons…  

Simple  harmonic  mo(on  viewed  as  mo(on  in  a  circle:  •  we  want  to  describe  the  periodic  mo(on  mathema(cally  but  we  can’t  use  the  constant  

accelera(on  equa(ons  of  mo(on  •  instead  we  can  look  at  simple  harmonic  mo(on  as  a  projec(on  of  circular  mo(on  onto  a  

diameter  

x(t) = Acos(!t)

Since  ϕ  =  ωt  is  the  angle  swept  out  in  a  (me  t,  we  can  say  that  the  posi(on  at  any  (me  is:  

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 7: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

The  period  of  the  mo(on  is  T  =  2π/ω  which  does  not  depend  on  the  amplitude.  

+A  

-­‐A  

π/(2ω)  

2π/ω  

π/ω  

3π/(2ω)  

x(t)  

t  

when  ωt  =  π  rad    

when  ωt  =  2π  rad    

x(t) = Acos(!t)

Simple  harmonic  mo)on  in  a  circle  

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 8: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

Simple  harmonic  mo)on  w/  arbitrary  star)ng  posi)on  

If  we  started  at  ϕ0  instead  of  at  x  =  A,  there’s  an  offset  and  the  curve  looks  like  this:  

ϕ0  

+A  

-­‐A  

x(t)  

t  

x(t) = Acos(!t +"0 )

ϕ0  

ϕ0  is  called  the  phase  angle,  or  the  posi(on  in  the  cycle  when  t  =  0  

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 9: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

This  is  an  x-­‐t  graph  for  an  object  in  simple  harmonic  mo(on.  

A.  t  =  T/4  

B.  t  =  T/2  

C.  t  =  3T/4  

D.  t  =    T  

At  which  of  the  following  (mes  does  the  object  have  the  most  nega,ve  accelera,on  ax?  

Clicker  Ques)on  

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 10: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

Example  Mo(on  on  a  spring  

A  spring  agached  at  one  end  is  stretched  by  a  6.0N  force  which  causes  a  displacement  of  0.30m.    A  glider  of  mass  0.50kg  is  agached  to  the  end  of  the  spring  and  pulled  to  the  right  a  distance  0.020m  then  released  from  rest  and  allowed  to  oscillate.    a)  Find  the  force  constant  of  the  ideal  spring  b)  Find  the  angular  frequency,  frequency,  and  period  of  the  resul(ng  oscilla(on.  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

rectangular plate,axis through centre

thin rectangular plate,axis along edge

hollow spheresolid spherethin-walled hollow

cylindersolid cylinder

I = 112ML2 I = 1

3ML2 I = 112M(a2 + b2) I = 1

3Ma2

a

L

through centreslender rod, axis

through one endslender rod, axis

thin-walled

RRR2

R1

hollow cylinderR R

b

a

bL

I = 12M(R2

1 + R22) I = 1

2MR2 I = MR2I = 2

5MR2 I = 23MR2

! For a point-like particle of mass M a distance R from the axis of rotation: I = MR2

! Parallel axis theorem: Ip = Icm +Md2

SHM:

! = 2"f = 2"/T

Tpend = 2"!

L/g = 2"!

I/mgd

Tspring = 2"!

m/k

Ttorsion = 2"!

I/#

x(t) = A cos (!t+ $!)

v(t) = !!A sin (!t+ $!)

a(t) = !!2A cos (!t+ $!)

Damped/forced:

x(t) = A cos (!"t)e#(b/2m)t

!" =!

k/m! b2/4m2

A = Fmax/"

(k !m!2d)

2 + b2!2d

Waves:k = 2"/%

v = ±%f

v2string = FT /µ

µ = M/L

y(x, t) = ASW sin (kx) sin (!t)standingwave

#

$

%%n =2L

n" fn = n

v

2L, n=1, 2, 3, . . .

travellingwave : y(x, t) = A cos

&

2"

'

x

%#

t

T

()

= A cos (kx# !t)

P =!

µFT !2A2 sin2 (kx# !t), $P % =1

2

!

µFT !2A2

I(r) =power

surf area at r

'

=P

4"r2for 3D sphere

(

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 11: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

Velocity  and  accelera)on  in  SHM  

•  We  can  use  calculus  to  derive  the  equa(ons  for  velocity  and  accelera(on  as  a  func(on  of  (me  for  simple  harmonic  mo(on.  

 •  Star(ng  with  

•  The  deriva(ves  of  the  trig  func(ons  that  we  need  are            and  

 •  Therefore:      

x(t) = Acos(!t)!v(t) = d

!xdt

!a(t) = d!vdt=d 2 !xdt2

we  already  know      and      

ddt(cos! ) = !sin! d!

dt"

#$

%

&'

ddt(sin! ) = cos! d!

dt!

"#

$

%&

x(t) = Acos(!t)v(t) = !A! sin(!t)a(t) = !A! 2 cos(!t)

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 12: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

Example  SHM  mass  and  spring  system  

For  simple-­‐harmonic-­‐mo(on  due  to  a  mass  agached  to  a  spring  the  period  T  =  0.20  s.    Released  from  rest,  2.4  cm  from  the  equilibrium  posi(on.  a)  What  are  the  frequency  f  and  angular  frequency  ω  for  this  system?      b)  What  is  the  amplitude  A  and  what  are  vmax  and  amax?      c)  What  are  x(t),  v(t)  and  a(t)  at  t  =  0.22  s  aker  release?    

rectangular plate,axis through centre

thin rectangular plate,axis along edge

hollow spheresolid spherethin-walled hollow

cylindersolid cylinder

I = 112ML2 I = 1

3ML2 I = 112M(a2 + b2) I = 1

3Ma2

a

L

through centreslender rod, axis

through one endslender rod, axis

thin-walled

RRR2

R1

hollow cylinderR R

b

a

bL

I = 12M(R2

1 + R22) I = 1

2MR2 I = MR2I = 2

5MR2 I = 23MR2

! For a point-like particle of mass M a distance R from the axis of rotation: I = MR2

! Parallel axis theorem: Ip = Icm +Md2

SHM:

! = 2"f = 2"/T

Tpend = 2"!

L/g = 2"!

I/mgd

Tspring = 2"!

m/k

Ttorsion = 2"!

I/#

x(t) = A cos (!t+ $!)

v(t) = !!A sin (!t+ $!)

a(t) = !!2A cos (!t+ $!)

Damped/forced:

x(t) = A cos (!"t)e#(b/2m)t

!" =!

k/m! b2/4m2

A = Fmax/"

(k !m!2d)

2 + b2!2d

Waves:k = 2"/%

v = ±%f

v2string = FT /µ

µ = M/L

y(x, t) = ASW sin (kx) sin (!t)standingwave

#

$

%%n =2L

n" fn = n

v

2L, n=1, 2, 3, . . .

travellingwave : y(x, t) = A cos

&

2"

'

x

%#

t

T

()

= A cos (kx# !t)

P =!

µFT !2A2 sin2 (kx# !t), $P % =1

2

!

µFT !2A2

I(r) =power

surf area at r

'

=P

4"r2for 3D sphere

(

rectangular plate,axis through centre

thin rectangular plate,axis along edge

hollow spheresolid spherethin-walled hollow

cylindersolid cylinder

I = 112ML2 I = 1

3ML2 I = 112M(a2 + b2) I = 1

3Ma2

a

L

through centreslender rod, axis

through one endslender rod, axis

thin-walled

RRR2

R1

hollow cylinderR R

b

a

bL

I = 12M(R2

1 + R22) I = 1

2MR2 I = MR2I = 2

5MR2 I = 23MR2

! For a point-like particle of mass M a distance R from the axis of rotation: I = MR2

! Parallel axis theorem: Ip = Icm +Md2

SHM:

! = 2"f = 2"/T

Tpend = 2"!

L/g = 2"!

I/mgd

Tspring = 2"!

m/k

Ttorsion = 2"!

I/#

x(t) = A cos (!t+ $!)

v(t) = !!A sin (!t+ $!)

a(t) = !!2A cos (!t+ $!)

Damped/forced:

x(t) = A cos (!"t)e#(b/2m)t

!" =!

k/m! b2/4m2

A = Fmax/"

(k !m!2d)

2 + b2!2d

Waves:k = 2"/%

v = ±%f

v2string = FT /µ

µ = M/L

y(x, t) = ASW sin (kx) sin (!t)standingwave

#

$

%%n =2L

n" fn = n

v

2L, n=1, 2, 3, . . .

travellingwave : y(x, t) = A cos

&

2"

'

x

%#

t

T

()

= A cos (kx# !t)

P =!

µFT !2A2 sin2 (kx# !t), $P % =1

2

!

µFT !2A2

I(r) =power

surf area at r

'

=P

4"r2for 3D sphere

(

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 13: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

The  above  curve  represents  the  displacement  versus  (me  of  a  mass  oscilla(ng  on  a  spring.  The  axes  cross  ωt  =  0.  Which  of  the  following  func(ons  best  describes  this  curve?  a)  A  sin(ωt)    b)  A  sin(ωt+π/2)    c)  A  sin(ωt-­‐π/2)    

Prelecture:  SHM  ques(on  1  

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 14: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

and  Prelecture:  SHM  Problem  2  

Compare  the  period  of  oscilla(on  in  the  two  cases:    a)  T2  =  T1    b)  T2  =  2T1    c)  T2  =  4T1    

A  block  having  mass  m  is  agached  to  a  spring  having  a  spring  constant  k  and  oscillates  with  simple  harmonic  mo(on.  In  Case  2  the  amplitude  of  the  oscilla(on  is  twice  as  big  as  it  is  in  Case  1.?    

T.  S(egler                11/24/2014            Texas  A&M  University  

! =km

T = 2"!

= 2" mk

Clicker  Ques)on  

Page 15: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

Checkpoint:  SHM  Problem  1  

A  mass  on  a  spring  moves  with  simple  harmonic  mo(on  as  shown.    Where  is  the  accelera(on  of  the  mass  most  posi(ve?    a)  x  =  -­‐A    b)  x  =  0    c)  x  =  +A    

T.  S(egler                11/24/2014            Texas  A&M  University  

+A  

-­‐A  

x(t)  

t  

amax    =  d2x/dt2  max  value  

Page 16: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

Checkpoint:  SHM  Problem  2  

Suppose  the  two  sinusoidal  curves  shown  above  are  added  together.  Which  of  the  plots  shown  below  best  represents  the  result?    

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 17: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

Energy  in  SHM  

Use  mass  on  a  spring  as  an  example  •  As  it  has  been  the  total  mechanical  energy  is  conserved  throughout  the  mo(on.  

•  At  the  maximum  displacement,  x  =  A  and  v  =  0  

•  So  at  any  other  (me:  

! E = 12mv2 + 1

2kx2

! E = 12m(0)2 + 1

2k(A)2 = 1

2kA2

12kA2 = 1

2mv2 + 1

2kx2 =

mv2 = k(A2 ! x2 )

" v = ± km(A2 ! x2 )

constant  

T.  S(egler                11/24/2014            Texas  A&M  University  

Page 18: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

Checkpoint:  SHM  Problem  3  

T.  S(egler                11/24/2014            Texas  A&M  University  

In  the  two  cases  shown  the  mass  and  the  spring  are  iden(cal  but  the  amplitude  of  the  simple  harmonic  mo(on  is  twice  as  big  in  Case  2  as  in  Case  1.    How  are  the  maximum  veloci(es  in  the  two  cases  related?    a)  Vmax,2  =  Vmax,1    b)  Vmax,2  =  2  Vmax,    c)  Vmax,2  =  4  Vmax,1    

12kA2 = 1

2mv2 + 1

2kx2

! v = ± km(A2 " x2 )

vmax (x = 0) =kmA2

Page 19: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

Example  Energy  in  SHM  

General math:

log (x/y) = log (x)! log (y)

log (xy) = log (x) + log (y)

log (xn) = n log (x)

lnx " loge x

x = 10(log10 x)

x = e(ln x)

ha

hho

!

"

ha = h cos ! = h sin"

ho = h sin ! = h cos"

h2 = h2a + h2

o tan ! =ho

ha

#A = Axi+Ay j +Az k

#A · #B = AxBx +AyBy +AzBz = AB cos ! = A!B = AB!

#A# #B = (AyBz!AzBy )i+ (AzBx!AxBz)j + (AxBy!AyBx)k

= AB sin ! = A"B = AB"

df

dt= natn#1

If f(t) = atn, then

!

"

"

#

"

"

$

% t2t1

f(t)dt = an+1

&

tn+12 ! tn+1

1

'

ax2 + bx+ c = 0 $ x =!b±

%b2 ! 4ac

2a

"

" + ! = 90!" + ! = 180!

"!

!

"

!

"

!

"

!

"!

" !

Equations of motion:translational rotational

constant (linear/angular) acceleration only:

#r(t) = #r$ + #v$t+12#at

2

#v(t) = #v$ + #at

v2f = v2$ + 2a(r ! r$)

#r(t) = #r$ +12 (#vi + #vf )t

!(t) = !$ + $$t+12%t

2

$(t) = $$ + %t

$2f = $2

$ + 2%(! ! !$)

!(t) = !$ +12 ($i + $f )t

always true:

&#v' = !r2#!r1t2#t1

#v = d!rdt

&#a' = !v2#!v1

t2#t1#a= d!v

dt =d2!rdt2

#r(t) = #r$ +% t0 #v(t) dt

#v(t) = #v$ +% t0 #a(t) dt

&$' = "2#"1t2#t1

$ = d"dt

&%' = #2##1

t2#t1%= d#

dt =d2"dt2

!(t) = !$ +% t0 #$(t) dt

$(t) = $$ +% t0 #%(t) dt

Forces, Energy and Momenta:translational rotational

W = #F ·!#r =%

#F · d#r

P = dWdt = #F · #v

#pcm = m1#v1 +m2#v2 + . . .

= M#vcm#J =

%

#Fdt = !#p(

#Fext = M#acm = d!pcm

dt(

#Fint = 0

Ktrans =12Mv2cm

#& = #r # #F and |#& | = F"r

W = & !! =%

&d!

P = dWdt = #& · #$

#L = I1#$1 + I2#$2 + . . .

= Itot#$

= #r # #p(

#&ext = Itot#% = d!Ldt

(

#&int = 0

Krot =12Itot$

2

— Both translational and rotational —

W = !K = Ktrans,f +Krot,f !Ktrans,i !Krot,i

Etot,f = Etot,i +Wother ( Kf + Uf = Ki + Ui +Wother

U = !)

#F · d#r ; Ugrav = Mgycm ; Uelas =12k(r ! requil)

2

Fx(x) = !dU(x)/dx #F = !#)U = !*

$U$x i+

$U$y j +

$U$z k

+

Circular motion: arad =v2

RT =

2'R

v

s = R! vtan = R$ atan = R%

Relative velocity:#vA/C = #vA/B + #vB/C

#vA/B = !#vB/A

Constants/Conversions:

g = 9.80 m/s2 = 32.15 ft/s2 (on Earth’s surface)

G = 6.674# 10#11 N ·m2/kg2

R% = 6.38# 106 m M% = 5.98# 1024 kgR& = 6.96# 108 m M& = 1.99# 1030 kg

1 km = 0.6214 mi 1 mi = 1.609 km1 ft = 0.3048 m 1 m = 3.281 ft1 hr = 3600 s 1 s = 0.0002778 hr

1 kgms2 = 1 N = 0.2248 lb 1 lb = 4.448 N

1 J = 1 N·m 1 W = 1 J/s1 rev = 360$ = 2' radians 1 hp = 745.7 W

10#9 nano- n10#6 micro- µ10#3 milli- m10#2 centi- c

103 kilo- k106 mega- M109 giga- G

Forces: Newton’s:, #F = m#a, #FB on A = !#FA on B

Hooke’s: #Felas = !k(#r ! #requil)

friction: |#fs| * µs|#n|, |#fk| = µk|#n|

Centre-of-mass:

#rcm =m1#r1 +m2#r2 + . . .+mn#rn

m1 +m2 + . . .+mn

(and similarly for #v and #a)

Gravity:

Fgrav = GM1M2

R212

Ugrav = !GM1M2

R12T =

2'a3/2%GM

Phys 218 — Final Exam Formulae

rectangular plate,axis through centre

thin rectangular plate,axis along edge

hollow spheresolid spherethin-walled hollow

cylindersolid cylinder

I = 112ML2 I = 1

3ML2 I = 112M(a2 + b2) I = 1

3Ma2

a

L

through centreslender rod, axis

through one endslender rod, axis

thin-walled

RRR2

R1

hollow cylinderR R

b

a

bL

I = 12M(R2

1 + R22) I = 1

2MR2 I = MR2I = 2

5MR2 I = 23MR2

! For a point-like particle of mass M a distance R from the axis of rotation: I = MR2

! Parallel axis theorem: Ip = Icm +Md2

SHM:

! = 2"f = 2"/T

Tpend = 2"!

L/g = 2"!

I/mgd

Tspring = 2"!

m/k

Ttorsion = 2"!

I/#

x(t) = A cos (!t+ $!)

v(t) = !!A sin (!t+ $!)

a(t) = !!2A cos (!t+ $!)

Damped/forced:

x(t) = A cos (!"t)e#(b/2m)t

!" =!

k/m! b2/4m2

A = Fmax/"

(k !m!2d)

2 + b2!2d

Waves:k = 2"/%

v = ±%f

v2string = FT /µ

µ = M/L

y(x, t) = ASW sin (kx) sin (!t)standingwave

#

$

%%n =2L

n" fn = n

v

2L, n=1, 2, 3, . . .

travellingwave : y(x, t) = A cos

&

2"

'

x

%#

t

T

()

= A cos (kx# !t)

P =!

µFT !2A2 sin2 (kx# !t), $P % =1

2

!

µFT !2A2

I(r) =power

surf area at r

'

=P

4"r2for 3D sphere

(

rectangular plate,axis through centre

thin rectangular plate,axis along edge

hollow spheresolid spherethin-walled hollow

cylindersolid cylinder

I = 112ML2 I = 1

3ML2 I = 112M(a2 + b2) I = 1

3Ma2

a

L

through centreslender rod, axis

through one endslender rod, axis

thin-walled

RRR2

R1

hollow cylinderR R

b

a

bL

I = 12M(R2

1 + R22) I = 1

2MR2 I = MR2I = 2

5MR2 I = 23MR2

! For a point-like particle of mass M a distance R from the axis of rotation: I = MR2

! Parallel axis theorem: Ip = Icm +Md2

SHM:

! = 2"f = 2"/T

Tpend = 2"!

L/g = 2"!

I/mgd

Tspring = 2"!

m/k

Ttorsion = 2"!

I/#

x(t) = A cos (!t+ $!)

v(t) = !!A sin (!t+ $!)

a(t) = !!2A cos (!t+ $!)

Damped/forced:

x(t) = A cos (!"t)e#(b/2m)t

!" =!

k/m! b2/4m2

A = Fmax/"

(k !m!2d)

2 + b2!2d

Waves:k = 2"/%

v = ±%f

v2string = FT /µ

µ = M/L

y(x, t) = ASW sin (kx) sin (!t)standingwave

#

$

%%n =2L

n" fn = n

v

2L, n=1, 2, 3, . . .

travellingwave : y(x, t) = A cos

&

2"

'

x

%#

t

T

()

= A cos (kx# !t)

P =!

µFT !2A2 sin2 (kx# !t), $P % =1

2

!

µFT !2A2

I(r) =power

surf area at r

'

=P

4"r2for 3D sphere

(

T.  S(egler                11/24/2014            Texas  A&M  University  

A  glider  with  mass  0.500kg  is  agached  to  the  end  of  a  spring  with  k  =  450N/m  undergoes  simple  harmonic  mo(on  with  an  amplitude  of  0.040m.  a)  what  is  the  maximum  speed  of  the  glider?        b)  what  is  the  speed  at  x  =  -­‐.015m?        c)  magnitude  of  the  maximum  accelera(on?          d)  accelera(on  at  x  =  -­‐.015m?        e)  the  total  energy  at  any  point?  

v = ± km(A2 ! x2 )

12kA2 = 1

2mv2 + 1

2kx2 = const.

Page 20: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

T.  S(egler                11/24/2014            Texas  A&M  University  

A.  t = T/8

B.  t = T/4

C. t = 3T/8

D. t = T/2

E. more than one of the above

This  is  an  x-­‐t  graph  for  an  object  connected  to  a  spring  and  moving  in  simple  harmonic  mo(on.  

At  which  of  the  following  (mes  is  the  kine,c  energy  of  the  object  the  greatest?  

Clicker  Ques)on  

K =12mv2 =

12kA2 !

12kx2

Kmax when x = 0

Kmax =12kA2

12kA2 = 1

2mv2 + 1

2kx2 = const.

Page 21: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

A  1.6  kg  mass  agached  to  a  spring  oscillates  with  an  amplitude  of  7.3  cm  and  a  frequency  of  2.6  Hz.    What  is  the  total  energy  of  the  system?    How  fast  is  the  mass  moving  when  it  is  3.0  cm  from  the  equilibrium  posi(on?    

Example  Energy  in  SHM  

rectangular plate,axis through centre

thin rectangular plate,axis along edge

hollow spheresolid spherethin-walled hollow

cylindersolid cylinder

I = 112ML2 I = 1

3ML2 I = 112M(a2 + b2) I = 1

3Ma2

a

L

through centreslender rod, axis

through one endslender rod, axis

thin-walled

RRR2

R1

hollow cylinderR R

b

a

bL

I = 12M(R2

1 + R22) I = 1

2MR2 I = MR2I = 2

5MR2 I = 23MR2

! For a point-like particle of mass M a distance R from the axis of rotation: I = MR2

! Parallel axis theorem: Ip = Icm +Md2

SHM:

! = 2"f = 2"/T

Tpend = 2"!

L/g = 2"!

I/mgd

Tspring = 2"!

m/k

Ttorsion = 2"!

I/#

x(t) = A cos (!t+ $!)

v(t) = !!A sin (!t+ $!)

a(t) = !!2A cos (!t+ $!)

Damped/forced:

x(t) = A cos (!"t)e#(b/2m)t

!" =!

k/m! b2/4m2

A = Fmax/"

(k !m!2d)

2 + b2!2d

Waves:k = 2"/%

v = ±%f

v2string = FT /µ

µ = M/L

y(x, t) = ASW sin (kx) sin (!t)standingwave

#

$

%%n =2L

n" fn = n

v

2L, n=1, 2, 3, . . .

travellingwave : y(x, t) = A cos

&

2"

'

x

%#

t

T

()

= A cos (kx# !t)

P =!

µFT !2A2 sin2 (kx# !t), $P % =1

2

!

µFT !2A2

I(r) =power

surf area at r

'

=P

4"r2for 3D sphere

(

T.  S(egler                11/24/2014            Texas  A&M  University  

12kA2 = 1

2mv2 + 1

2kx2 = const.

Page 22: Today:’Start’chapter14’ - Physics and Astronomy at …people.physics.tamu.edu/tyana/PHYS218/files/Lect_25_11...Spring/Mass*System* k -A 0 A x m • The+force+of+aspring+is+given+by+Hooke’s+Law+

A  mass  oscillates  up  &  down  on  a  spring.    Its  posi(on  as  a  func(on  of  (me  is  shown  below.    At  which  of  the  points  shown  does  the  mass  have  posi(ve  velocity  and  nega(ve  accelera(on?  

t

y(t)

(A)  

(B)  

(C)  

Clicker  Ques)on  

T.  S(egler                11/24/2014            Texas  A&M  University  

v(t)! dxdt> 0 (moving in +x-dir)

a(t)! d 2xdt 2 < 0 (slowing down)