tmdpresentation- tatical ballistic missile

421
7/30/2019 TMDPresentation- Tatical Ballistic Missile http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 1/421 2/24/2008 ELF Professional Development Short Course on Tactical Missile Design Professional Development Short Course on Tactical Missile Design Eugene L. Fleeman Tactical Missile Design E-mail: [email protected] Web Site: http://genefleeman.home.mindspring.com

Upload: elsa-cristina-david

Post on 14-Apr-2018

250 views

Category:

Documents


12 download

TRANSCRIPT

Page 1: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 1/421

2/24/2008  ELF  1 

Professional DevelopmentShort Course on

Tactical Missile Design

Professional DevelopmentShort Course on

Tactical Missile Design

Eugene L. FleemanTactical Missi le DesignE-mail: [email protected]

Web Site: http://genefleeman.home.mindspring.com

Page 2: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 2/421

2/24/2008  ELF  2 

Outline Outline 

Introduction / Key Drivers in the Design Process

 Aerodynamic Considerations in Tactical Missile Design

Propulsion Considerations in Tactical Missile Design Weight Considerations in Tactical Missile Design

Flight Performance Considerations in Tactical Missile Design

Measures of Merit and Launch Platform Integration Sizing Examples

Development Process

Summary and Lessons Learned References and Communication

 Appendices ( Homework Problems / Classroom Exercises,Example of Request for Proposal, Nomenclature, Acronyms,Conversion Factors, Syllabus )

Page 3: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 3/421

2/24/2008  ELF  3 

Emphasis Is on Physics-Based, Analytical Sizing 

of Aerodynamic Configuration 

Emphasis Is on Physics-Based, Analytical Sizing 

of Aerodynamic Configuration 

Safe, Arm, and Fuzing

Power Supply

Seeker, Sensors, and Electronics

Launch Platform Integration

 Additional Measures of Merit

Cost

Miss Distance

WarheadWeight

Structure

Propulsion

 Aero Flight Performance

 Aero Stability & Control

 Aero Configuration Sizing

Emphasis Area

Primary Emphasis

Secondary Emphasis

Tertiary EmphasisNot Addressed- -

Page 4: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 4/421

2/24/2008  ELF  4 

Superior Better Comparable Inferior 

 Axial Acceleration AGM-88

Maneuverability AA-11Speed / altitude SM-3

Dynamic pressure PAC-3

Size Javelin

Weight FIM-92

Production cost GBU-31

Observables AGM-129

Range AGM-86Kills per use Storm Shadow

Target acquisition LOCAAS

Tactical MissileCharacteristics

Comparison WithFighter Aircraft

 – –

 –

 –

Tactical Missiles Are Different from Fighter Aircraft Tactical Missiles Are Different from Fighter Aircraft 

Example of State-of-the-Art

Page 5: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 5/421

2/24/2008  ELF  5 

Aero Configuration Sizing Parameters Emphasized in This Course 

Aero Configuration Sizing Parameters Emphasized in This Course 

Nose FinenessDiameter 

Propulsion Sizing /Propellant or Fuel

Wing Geometry / Size

Stabilizer 

Geometry / Size

Flight Control

Geometry / Size

Length

ThrustProfile

Flight Conditions ( α, M, h )

Page 6: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 6/421

2/24/2008  ELF  6 

Conceptual Design Process Requires Evaluation 

of Alternatives and Iteration 

Conceptual Design Process Requires Evaluation 

of Alternatives and Iteration 

• Mission / ScenarioDefinition

• WeaponRequirements,Trade Studiesand Sensitivity

 Analysis

• Launch PlatformIntegration

• Weapon ConceptDesign Synthesis

• Technology Assessment andDev Roadmap

InitialTech

InitialReqs

BaselineSelected

 Al tConcepts

Initial Carriage /Launch

Iteration

RefineWeapons

Req

Initial Revised

Trades / Eval Effectiveness / Eval

TechTrades

InitialRoadmap

RevisedRoadmap

 Al ternate Concepts ⇒ Select Preferred Design ⇒Eval / Refine

Update

Note: Typical conceptual design cycle is 3 to 9 months. House of Quality may be used to translate customer requirementsto engineering characteris tics . DOE may be used to efficiently evaluate the broad range of design solut ions.

Page 7: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 7/421

2/24/2008  ELF  7 

Missile Concept Synthesis Requires Evaluation 

of Alternatives and Iteration 

Missile Concept Synthesis Requires Evaluation 

of Alternatives and Iteration 

Yes

Define Mission Requirements

Establish Baseline

 Aerodynamics

Propulsion

Weight

Trajectory

Meet

Performance?

Measures of Merit and ConstraintsNo

No

Yes

Resize / Alt Conf ig / Subsystems / Tech

 Al t Mission

 Al t Baseline

Page 8: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 8/421

2/24/2008  ELF  8 

Examples of Air-Launched Missile Missions / 

Types 

Examples of Air-Launched Missile Missions / 

Types 

 Air-to-air Example SOTA

• Short range ATA. AA-11. Maneuverability

• Medium range ATA. AIM-120. Performance / weight

• Long range ATA. Meteor. Range

 Air-to-surface

• Short range ATS. AGM-114. Versatility

• Medium range ATS. AGM-88. Speed

• Long range ATS. Storm Shadow. Modularity

Permission of Missile Index. Copyright 1997©Missile.Index All Rights Reserved

10 feet

Page 9: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 9/421

2/24/2008  ELF  9 

Surface-to-surface Example SOTA

• Short range STS. Javelin. Size

• Medium range STS. MGM-140. Modularity

• Long range STS. BGM-109. Range

Surface-to-air 

• Short range STA. FIM-92. Weight

• Medium range STA. PAC-3. Accuracy

• Long range STA. SM-3. High altitude

Examples of Surface-Launched Missile Missions / 

Types 

Examples of Surface-Launched Missile Missions / 

Types 

Permission of Missile.Index. Copyright 1997©Missile.Index All Rights Reserved

10 feet

Page 10: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 10/421

2/24/2008  ELF  10 

 Aero Conf iguration Range / Time to Robust- Miss Observ- LaunchSizing Parameter  Weight Maneuver Target ness Lethality Distance ables Survivability Cost Platform

Nose Fineness

Diameter 

Length

Wing Geometry / Size

Stabilizer Geometry / Size

Flight ControlGeometry / Size

Propellant / Fuel

Thrust Profile

Flight Conditions( α, M, h )

Aero Configuration Sizing Has High Impact on Mission Requirements 

Aero Configuration Sizing Has High Impact on Mission Requirements 

Impact on Weapon Requirement

 Aero Measures of Meri t Other Measures of Meri t Const raint

 –Very Strong Strong Moderate Relatively Low

Page 11: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 11/421

2/24/2008  ELF  11 

 –

 Alternatives for Precision Str ikeCost per 

ShotFuture Systems

Standoff platforms / hypersonic missiles

Overhead loitering UCAVs / hypersonic missiles

Overhead lo itering UCAVs / light weight PGMs

Current Systems

Penetrating aircraft / subsonic PGMs

Standoff platforms / subsonic missiles

Note: Superior Good Average Poor  

Number of Launch Platforms

Required

TCT

Effectiveness

 –  –

 –

Example of Assessment of Alternatives to Establish Future Mission Requirements 

Example of Assessment of Alternatives to Establish Future Mission Requirements 

Note: C4ISR targeting state-of-the-art for year 2010 projected to provide sensor-to-shooter / weapon connectivity

time of less than 2 m and target location error ( TLE ) of less than 1 m for mot ion suspended target.

Measures of Merit

Page 12: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 12/421

2/24/2008  ELF  12 

C4ISR Tactical Satellites and UAVs Have High 

Impact on Mission Capability 

C4ISR Tactical Satellites and UAVs Have High 

Impact on Mission Capability Launch Platforms

•Fighter Aircraft

•Bomber 

•Ship / Submarine

•UCAV

Precision Strike Weapons•Hypersonic SOW

•Subsonic PGM

•Subsonic CM

Launch Platforms

•Fighter Aircraft

•Bomber 

•Ship / Submarine

•UCAV

Precision Strike Weapons

•Hypersonic SOW

•Subsonic PGM

•Subsonic CM

Off-board Sensors•Tactical Satellite

•UAV

Off-board Sensors

•Tactical Satellite

•UAV

Note: C4ISR targeting state-of-the-art for year 2010 projected to provide sensor-to-shooter / weapon connectivitytime of less than 2 m and target location error ( TLE ) of less than 1 m for mot ion suspended target.

Time Critical Targets

•TBM / TEL

•SAM

•C3

•Other Strategic

Time Critical Targets•TBM / TEL

•SAM

•C3

•Other Strategic

Page 13: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 13/421

2/24/2008  ELF  13 

Example of System-o -Systems Analysis to 

Develop Future Mission Requirements 

Example of System-o -Systems Analysis to 

Develop Future Mission Requirements 1. Compare Targeting of Subsonic Cruise Missile

Versus Hypersonic Missile

t0 t1

TBM

Launch

Launch

Pt Rcvd

t2 t3

Cruise Missile Launch

HM Intercept

at XXX nm

Range 3 > R2

Range 2 > R1

Range 1

1000 2000 3000 4000 5000

 Average Speed, fps

    T    i   m   e

 ,    M    i   n

120

0

20

4060

80

100

20

4060

80

100

020000 4000 6000

 Average Speed to Survive, fps

    A    l    t    i    t   u    d   e  –

    1    0    0    0    f    t

    L   e    t    h   a    l    i    t   y    /    C   o   n   c   r   e    t   e

    P   e   n   e    t   r   a    t    i   o   n    (    f    t    )50

40

30

20

10

01000 2000 3000 40000Impact Velocity, fps

W/H W3 > W2

W/H W2 > W1

Warhead W1

0

2. Time To Target

3. Alt / Speed / RCS RequiredFor Survivability

4. Lethality

Selected For All :• Value of Speed /

Range• Time Urgent Targets• High Threat

Environments

• Buried Targets• Launch Platform Al ternat ives

• Operating and At tri ti on Cost inCampaign

• Weapon Cost inCampaign• Mix of Weapons in

Campaign• Cost Per Target Ki ll• C4ISR Interface

5. Campaign Model WeaponsMix ( CM, Hypersonic

Missi le ) Resul ts( eg., Korean Scenario )

Hypersonic

Missile Launch

RCS1 RCS2 > RCS1

1      -   2      

3     -   4          2

  -    3

    4  -     5

Page 14: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 14/421

2/24/2008  ELF  14 

Example of Technological Surprise Driving 

Immediate Mission Requirements 

Example of Technological Surprise Driving 

Immediate Mission Requirements 

 Archer AA-11 / R-73 ( IOC 1987 )

Performance

•> +/- 60 deg off boresight

•20 nm range

New Technologies

•TVC

•Split canard

•Near-neutral static margin

•+/- 90 deg gimbal seeker 

•Helmet mounted sight

Sidewinder AIM-9L ( IOC 1977 )Performance

•+/- 25 deg off boresight

•6.5 nm range

Note: AIM-9L maneuverability shortfall compared to Archer drove sudden development of AIM-9X.

Page 15: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 15/421

2/24/2008  ELF  15 

Missile Concept Synthesis Requires Evaluation 

of Alternatives and Iteration 

Missile Concept Synthesis Requires Evaluation 

of Alternatives and Iteration 

Yes

Establish Baseline

 Aerodynamics

Propulsion

Weight

Trajectory

Meet

Performance?

Measures of Merit and ConstraintsNo

No

Yes

Resize / Alt Conf ig / Subsystems / Tech

 Al t Mission

 Al t Baseline

Define Mission Requirements

Page 16: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 16/421

2/24/2008  ELF  16 

Baseline Design Benefits and Guidelines Baseline Design Benefits and Guidelines 

Benefits of Baseline Design  Allows simple, conceptual design methods to be used with good

accuracy

Well documented benchmark / configuration control / traceabili tybetween cause and effect

Balanced subsystems

Gives fast startup / default values for design effort

Provides sensitivity trends for changing design Baselines can cover reasonable range of starting points

Baselines can normally be extrapolated to ±50% with good accuracy

Guidelines

Don’t get locked-in by baseline Be creative

Project state-of-the-art ( SOTA ) if baseline has obsolete subsystems Sensors and electronics almost always need to be updated

Page 17: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 17/421

Page 18: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 18/421

2/24/2008  ELF  18 

Baseline Design Data Allows Correction of Computed Parameters in Conceptual Design Baseline Design Data Allows Correction of Computed Parameters in Conceptual Design 

PCD, C Parameter of conceptual design, corrected

PB, C Parameter of baseline, corrected ( actual data )

PB, U Parameter of baseline, uncorrected ( computed ) PCD, U Parameter of conceptual design, uncorrected (computed )

Example• Ramjet Baseline with RJ-5 fuel ( heating value = 11,300,000 ft-lbf / lbm )

•  Advanced Concept with slurry fuel ( 40% JP-10 / 60% boron carbide =18,500,000 ft-lbf / lbm )

• Flight condi tions: Mach 3.5 cruise, 60k ft altitude, combustion temperature4,000 R

• Calculate specific impulse ( ISP )CD,C for conceptual design, based on correctedbaseline data – ( ISP )B, C = 1,120 s

 – ( ISP )B, U = 1387 s

 – ( ISP )CD, U = 2,271 s

 – ( ISP )CD, C = [( ISP )B, C / ( ISP )B, U ] ( ISP )CD, U = [( 1120 ) / ( 1387 )] ( 2271 ) = 0.807 ( 2271 )

= 1,834 s

PCD, C = ( PB, C / PB, U ) PCD, U

Page 19: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 19/421

2/24/2008  ELF  19 

Summary of This Chapter Summary of This Chapter 

Overview of Missile Design Process

Examples Tactical missile characteristics

Conceptual design process

SOTA of tactical missiles

 Aerodynamic configuration sizing parameters Processes that establish mission requirements

Process for correcting design predictions

Discussion / Questions?

Classroom Exercise

Page 20: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 20/421

2/24/2008  ELF  20 

Introduction Problems Introduction Problems 

1. The missile design team should address the areas of mission / scenariodefinition, weapon requirements, launch platform integration, design, andt_______ a_________.

2. The steps to evaluate missile flight performance require computingaerodynamics, propulsion, weight, and flight t_________.

3.  Air-to-air missile characteristics include light weight, high speed, and highm______________.

4.  Air-to-surface missiles are often versatile and m______.5. Four aeromechanics measures of merit are weight, range, maneuverability,

and t___ to target.

6. The launch platform often constrains the missile span, length, and w_____.

7.  An enabling capability for hypersonic strike missiles is fast and accurateC____.

8.  An enabling capability for large off boresight air-to-air missiles is a h_____m______ sight.

9.  A baseline design improves the accuracy and s____ of the design process.

Page 21: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 21/421

2/24/2008  ELF  21 

Outline Outline 

Introduction / Key Drivers in the Design Process

 Aerodynamic Considerations in Tactical Missile Design

Propulsion Considerations in Tactical Missile Design

Weight Considerations in Tactical Missile Design

Flight Performance Considerations in Tactical Missile Design

Measures of Merit and Launch Platform Integration

Sizing Examples

Development Process

Summary and Lessons Learned

References and Communication

 Appendices ( Homework Problems / Classroom Exercises,Example of Request for Proposal, Nomenclature, Acronyms,

Conversion Factors, Syllabus )

Page 22: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 22/421

2/24/2008  ELF  22 

Missile Concept Synthesis Requires Evaluation 

of Alternatives and Iteration 

Missile Concept Synthesis Requires Evaluation 

of Alternatives and Iteration 

Yes

Establish Baseline

Propulsion

Weight

Trajectory

Meet

Performance?

Measures of Merit and ConstraintsNo

No

Yes

Resize / Alt Conf ig / Subsystems / Tech

 Al t Mission

 Al t Baseline

Define Mission Requirements

 Aerodynamics

Page 23: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 23/421

2/24/2008  ELF  23 

Missile Diameter Tradeoff Missile Diameter Tradeoff 

Drivers toward Small Diameter • Decrease drag

• Launch platform diameter constraint Drivers toward Large Diameter 

• Increase seeker range and signal-to-noise, better resolut ion and tracking

• Increase blast frag and shaped charge warhead effectiveness ( larger diameter 

⇒ higher velocity fragments or higher velocity jet )• Increase body bending frequency

• Subsystem diameter packaging

• Launch platform length constraint

Typical Range in Body Fineness Ratio 5 < l / d < 25• Man-portable anti-armor missiles are low l / d ( Javelin l / d = 8.5 )

• Surface-to-air and air-to-air missiles are high l / d ( AIM-120 l / d = 20.5 )

Page 24: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 24/421

2/24/2008  ELF  24 

Small Diameter Missiles Have Low Drag Small Diameter Missiles Have Low Drag 

10

100

1000

10000

100000

4 8 12 16 20

d, Diameter, in

    D    /    C    D ,

    D   r   a   g

    /    D   r   a   g    C   o   e    f    f    i   c

    i   e   n    t ,    l    b

Dynamic Pressure =1,000 psf 

Dynamic Pressure =5,000 psf 

Dynamic Pressure =10,000 psf 

Example for Rocket Baseline:

d = 8 in = 0.667 ft

Mach 2, h = 20k ft, ( CD0 )Powered = 0.95q = 1/2 ρ V2 = 1/2 ρ ( M a )2

= 1/2 ( 0.001267 ) [( 2 ) ( 1037 )] 2 = 2,725 psf 

D0 / CD0= 0.785 ( 2725 ) ( 0.667 )2 = 952

D0 = 0.95 ( 952 ) = 900 lb

D = CD q SRef  = 0.785 CD q d2

Note: D = drag in lb, CD = drag coefficient, q = dynamic pressure in psf,d = diameter ( reference length ) in ft

L Di R d S k P id LL Di t R d S k P id L

Page 25: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 25/421

2/24/2008  ELF  25 

Large Diameter Radar Seeker Provides Longer 

Detection Range and Better Resolution 

Large Diameter Radar Seeker Provides Longer 

Detection Range and Better Resolution 

1

10

100

0 5 10 15 20

d, Diameter, Inches

Example Seeker Range for Transmitted Power Pt = 100 W, nm

Example Seeker Range for Transmitted Power Pt = 1,000 W, nm

Example Seeker Range for Transmitted Power Pt = 10,000 W, nm

Example Seeker Beam Width, deg

RD = { π σ n3/4 / [ 64 λ2 K T B F L ( S / N ) ]}1/4 Pt1/4 d

θ3dB = 1.02 λ / d, θ3dB in rad

 Assumptions: Negl ig ib le clut ter , interference, andatmospheric attenuation; non-coherent radar ( onlysignal amplitude integrated ); uniformly ill uminatedcircular aperture; receiver sensitivi ty limited bythermal noise

Symbols:

σ = Target radar cross section, m2

n = Number of pu lses integratedλ = Wavelength, mK = Boltzman’s constant = 1.38 x 10-23 J / KT = Receiver temperature, KB = Receiver bandwidth, HzF = Receiver noise factor L = Transmitter loss factor S / N = Signal-to-noise ratio for target detectionPt = Transmitted power, Wd = Antenna diameter 

Example: Rocket Baselined = 8 in = 0.20 m, Pt = 1000 W, λ = 0.03 m ( f = 10 GHz )RD = Target detection range = { π ( 10 ) ( 100 )3/4 / [ 64 (

0.03 )2 ( 1.38 x 10-23 ) ( 290 ) ( 106 ) ( 5 ) ( 5 )( 10 )]}1/4 (1000 )1/4 ( 0.203 ) = 13,073 m or 7.1 nm

θ3dB = 3-dB beam width = 1.02 ( 0.03 ) / 0.203 = 0.1507

rad or 8.6 deg

Note for figure: σ = 10 m2, n = 100, λ = 0.03 m ( f = Transmi tter frequency = 10 x 109 Hz ), T = 290 K, B = 106 Hz ( 10-6 s pulse ), F

= 5, L = 5, S / N = 10

L Di t IR S k P id LL Di t IR S k P id L

Page 26: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 26/421

2/24/2008  ELF  26 

Large Diameter IR Seeker Provides Longer 

Detection Range and Better Resolution 

Large Diameter IR Seeker Provides Longer 

Detection Range and Better Resolution 

1

10

100

0 2 4 6 8 10

do, Optics Diameter, Inches

Example Seeker Range for Exo-atmospheric, km

Example Seeker Range for Humidity at 7.5 g / m3, km

Example Seeker Range for Rain at 4 mm / hr, km

Example Seeker IFOV, 10-5 rad

RD = { ( IT )Δλ ηa Ao { D* / [( Δf p )1/2 ( Ad )1/2 ]} ( S / N )D-1 }1/2

IFOV= dp / [ ( f-number ) do ]

Example: do = 5 in = 0.127 m, exo-atmosphericLλ = 3.74 x 104 / { 45 { e{ 1.44 x 104 / [ 4 ( 300 ) ]} – 1 }} = 0.000224 W cm -2 sr -2

μm-1, ( IT )Δλ = 0.5 ( 0.000224 ) ( 4.2 – 3.8 ) 2896 = 0.1297 W / sr, Ad =256 x 256 x ( 20 μm )2 = 0.262 cm2, f-number = 20 / [ 2.44 ( 4 ) ] = 2.05

RD = { 0.1297 ( 1 ) ( 0.01267 ) { 8 x 1011 / [( 250 )1/2 ( 0.262 )1/2 ]} ( 1 )-1

}1/2 = 12, 740 m

IFOV = 0.000020 / [ 2.05 ( 0.127 )] = 0.0000769 rad

Figure: dT = 2 ft ( 60.96 cm ), TT = 300 K, λ1 = 3.8 μm,λ

2= 4.2 μm, ε = 0.5, λ = 4 μm, FPA ( 256 x 256, 20 μm

), D* = 8 x 1011 cm Hz1/2 / W, ( S / N )D = 1, Δf p = 250 Hz.

RD = Target detection range, m

( IT )Δλ = Target radiant intensity between λ1 and λ2= εLλ ( λ2 - λ1 ) AT, W / sr 

ηa = Atmospheric transmission Ao = Optics aperture area, m2

D* = Specif ic detectivity, cm Hz1/2 / WΔf p = Pixel bandwidth, Hz Ad = Detectors total area, cm2

( S / N )D = Signal-to-noise ratio required for detection

ε = Emissivity coefficient

Lλ = Spectral radiance ( Planck’s Law ) = 3.74 x 104 / {

λ5 { e[ 1.44 x 104 / ( λ TT )] – 1 }} , W cm-2 sr -2 μm-1

λ2 = Upper cutoff wavelength for detection, μm

λ1 = Lower cutoff wavelength for detection, μm AT = Target planform area, cm2

λ = Average wavelength, μm

TT = Target temperature, K

IFOV = Instantaneous f ield-of-view of pixel, radf-number = dspot / ( 2.44 λ )

dp = Pixel diameter, either μm

dspot = Spot resolution i f diff raction limi ted = dp, μm

Mi il Fi R ti M B Li it d bMissile Fineness Ratio Ma Be Limited b

Page 27: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 27/421

2/24/2008  ELF  27 

Missile Fineness Ratio May Be Limited by 

Impact of Body Bending on Flight Control 

Missile Fineness Ratio May Be Limited by 

Impact of Body Bending on Flight Control 

100

1000

10000

0 10 20 30

l / d, length / diameter 

    F    i   r   s    t    M   o    d   e    B   o    d   y    B   e

   n    d    i   n   g    F   r   e   q   u   e   n   c

   y ,   r   a    d    /   s

E t / W = 1,000 per in

E t / W = 10,0000 per in

E t / W = 100,000 per in

Derived from: AIAA Aerospace Design Engineers Guide, American Institute of Aeronautics and Astronautics, 1993.

ωBB = 18.75 { E t / [ W ( l / d ) ]}1/2

Example for Rocket Baseline:

l / d = 18E AVG = 19.5 x 106 psit AVG = 0.12 in

W = 500 lbE t / W = 19.5 x 106 ( 0.12 ) / 500 = 4680 per inωBB = 18.75 ( 4680 / 18 )1/2 = 302 rad / sec = 48 Hzω Ac tuator  = 100 rad / sec = 16 HzωBB / ω Ac tuator = 302 / 100 = 3.02 > 2

 Assumes body cylinder st ructure, th in skin, h ighfineness ratio, uniform weight dist ribution, free-freemotion. Neglects bulkhead, wing / tail s tiffness.

ωBB = First mode body bending frequency, rad / s

E = Modulus of elasticity in ps i

t = Thickness in inchesW = Weight in lb

l / d = Fineness ratio

Page 28: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 28/421

2/24/2008  ELF  28 

Nose Fineness Tradeoff Nose Fineness Tradeoff 

d

Example: lN / d = 5 tangent ogive

Example: lN / d = 0.5 ( hemisphere )

High Nose Fineness Superior Aerodynamically, Low Observables

Low Nose Fineness Ideal Electromagnetically, High Propellant Length / Volume

Moderate Nose Fineness Compromise Dome

d

Examples: lN / d = 2 tangent ogive lN / d = 2 faceted lN / d = 2 window lN / d = 2 mult i-lens

d

 W i n d o w

Faceted and Flat Window Domes Can Have LowFaceted and Flat Window Domes Can Have Low

Page 29: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 29/421

2/24/2008  ELF  29 

Firestreak

Mistral

SLAM-ER

JASSM

THAAD

Faceted and Flat Window Domes Can Have Low 

Dome Error Slope, Low Drag, and Low RCS 

Faceted and Flat Window Domes Can Have Low 

Dome Error Slope, Low Drag, and Low RCS 

Faceted Dome ( Mistral ) Video

Supersonic Body Drag Driven by Nose FinenessSupersonic Body Drag Driven by Nose Fineness

Page 30: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 30/421

2/24/2008  ELF  30 

Supersonic Body Drag Driven by Nose Fineness 

while Subsonic Drag Driven by Wetted Area 

Supersonic Body Drag Driven by Nose Fineness 

while Subsonic Drag Driven by Wetted Area 

0.01

0.1

1

10

0 1 2 3 4 5

M, Mach Number 

(CD0)Body,Wave;lN / d = 0.5

(CD0)Body,Wave;lN / d = 1

(CD0)Body,Wave;lN / d = 2

(CD0)Body,Wave;lN / d = 5

(CD)Base,Coast

Example for Rocket Baseline:

( CD0 )Body, Wave ( CD0 )Body, Friction ( CD )Base

lN / d = 2.4, Ae = 11.22 in2, SRef  = 50.26 in2, M =2, h = 20k ft , q = 2725 psf, l / d = 18, l = 12 ft

( CD0)Body, Friction = 0.053 ( 18 ) { ( 2 ) / [( 2725 )

( 12 ) ]}0.2

= 0.14( CD )Base Coast = 0.25 / 2 = 0.13

( CD )Base Powered = ( 1 - 0.223 ) ( 0.25 / 2 ) = 0.10

( CD0)Body, Wave = 0.14

( CD0)Body, Coast = 0.14 + 0.13 + 0.14 = 0.41

( CD0 )Body, Powered = 0.14 + 0.10 + 0.14 = 0.38

( CD0)Body = (CD0

)Body,Friction + ( CD0)Base + ( CD0

)Body, Wave

(CD0)Body,Friction = 0.053 ( l / d ) [ M / ( q l )]0.2. Based on Jerger reference, turbulent boundary layer, q in psf, l in ft.

( CD0)Base,Coast = 0.25 / M, if M > 1 and (CD0

)Base,Coast = ( 0.12 + 0.13 M2 ), if M < 1

( CD0)Base,Powered = ( 1 – Ae / SRef  ) ( 0.25 / M ), if M > 1 and ( CD0

)Base,Powered = ( 1 – Ae / SRef  ) ( 0.12 + 0.13 M2 ), if M < 1

( CD0)Body, Wave = ( 1.59 + 1.83 / M2 ) { tan-1 [ 0.5 / ( lN / d )]}1.69, for M > 1. Based on Bonney reference, tan-1 in rad.

Note: ( CD0)Body,Wave = body zero-lif t wave drag coefficient, ( CD0

)Base = body base drag coefficient, ( CD0)Body, Friction = body skin

friction drag coefficient, ( CD0)Body = body zero-lift drag coefficient, lN = nose length, d = missi le diameter, l = missile body

length, Ae = nozzle exit area, SRef  = reference area, q = dynamic pressure, tan-1 [ 0.5 / ( lN / d )] in rad.

Moderate Nose Tip Bluntness Causes aModerate Nose Tip Bluntness Causes a

Page 31: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 31/421

2/24/2008  ELF  31 

Moderate Nose Tip Bluntness Causes a 

Negligible Change in Supersonic Drag 

Moderate Nose Tip Bluntness Causes a 

Negligible Change in Supersonic Drag 

Steps to Calculate Wave Drag of a Blunted Nose1. Relate blunted nose tip geometry to pointed nose tip geometry

2. Compute (CD0)Wave,SharpNose for sharp nose, based on the body reference area

( CD0)Wave,SharpNose = ( 1.59 + 1.83 / M2 ) { tan-1 [ 0.5 / ( lN / d )]}1.69

3. Compute ( CD0)Wave,Hemi of the hemispherical nose tip ( lNoseTip / dNoseTip = 0.5 ), based on the

nose tip area

( CD0)Wave,Hemi = ( 1.59 + 1.83 / M2 ) {[ tan-1 ( 0.5 / ( 0.5 )]}1.69 = 0.665 ( 1.59 + 1.83 / M2 )

4. Final ly, compute ( CD0)Wave,BluntNose of the blunt nose, based on the body reference area

( CD0)Wave,BluntNose = ( CD0

)Wave,SharpNose ( SRef  - SNoseTip ) / SRef  + ( CD0)Wave,Hemi SNoseTipi / SRef 

Example Rocket Baseline ( dRef  = 8 in ) with 10% Nose Tip Bluntness at Mach 2

• ( CD0)Wave,SharpNose = [ 1.59 + 1.83 / ( 2 )2 ] [ tan-1 ( 0.5 / 2.4)]1.69 = 0.14

• dNoseTip = 0.10 ( 8 ) = 0.8 in

• SNoseTip = π dNoseTip2 / 4 = 3.1416 ( 0.8 )2 / 4 = 0.503 in2 = 0.00349 ft2

• ( CD0)Wave,Hemi = 0.665 [ 1.59 + 1.83 / ( 2 )2 ] = 1.36

• ( CD0 )Wave,BluntNose = 0.14 ( 0.349 - 0.003 ) / 0.349 + ( 1.36 ) ( 0.003 ) / ( 0.349 ) = 0.14 + 0.01 = 0.15

dRef dNoseTip

lN

Page 32: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 32/421

2/24/2008  ELF  32 

Boattail Decreases Base Pressure Drag Area Boattail Decreases Base Pressure Drag Area 

Without Boattail

With Boattail

During Motor Burn After Motor Burnout

Base Pressure Drag Area

θBT

Note: Boattail angle θBT and boattail diameter dBT limi ted by propuls ion nozzle packaging, tail flightcontrol packaging, and flow separation

dRef 

dBT

Reference: Chin, S. S., Missile Configuration Design , McGraw-Hill Book Company, New York, 1961

Page 33: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 33/421

2/24/2008  ELF  33 

Boattailing Reduces Drag for Subsonic Missiles Boattailing Reduces Drag for Subsonic Missiles 

0.45

0.40

0.05

0.10

0.15

0.20

0.25

0.30

0.35

    C

    D    O ,

    E   x   a   m   p    l   e    Z   e   r   o  -    L    i    f    t    D   r   a   g    C   o   e    f    f    i   c    i   e   n    t

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5M∞

Note: Boatail half angle should be less than 10 deg, to avoid flow separattion.Source: Mason, L.A., Devan, L. and Moore, F.G., “ Aerodynamic Design Manual for Tactical Weapons,” NSWC TR 81-156, July1981

3.00 6.00 1.50

Center bodyNose

10.50

dBT / dRef = 1.0dBT / dRef = 0.9dBT / dRef = 0.8dBT / dRef = 0.6

dBT / dRef = 0.4

Boattail

Note:d

BT

= Boattail Diameter dRef = Body Reference Diameter 

Page 34: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 34/421

2/24/2008  ELF  34 

Note:If α negative, CN negativeBased on slender body theory ( Pitts, et al ) and cross f low theory ( Jorgensen ) references

Valid for l / d > 5Example l / d = length / diameter = 20d = 2 ( a b )1/2

φ = 0°

Lifting Body Has Higher Normal Force Lifting Body Has Higher Normal Force 

CN,ExampleNormalForce

Coefficientfor l / d = 20

150

100

50

00 20 40 60 80 100

α, Angle of Attack, Deg

φ2a

2b

a / b = 3

a / b = 2

a / b = 1

⏐ CN ⏐ = [⏐( a / b ) cos2 φ + ( b / a ) sin2 φ ⏐] [⏐ sin ( 2α ) cos ( α / 2 ) ⏐ + 2 ( l / d ) sin2 α ]

CN

L / D Is Impacted by C Body Fineness andL / D Is Impacted by CD Body Fineness and

Page 35: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 35/421

2/24/2008  ELF  35 

L / D Is Impacted by C D 0 , Body Fineness, and Lifting Body Cross Section Geometry 

L / D Is Impacted by C D 0 , Body Fineness, and Lifting Body Cross Section Geometry 

L / D,Lift / Drag

4

3

2

1

0 0 20 40 60 80 100

α, Angle of Attack, DegNote:• If α negative, L / D negative•d = 2 ( a b )1/2

•Launch platform span constraints ( e.g., VLS launcher ) and length constraints ( e.g., aircraft compatibil ity )

may limit missile aero configuration enhancements

L / D = CL / CD = ( CN cos α – CD0 sin α ) / ( CN sin α + CD0 cos α )For a lifting body, ⏐ CN ⏐ = [⏐( a / b ) cos2 ( φ ) + ( b / a ) sin2 ( φ ) ⏐] [⏐ sin ( 2α ) cos ( α / 2 ) ⏐ + 2 ( l / d ) sin2 α ]

High drag, low fineness body ( a / b = 1, l / d = 10, CDO = 0.5 )Low drag nose ( a / b = 1, l / d = 10, CDO = 0.2 )High fineness, low drag ( a / b = 1, l / d = 20, CDO = 0.2 )

Lif ting body, high fineness, low drag ( a / b = 2 @ φ = 0°, l / d =20, CDO = 0.2 )

φ2a

2bCN

Lifting Body Requires Flight at Low DynamicLifting Body Requires Flight at Low Dynamic

Page 36: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 36/421

2/24/2008  ELF  36 

Lifting Body Requires Flight at Low Dynamic 

Pressure to Achieve High Aero Efficiency 

Lifting Body Requires Flight at Low Dynamic 

Pressure to Achieve High Aero Efficiency 

0

1

2

3

4

100 1000 10000 100000

q, Dynamic Pressure, lb / ft2

    E   x   a   m

   p    l   e    L    /    D ,

    L    i    f    t    /    D   r

   a   g

Circular Cross Section ( a / b = 1 ) Lif t ing Body ( a / b = 2 )

L / D = CL / CD = ( CN cos α – CDOsin α ) / ( CN sin α + CDO

cos α )⏐ CN ⏐ = [⏐( a / b ) cos2 ( φ ) + ( b / a ) sin2 ( φ ) ⏐] [⏐ sin ( 2α ) cos ( α / 2 ) ⏐ + 2 ( l / d ) sin2 α ]

Note. Example figure based on following assumptions:Body l ift only ( no surfaces ), cruise flight ( lift = weight ), W = L = 2,000 lb, d = 2 ( a b )1/2, S = 2 ft2,l / d = 10, CD0

= 0.2

Example:

q = 500 psf •a / b = 1 ⇒ L / D = 2.40

•a / b = 2 ⇒ L / D = 3.37

q = 5,000 psf 

•a / b = 1 ⇒ L / D = 0.91•a / b = 2 ⇒ L / D = 0.96

Trade-off of Low Observables and ( L / D )MaxTrade-off of Low Observables and ( L / D )Max

Page 37: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 37/421

2/24/2008  ELF  37 

6

5

4

3

Body Planform Area

( Body Volume )2/3

    (    L    /    D    )    M   a   x ,

    (    L    i    f    t    /    D   r   a   g    )    M

   a   x Lower 

Radar Cross

Section

TailoredWeapons

ConventionalWeapons

( circular 

cross section )

Trade off of Low Observables and ( L / D ) Max Versus Volumetric Efficiency 

Trade off of Low Observables and ( L / D ) Max Versus Volumetric Efficiency 

2 4 6 8 10

 Advantages:• ( L / D )Max

• Low RCS

 Advantages:• Payload• Launch PlatformIntegration

Circular Cross Section

C / and Static Margin Define StaticCm / and Static Margin Define Static

Page 38: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 38/421

2/24/2008  ELF  38 

Δ C m  / Δ α and Static Margin Define Static 

Stability 

Δ C m  / Δ α and Static Margin Define Static 

Stability 

Cm

Statically Stable: ΔCm / Δα < 0,with xac behind xcg

δ1 δ2

Cm

Statically Unstable: ΔCm / Δα > 0,with xac in front of xcg

δ1

δ2

Non-oscillatoryConvergent

OscillatoryConvergent

t

Non-oscillatoryDivergent

OscillatoryDivergent

t

α α

α

Note: Statically unstable missi le requires high bandwidth autopilot.

 Autopi lot negative rate feedback provides stabili ty augmentat ion.

xCG

x AC

xCG

x AC

Body Aerodynamic Center Is a Function of Angle Body Aerodynamic Center Is a Function of Angle 

Page 39: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 39/421

2/24/2008  ELF  39 

y y g

of Attack, Nose Fineness, and Body Length 

y y g

of Attack, Nose Fineness, and Body Length 

0

1

2

3

4

5

0 20 40 60 80 100

 Angle of Attack, Deg

    D    i   s    t   a   n   c   e    t   o    B   o    d   y    A   e   r   o    d   y   n   a

   m    i   c

    C   e   n    t   e   r    /    L   e   n   g    t    h   o    f    N   o   s   e total length of body /

length of nose = 1

total length of body /length of nose = 2

total length of body /

length of nose = 5total length of body /length of nose = 10

( x AC )B / lN = 0.63 ( 1 - sin2 α ) + 0.5 ( lB / lN ) sin2 α

Note: Based on slender body theory ( Pitts , et al ) and cross flow theory ( Jorgensen ) references. No flare.

( x AC )B = Location of body aerodynamic center, lN = length of nose, α = angle of attack, lB = total length of body.

Example:

Rocket Baseline Body

lB / lN = 143.9 / 19.2 = 7.49

α = 13 deg

( x AC )B / lN = 0.81

19.2143.9

Fl I St ti St bilit

Page 40: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 40/421

2/24/2008  ELF  40 

Based on Slender Body Theory:

( CNα )F = 2 [( dF / d )2 – 1 ]

( xac )F = xF + 0.33 lF [ 2 ( dF / d ) + 1 ] / [ ( dF / d ) + 1 ] ( CNα

)B = 2 per rad

( xac )B = 0.63 lN

ΣM = 0 at Aerodynamic Center. For a Body-Flare:

( CNα )B {[ xCG – ( x AC )B ] / d } + ( CNα )F [ xCG – ( x AC )F ] / d = - [( CNα )B + ( CNα )F ][( x AC – xCG ) / d ]

Static Margin for a Body-Flare

( x AC – xCG ) / d = - {( CNα)B {[ xCG – ( x AC )B ] / d } + ( CNα

)F {[ xCG – ( x AC )F ] / d }} /[( CNα

)B + ( CNα)F ]

Flare Increases Static Stability Flare Increases Static Stability 

+M

x = 0 ( xac )B

( CNα)B ( CNα )F

lBlN

( xac )F

xF

9

xCG

d dF

x AC

CNα = ( CNα )B + ( CNα )F

Fl I St ti St bilit ( t )Fl I St ti St bilit ( t )

Page 41: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 41/421

2/24/2008  ELF  41 

Example of Static Margin for THAAD ( Statically Unstable Missile )

( CNα )F = 2 [( 18.7 / 14.6 )2 – 1 ] = 2 [(1.28)2 – 1 ] = 1.28 per rad

( xac )F = 230.9 + 0.33 ( 12.0 )[ 2 ( 18.7 / 14.6 ) + 1 ] / [ ( 18.7 / 14.6 ) + 1 ] = 237.1 in

( xac )B = 0.63 ( 91.5 ) = 57.7 in

xCGLaunch = 146.9 in ( x AC – xCG )Launch / d = - { 2 {[ 146.9 – 57.7 ] / 14.6 } + 1.28 {[ 146.9 – 237.1 ] / 14.6 }}

/ [ 2 + 1.28 ] = - 0.41

Flare Increases Static Stability ( cont ) Flare Increases Static Stability ( cont ) 

9

( CNα)B

( xac )B = 57.7 91.5 146.9

14.6 18.7 in

( xac )F = 237.1230.9 242.9

( CNα )F

x AC = 140.9

CNα= ( CNα

)B + ( CNα )F

Tail Stabilizers Have Lower Drag While Flares Tail Stabilizers Have Lower Drag While Flares 

Page 42: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 42/421

2/24/2008  ELF  42 

g

Have Lower Aero Heating and Stability Changes 

g

Have Lower Aero Heating and Stability Changes 

Type Stabilizer Drag Span Heating ΔCNα Tail ControlFlare ( e.g., THAAD )

Tails ( e.g., Standard Missile )

Note: Superior Good Average Poor   –

 – –

 –  –

Wi Si i T dWi Si i T d

Page 43: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 43/421

2/24/2008  ELF  43 

Wing Sizing Trades Wing Sizing Trades 

 Advantages of Small Wing / Strake / No Wing

• Range in high supersonic flight / high dynamic pressure

• Max angle of attack

• Launch platform compatibility

• Lower radar cross section

• Volume and weight for propellant / fuel

 Advantages of Larger Wing

• Range in subsonic flight / low dynamic pressure• Lower guidance time constant*

• Normal acceleration*

• High altitude intercept*

• Less body bending aeroelasticity ( wing stiffens body )• Less seeker error due to dome error slope ( lower angle of attack )

• Less wipe velocity for warhead ( lower angle of attack )

• Lower gimbal requirement for seeker 

*Based on assumption of aerodynamic control and angle of attack below wing stall

Most Supersonic Missiles AreWinglessMost Supersonic Missiles AreWingless

Page 44: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 44/421

2/24/2008  ELF  44 

Stinger FIM-92 Grouse SA-18 Grison SA-19 ( two stage ) Gopher SA-13

Starburst Mistral Kegler AS-12 Archer AA-11

Gauntlet SA-15 Magic R550 Python 4 U-Darter 

Python 5 Derby / R-Darter Aphid AA-8 Sidewinder AIM-9X

 ASRAAM AIM-132 Grumble SA-10 / N-8 Patr io t MIM-104 Starstreak

Gladiator SA-12 PAC-3 Roland ( two stage ) Crotale

Hellf ire AGM-114 ATACM MGM-140 Standard Missi le 3 ( three stage ) THAAD

Most Supersonic Missiles Are Wingless Most Supersonic Missiles Are Wingless 

Permission of Missile Index. Copyright 1997©Missile.Index All Rights Reserved

Wings, Tails, and Canards with Large Area and Wings, Tails, and Canards with Large Area and 

Page 45: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 45/421

2/24/2008  ELF  45 

at High Angle of Attack Have High Normal Force at High Angle of Attack Have High Normal Force 

0

1

2

3

4

0 30 60 90

M < 1.35, based o n s lender wing theory + Newtonian impact theory

M = 2, based on linear wing theory + Newtonian impact theory

M = 5, based on linear wing theory + Newtonian impact theory

    (    C    N    )    W    i   n   g

    S    R    E    F    /    S    W ,

    W    i   n   g    N   o   r   m   a    l     F   o   r   c

   e    C   o   e    f    f    i   c    i   e   n    t

    f   o   r    R   o   c    k   e    t    B

   a   s   e    l    i   n   e

α’ = αW = α + δ , Wing Effective Angle of Attack for Rocket Baseline, Deg

⏐( CN )Surface ⏐ = [ 4⏐sin α’ cos α’⏐ / ( M2 – 1 )1/2 + 2 sin2α’ ] ( SSurface / SRef  ), if M > { 1 + [ 8 / ( π A )]2 }1/2

⏐( CN )Surface ⏐ = [ ( π A / 2) ⏐sin α’ cos α’⏐ + 2 sin2α’ ] ( SSurface / SRef  ), if M < { 1 + [ 8 / ( π A )]2 }1/2

Note: Linear wing theory appl icable if M > { 1 + [ 8 / ( π A )] 2 }1/2, slender wing theory appl icable if M < { 1 + [ 8 / ( π A )]2 }1/2, A = Aspect Rat io < 3, SSurface = Surface Planform Area, SRef  = Reference Area

Example for Rocket BaselineWing

 AW = 2.82

SW = 2.55 ft2

SRef  = 0.349 ft2

δ = 13 deg, α = 9 degM = 2

{ 1 +[ 8 / ( π A )]2 }1/2 = 1.35

Since M > 1.35, use linear wingtheory + Newtonian theory

α’ = αW

= α + δ = 22°( CN )Wing SRef  / SW = 4 sin 22°cos 22° / ( 22 – 1 )1/2 + 2 sin2 22°= 1.083

( CN )Wing = 1.08 ( 2.55 ) / 0.349 =7.91

Aerodynamic Center of a Thin Surface ( e.g.,Aerodynamic Center of a Thin Surface ( e.g.,

Page 46: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 46/421

2/24/2008  ELF  46 

Wing, Tail, Canard ) Varies with Mach Number Wing, Tail, Canard ) Varies with Mach Number 

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

M, Mach Number 

    X    A    C    /    C    M    A    C ,

    S   u   r    f   a

   c   e    N   o   n  -    d    i   m   e   n   s    i   o   n   a    l 

    A   e   r   o    d   y   n   a

   m    i   c    C   e   n    t   e   r

 A = 1

 A = 2 A = 3

Note: Based on linear wing theoryThin wing ⇒ M ( t / c ) << 1( x AC )Surface = Surface aerodynamic

center distance from leadingedge of ( c

MAC)SurfacecMAC = Mean aerodynamic chord

 A = Aspect rat io = b2 / S

( x AC / cMAC )Surface = [ A ( M2 – 1 )1/2 – 0.67 ] / [ 2A ( M2 –1 )1/2 – 1 ], if M > ~ 2

( x AC / cMAC )Surface = 0.25, if M < ~ 0.7

Example: Rocket Baseline Wing

 A = 2.82

cMAC = 13.3 in

( xMAC )Wing = 67.0 in

M = 2

( x AC / cMAC )Wing = 0.481

( x AC

)Wing

= 6.4 in from mac leadingedge = 73.4 in from nose tip

x AC

xMAC cMAC

Hinge Moment Increases with Dynamic Pressure Hinge Moment Increases with Dynamic Pressure 

Page 47: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 47/421

2/24/2008  ELF  47 

and Effective Angle of Attack and Effective Angle of Attack 

0

5000

10000

15000

20000

25000

30000

0 10 20 30

    H    M ,

    E   x   a   m   p    l   e    H    i   n   g   e    M   o

   m   e   n    t ,    i   n  -    l    b

q = 436 psf ( M = 0.8 ) q = 1242 psf ( M = 1.35 )

q = 2725 psf ( M = 2 ) q = 17031 psf ( M = 5 )

HM = NSurface ( x AC - xHL )Surface

α’ = αW = α + δ , Wing Effect ive Angle of Attack of Rocket Baseline, Deg

Note: Based on linear wingtheory, slender wing theory,and thin wing ( M ( t / c ) << 1 )

NSurface = Normal force on surface( two panels )

( x AC - xHL )W = distance fromsurface aerodynamic center tohinge line of surface

Example for Rocket BaselineWing Control

cmac = 13.3 in

xHL = 0.25 cmac

SRef  = 0.349 ft2

SW = 2.55 ft2

δ = 13 deg, α = 9 degα’ = αW = α + δ = 22°

M = 2, h = 20k f t, q = 2725 psf 

NW = [ CNW( SRef  / SW )] qSW =

1.083 ( 2725 ) ( 2.55 ) = 7525 lb

x AC / cmac = 0.48

HM = 7525 ( 0.48 – 0.25 ) ( 13.3 )

= 23019 in – lb for two panels

NW

x  H  L

x   A C  

c m a c 

Wings, Tails, and Canards Usually Have Greater Wings, Tails, and Canards Usually Have Greater 

Page 48: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 48/421

2/24/2008  ELF  48 

Skin Friction Drag Than Shock Wave Drag Skin Friction Drag Than Shock Wave Drag 

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50

 

M / ( q cmac ) = 0.00001 ft / lb M / ( q cmac ) = 0.0001 ft / lb

M / ( q cmac ) = 0.001 ft / lb M / ( q cmac ) = 0.01 ft / lb

( CD0 )Surface,Friction = nSurface { 0.0133 [ M / ( q cmac )]0.2 } ( 2 SSurface / SRef  ), q in psf, cmac in ft( CDO

)Surface,Wave = nSurface ( 1.429 / MΛLE2 ){( 1.2 MΛLE

2 )3.5 [ 2.4 / ( 2.8 MΛLE2 – 0.4 )]2.5 – 1 } sin2 δLE cos ΛLE

tmac b / SRef  , based on Newtonian impact theory( CDO

)Surface = ( CDO)Surface,Wave + ( CDO

)Surface,FrictionnSurfaces = number of surface planforms ( cruciform = 2 )

q = dynamic pressure in psf 

cmac

= length of mean aero chord in ft

γ = Specif ic heat ratio = 1.4

MΛLE= M cos ΛLE = Mach number ⊥ leading edge

δLE = leading edge section total angle

ΛLE = leading edge sweep angle

tmac = max thickness of macb = span

Example for Rocket Baseline Wing:

nW = 2, M = 2, h = 20k ft ( q = 2,725 psf ), cmac = 1.108ft, SRef  = 50.26 in2, SW = 367 in2, δLE = 10.01 deg, ΛLE =45 deg, t

mac

= 0.585 in, b = 32.2 in, MΛLE

= 1.41 ( M = 2 )

M / ( q cmac ) = 2 / [ 2725 ( 1.108 )] = 0.000662 ft / lb

n SSurface / SRef  = 2 ( 367 ) / 50.26 = 14.60

( CDO)Wing,Friction = 0.090

( CD0)Wing,Wave = 0.024

( CDO )Wing = 0.024 + 0.090 = 0.11

    E   x   a   m   p    l   e    (    C    D    0

    )    S   u   r    f   a   c   e ,    F   r    i   c    t    i   o   n

n SSurface / SRef 

Examples of Wing, Tail, and Canard Panel Examples of Wing, Tail, and Canard Panel 

Page 49: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 49/421

2/24/2008  ELF  49 

Geometry Alternatives Geometry Alternatives 

Parameter 

Variation x AC

Bending Moment / Frict ion

Supersonic DragRCS

Span Constraint

Stability & Control

 Aeroelastic Stab.

λ = Taper ratio = cT / cR

 A = Aspect rat io = b2 / S = 2 b / [( 1 + λ ) cR ]yCP = Outboard center-of-pressure = ( b / 6 ) ( 1 + 2 λ ) / ( 1 + λ )

cMAC = Mean aerodynamic chord = ( 2 / 3 ) cR ( 1 + λ + λ2

) / ( 1 + λ )

Note: Superior Good Average Poor 

Based on equal surface area and equal span.Surface area often has more impact than geometry.

 –

 –

 –

 –

 –

 –

Triangle

( Delta )

 Aft Swept LE

Trapezoid

Double

Swept LEBow Tie Rectangle

 –

 –

Examples of Surface Arrangement and Examples of Surface Arrangement and 

Page 50: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 50/421

2/24/2008  ELF  50 

Aerodynamic Control Alternatives Aerodynamic Control Alternatives 

Two Panels( Mono-Wing )

Three( Tri-Tail )

Four ( Cruciform ) Six* Eight*

Folded Wraparound Extended Balanced ActuationControl

Flap Control

Interdigitated In-line

Note: More than four tails are usually free-to-roll pi tch / yaw stabilizers, for low induced roll.

Most Missiles Use Four Control Surfaces with Most Missiles Use Four Control Surfaces with 

C bi d Pit h / Y / R ll C t l I t ti

Page 51: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 51/421

2/24/2008  ELF  51 

Control Integ Control Surfaces Example Control Effect Cost Packaging

Pitch / Yaw 2 Stinger FIM-92

Pitch / Roll 2 ALCM AGM-86

Pitch / Yaw / Roll 3 SRAM

Pitch / Yaw / Roll 4 Adder AA-12

Pitch + Yaw + Roll 5 Kitchen AS-4

Pitch / Yaw + Roll 6 Derby / R-Darter  

Combined Pitch / Yaw / Roll Control Integration Combined Pitch / Yaw / Roll Control Integration 

Note: Superior Good Average Poor   –

 –

 – –

 –

 –

 –

 –

There Are Many Flight Control Configuration There Are Many Flight Control Configuration 

Alt ti

Page 52: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 52/421

2/24/2008  ELF  52 

Alternatives Alternatives 

ControlControl Design Alternatives

Tail Cruciform ( 4 )Tri-tail ( 3 )Not Compressed

FoldedWraparoundSwitchblade

Canard AboveRolling Airframe ( 2 )

Wing Tail ( 3, 4, 6, 8 )Strake / Canard & TailIn Line with ControlsInterdigi tated with Controls

TVC or Reaction JetControl

Movable NozzleJet TabJet Vane

 Axial PlateSecondary InjectionNormal Jet / JI

Spanwise Jet / JI

Fixed Surface Alternatives

WinglessWingStrake / Canard

In Line with ControlsInterdigi tated with ControlsNumber ( 2, 3, 4 )

Tail ( 3, 4, 6, 8 )Tail + WingIn Line with Controls

Interdigi tated with Controls

Tail ( 3, 4, 6, 8 )Tail + Canard / StrakeTail + Wing

 Above

Tail Control Is Efficient at High Angle of AttackTail Control Is Efficient at High Angle of Attack

Page 53: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 53/421

2/24/2008  ELF  53 

Tail Control Is Efficient at High Angle of Attack Tail Control Is Efficient at High Angle of Attack 

α

V∞

ΔCN

CN Trim

( assumed statically stable ) CN at δ = 0

CNCNegative δ

CNCat δ = 0

☺ Efficient Packaging

☺ Low Hinge Moment / Actuator Torque

☺ Low Induced Rolling Moment

☺ Efficient at High α

Decreased Lift at Low α if Statically Stable

c g 

Tail Control Is More Effective Than Conventional 

C d C t l t Hi h A l f Att k

Tail Control Is More Effective Than Conventional 

C d C t l t Hi h A l f Att k

Page 54: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 54/421

2/24/2008  ELF  54 

Canard Control at High Angle of Attack Canard Control at High Angle of Attack 

V∞

α

+ δ

• Assumed static stabili ty• Control surface local

angle of attack α’ = α + δ• Panel stalled at high α*

Conventional Canard Control

V∞

α

 – δ

• Assumed static stabili ty• Control surface local

angle of attack α’ = α – δ• Panel not stalled at high α

Tail Control

α ~ Angle of Attack ( deg ) α ~ Angle of Attack ( deg )

    C   m

δ    /    (    C   mδ    )α

   =    0    °

1.0

0

ConvenCanard

Control

Tail

Control☺

10 – 20° 20 – 30°

    C    lδ    /    (    C    lδ    )α   =    0    ° 1.0

0

ConvenCanard

Control

Tail

Control☺

10 – 15° 15 – 30°

Ø = 0°

*Note: Additional forward fixed surfaces ( such as Python 4 ) in front of movable canards alleviate stallat high α. Free-to-rol l tails ( such as Python 4 ) alleviate induced roll from canard control at high α.

About 70%of Tail Control Missiles Also Have WingsAbout 70%of Tail Control Missiles Also Have Wings

Page 55: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 55/421

2/24/2008  ELF  55 

JASSM AGM-158 Maverick AGM-65 CALCM JSOW AGM-154

Tomahawk BGM-109 Taurus KEPD 350 Storm Shadow / Scalp Popeye AGM-142

Exocet MIM40 TOW2-BGM71D AMRAAM AIM-120 Sunburn SS-N-22

Standard RIM-66 / 67 RBS-70 / 90 Shipwreck SS-N-19 Super 530

Sea Dart ( two stage ) FSAS Aster R-37 ( AA-X-13 ) Mica

 Adder AA-12 Rapier 2000 SD-10 / PL-12 Seawolf 

About 70% of Tail Control Missiles Also Have Wings About 70% of Tail Control Missiles Also Have Wings 

Permission of Missile Index. Copyright 1997©Missile.Index All Rights Reserved

Tail Control Alternatives: Conventional Balanced 

Actuation Fin Flap and Lattice Fin

Tail Control Alternatives: Conventional Balanced 

Actuation Fin Flap and Lattice Fin

Page 56: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 56/421

2/24/2008  ELF  56 

Control Hinge

Type of Tail Control Effectiveness Drag Moment RCS

Balanced Actuation Fin ( Example: ASRAAM AIM-132 )

Flap ( Example: Hellfi re AGM-114 )

Lattice Fin ( Example: Adder AA-12 / R-77 )

Actuation Fin, Flap, and Lattice Fin Actuation Fin, Flap, and Lattice Fin 

 –

 –

Note: Superior Good Average Poor   –

Lattice Fins Have Advantages for Low Subsonic 

and High Supersonic Missiles

Lattice Fins Have Advantages for Low Subsonic 

and High Supersonic Missiles

Page 57: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 57/421

2/24/2008  ELF  57 

and High Supersonic Missiles and High Supersonic Missiles 

 Advantages

High control effectiveness atlow subsonic and high

supersonic Mach number Low hinge moment

Short chord length

DisadvantagesHigh RCS ( cavities, normalleading edges )

High drag at transonic Mach

number ( choked flow )

Low Subsonic Transonic Low Supersonic High Supersonic

☺ ☺

Conventional Canard Control Is Efficient at Low 

Angle of Attack But Stalls at High Alpha

Conventional Canard Control Is Efficient at Low 

Angle of Attack But Stalls at High Alpha

Page 58: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 58/421

2/24/2008  ELF  58 

Angle of Attack But Stalls at High Alpha Angle of Attack But Stalls at High Alpha 

α

V∞

δΔCN

CN Trim ( assumed statically stable )

CN at δ = 0C

N C

☺ Efficient Packaging

☺ Simplified

Manufacturing☺ Increased Lift at Low α

if Statically Stable

Stall at High α if Statically Stable

Induced Roll

Note: = CNC at δ = 0°

= CNC at δ = δ

*Note: Addit ional forward f ixed surface infront of movable canard alleviates stall athigh α. Free-to-roll tails alleviate inducedroll at high α. Dedicated rol l controlsurfaces avoid rol l control saturation andsimplify autopilot design.

c g 

Canard Control Missiles Are Wingless and Most 

Are Supersonic

Canard Control Missiles Are Wingless and Most 

Are Supersonic

Page 59: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 59/421

2/24/2008  ELF  59 

Are Supersonic Are Supersonic 

Permission of Missile Index. Copyright 1997©Missile.Index All Rights Reserved

Stinger FIM-92 Grouse SA-18 Grison SA-19 ( two-stage ) Gopher SA-13

Starburst Gauntlet SA-15 Mistral AIM-9L

 Archer AA- 11 Magic R 550 Python 4 U-Darter 

Python 5 Derby / R-Darter Aphid AA-8 Kegler AS-12

GBU-12 GBU-22 GBU-27 GBU-28

Missiles with Split Canards Have Enhanced 

Maneuverability at High Angle of Attack

Missiles with Split Canards Have Enhanced 

Maneuverability at High Angle of Attack

Page 60: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 60/421

2/24/2008  ELF  60 

Kegler AS-12 Archer AA-11 Aphid AA-8

Magic R 550 Python 4 U-Darter  

Maneuverability at High Angle of Attack Maneuverability at High Angle of Attack 

Note: Forward fixed surface reduces local angle-of-attack for movable canard, providing higher stall angle of attack. Forwardsurface also prov ides a fixed, symmetrical location for vortex shedding from the body.

Python 4 also has free-to-roll tails and separate roll control ailerons.

α’ ~ α α’ ~  δα

δΔCN

CN

C

Note: α’ = Local angle of attack

Wing Control Requires Less Body Rotation But 

Has High Hinge Moment Induced Roll and Stall

Wing Control Requires Less Body Rotation But 

Has High HingeMoment Induced Roll and Stall

Page 61: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 61/421

2/24/2008  ELF  61 

Has High Hinge Moment, Induced Roll and Stall Has High Hinge Moment, Induced Roll and Stall 

δV

Δ CN ~ CN Trim

☺ Low Body α / Dome Error Slope

☺ Fast Response ( if skid-to-turn )

Poor Actuator Packaging

Large Hinge Moment

Larger Wing Size

Induced Roll

Wing Stall

( α small ) cg

Wing Control Missile Susceptible to High Vortex 

Shedding

Wing Control Missile Susceptible to High Vortex 

Shedding

Page 62: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 62/421

2/24/2008  ELF  62 

Shedding Shedding 

Strong vortices from wing interact with tail

Source: Nielsen Engineering & Research ( NEAR ) web si te:

http://www.nearinc.com/near/project/MISDL.htm

Video of Vortices from DeltaWing at High Angle of Attack

Source: Universi ty of Notre Dame web site:http://www.nd.edu/~ame/facilities/SubsonicTunnels.html

Wing Control Missiles Are Old Technology Wing Control Missiles Are Old Technology 

Page 63: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 63/421

2/24/2008  ELF  63 

Sparrow AIM-7: IOC 1956

Skyflash: IOC 1978

 Alamo AA-10 / R-27: IOC 1980

HARM AGM-88: IOC 1983

 Aspide: IOC 1986

Permission of Missile Index. Copyright 1997©Missile.Index All Rights Reserved

TVC and Reaction Jet Flight Control TVC and Reaction Jet Flight Control 

Page 64: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 64/421

2/24/2008  ELF  64 

Liquid Injection Hot Gas Injection

 Axial Plate Jet Tab Movable Nozzle

± 7°± 12°

± 7°± 15° ± 20°

Note: Jet vanes provide roll cont rol and shareactuators with aero contro l, but have reduced ISP

Reaction JetM∞ Jet Flow

Jet Vane*

± 10°

Note:

•TVC and reaction jet flight control provide

high maneuverability at low dynamic pressure•TVC usually has lower time constant andmiss distance than aero control

•Reaction jets usually have lower timeconstant and miss distance than TVC

•Reaction jets can be either impulse jets or 

controlled duration jets Jet inter. Thrust Jet interaction

Most Tactical Missiles with TVC or Reaction Jet 

Control Also Use Aero Control

Most Tactical Missiles with TVC or Reaction Jet 

Control Also Use Aero Control

Page 65: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 65/421

2/24/2008  ELF  65 

Jet Vane + Aero Control :

Mica Sea Sparrow RIM-7 AIM-9X

Sea Wolf GWS 26 IRIS-T A-Darter Javelin

Jet Tab + Aero Control : Archer AA-11

Reaction Jet + Aero Control:

PAC-3

Movable Nozzle + Aero Control + Reaction Jet:

SM-3 Standard Missile Aster FSAF 15

Movable Nozzle + Reaction Jet:

THAAD

Reaction Jet:

LOSAT

Control Also Use Aero Control Control Also Use Aero Control 

Example Video of TVC ( FSAF-15 and Javelin )

Skid-to-Turn Is the Most Common Maneuver Law Skid-to-Turn Is the Most Common Maneuver Law 

Page 66: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 66/421

2/24/2008  ELF  66 

Skid-To-Turn ( STT )•  Advantage: Fast response• Features

 – Does not require roll commands from autopilot – Works best for axisymmetric cruciform missiles

Bank-To-Turn ( BTT )

•  Advantage: Provides higher maneuverabili ty for planar wing, noncircular / lifting bodies, and airbreathers

• Disadvantages – Time to rol l – Requires fast ro ll rate – May have higher dome error slope

• Features – Roll attitude commands from autopilot – Small sideslip

Rolling Air frame ( RA )•  Advantage: Requires only two sets of gyros /

accelerometers / actuators ( packaging for small missile )

• Disadvantages for aero control – Reduced maneuverabili ty for aero cont rol – Requires high rate gyros / actuators – Requires precision geometry and thrust alignment

• Features – Bias roll rate and roll moment

 – Can use impulse steering ( e.g., PAC-3, LOSAT ) – Compensates fo r thrust offset

Step 1: Roll Unt ilWing ⊥ LOS

Step 2: Maneuver @ RollRate = 0 and Wing ⊥ LOS

Bias Roll Rate ( e.g., 3 Hz )

Maneuver w / o Rol l Command

Target

Target

Target

  L O  S

Target

Maneuver with Bias RollMoment

  L O  S

  L O  S

  L O  S

STT

BTT ( withPlanar Wing )

RA

Asymmetric Inlets Require Bank-to-Turn Maneuvering 

Asymmetric Inlets Require Bank-to-Turn Maneuvering 

Page 67: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 67/421

2/24/2008  ELF  67 

Examples of Twin Inlet Missiles wi th Bank-to-Turn

Twin Side Inlets Ramjet: ASMP

Twin Cheek Inlets Ducted Rocket: HSAD

Twin Cheek Inlets Ducted Rocket: Meteor 

Examples of Single Inlet Missiles with Bank-to-Turn

Chin Inlet Ramjet: ASALM

Bottom Inlet Turbojet: BGM-109 Tomahawk

Bottom Inlet Turbojet: Storm Shadow / Scalp

Top Inlet Turbofan: AGM-86 ALCM

gg

Note: Bank-to-turn maneuvering maintains low sideslip for better inlet efficiency.

X Roll Orientation Is Usually Better Than + Roll Orientation 

X Roll Orientation Is Usually Better Than + Roll Orientation 

Page 68: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 68/421

2/24/2008  ELF  68 

Yaw Right

Fin 1

Fin 3

Roll Right

+ Roll Orientation with Four Tail Surfaces Control of Pitch / Yaw / Roll, Looking Forward from Base

X Roll Orientation with Four Tail Surfaces Control of Pitch / Yaw / Roll, Looking Forward from Base

Roll Right

Note: + roll orientation usually has lower trim drag, less static stability and control effectiveness in pitch and yaw, andstatically unstable roll moment derivative ( Clφ > 0 ).X roll orientation has better launch platform compatibility , higher L / D, higher static stability and controleffectiveness in pitch and yaw, and statically stable roll moment derivative ( Clφ < 0 ).

4 1

3 2

Pitch Up Yaw Right

Pitch Up

Fin 2Fin 4    T   r   a    i    l    i   n   g   e    d   g   e

    d   e    f    l   e   c    t    i   o   n

Trimmed Normal Force Is Defined at Zero 

Pitching Moment 

Trimmed Normal Force Is Defined at Zero 

Pitching Moment 

Page 69: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 69/421

2/24/2008  ELF  69 

gg

    P    i    t   c    h    i   n   g    M   o   m   e   n    t ,

    C   m

    N   o   r   m

   a    l     F   o   r   c   e ,

    C    N

 Angle of Attack ( Deg )

αTrim @ Cm = 0

δ = 0

δ = δ Trim for either statically stable tail

contro l or statically unstable canard control

δ = 0

δ = δ Max

δ = δ Trim for either statically unstable tailcontro l or statically stable canard control

 Angle of At tack ( Deg )

Relaxed Static Margin Allows Higher Trim Angle 

of Attack and Higher Normal Force 

Relaxed Static Margin Allows Higher Trim Angle 

of Attack and Higher Normal Force 

Page 70: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 70/421

2/24/2008  ELF  70 

Note: Rocket BaselineXCG = 75.7 in.Mach 2

( α + δ )Max = 21.8 deg, ( CNTrim)Max

α / δ = 0.75, ( Static Margin = 0.88 Diam )

α / δ = 1.5, ( SM = 0.43 Diam )

α / δ = ∞, ( SM = 0 )

gg

( CN, Trim )max, MaxTrimmed NormalForce Coefficient of Rocket Baseline

0 4 8 12 16 20 24

16

12

8

4

0

( αTrim )max, Μax Trim Angle of Attack, deg

Tails Are Sized for Desired Static Margin Tails Are Sized for Desired Static Margin 

Page 71: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 71/421

2/24/2008  ELF  71 

( CNα)B

( CNα )W

( CNα)T

( x AC )T

( x AC )B

( x AC )W

+M

+ α

x = 0

xCG

x = lB

x = lN

x AC

ΣM = 0 at aerodynamic center 

( CNα)B {[ xCG – ( x AC )B ] / d } + ( CNα

)W {[ xCG – ( x AC )W ] / d } SW / SRef  + ( CNα)T {[ xCG – ( x AC )T ] / d } ST / SRef 

= - [( CNα)B + ( CNα

)W SW / SRef  + ( CNα)T ST / SRef  ] [( x AC – xCG ) / d ]

Static margin for a specified tail area is

( x AC – xCG ) / d = - {( CNα )B {[ xCG – ( x AC )B ] / d } + ( CNα )W {[ xCG – ( x AC )W ] / d } SW / SRef  + ( CNα )T {[ x CG – ( x AC )T ] / d } ( ST / SRef  )} /[(CNα)B + (CNα

)W SW / SRef  + ( CNα)T ST / SRef  ]

Required tail area for a specified static margin is

ST / SRef  = ( CNα)B {[ xCG – ( x AC )B ] / d } + ( CNα

)W {[ xCG – ( x AC )W ] / d } ( SW / SRef  ) + {[( CNα)B + ( CNα

)W SW / SRef  ][( x AC – xCG ) / d ]}/ {( C

Nα)T

[( x AC

)T

 – xCG

] / d - ( x AC

 – xCG

) / d }

CNα

Larger Tail Area Is Required for Neutral Stability 

at High Mach Number 

Larger Tail Area Is Required for Neutral Stability 

at High Mach Number 

Page 72: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 72/421

2/24/2008  ELF  72 

0

1

2

3

0 1 2 3 4 5

M, Mach Number 

    (    S    T    )    N   e   u    t   r   a    l    /    S    R   e    f ,    N   e

   u    t   r   a    l    S    t   a    b    i    l    i    t   y    T   a    i    l    A   r   e   a    /

    R   e    f   e   r   e

   n   c   e    A   r   e   a

(ST)Neutral / SRef = { (CNα)B [ xCG – (x AC)B ] / d + (CNα)W {[ xCG – (x AC)W ] / d } ( SW / SRef  )} / {{[ (x AC)T – xCG ] / d } (CNα)T }

 Assumptions fo r f igure:

•XCG ≈ l / 2, (X AC)B ≈ d, ( X AC )T ≈ l – d

•α < 6 deg, turbulent boundary layer 

•(CN

α

)B

= 2 per rad

•(CNα)T = (CNα)W = 4 / [ M2 –1 ]1/2, if M> { 1 + [ 8 / ( π A )]2 }1/2

•(CNα)T = (CNα)W = π A / 2, if M < { 1 +[ 8 / ( π A )] 2 }1/2

Example Rocket Baseline:

l = 144 in, d = 8 in, SW = 2.55 ft2, SRef  =0.349 ft2, AW = 2.82, (cMAC)W = 13.3 in,xMAC = 67.0 in from nose tip, burnout( xCG = 76.2 in from t ip ), Mmax = 3

(x AC)W = 0.49 ( 13.3 ) = 6.5 in fromleading edge of MAC

(x AC)W = 6.5 + 67.0 = 73.5 in f rom nose

{[ xCG – (x AC)W ] / l } ( SW / SRef  ) = 0.14( forward wing )

(ST)Neutral / SRef  = 1.69 provides neutralstability

(ST)Neutral = 1.69 ( 0.349 ) = 0.59 ft2

  {   [    x  C  G –  (   x  A  C

  )  W  ]   /   l   }

  (    S  W  /   S  R e  f  )   =

   0

  {   [    x  C  G –  (   x  A  C  )  W

  ]   /   l   }   (  

  S  W  /   S  R e  f

  )   =   0.  2  5

  (    f o  r  w a

  r d   w  i  n g   )

  {   [    x  C  G –  (   x  A  C

  )  W  ]   /   l   }  (    S

  W  /   S  R e  f

  )   =  -  0.  2  5

  (   a  f  t   w

  i  n g   )

Stability and Control Derivatives Conceptual Design Criteria 

Stability and Control Derivatives Conceptual Design Criteria 

Page 73: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 73/421

2/24/2008  ELF  73 

zy

xC

lδr  Clδa

zy

xCnδa

Cnδr 

zy

xC

lφ Clδa

z y

xCmα

Cmδ

z y

xClβ Clδa

| Clδr / Clδa | < 0.3 ( Roll Due to Rudder Deflection ) | Clφ / Clδa | < 0.5 ( Roll Due to Roll Angle )

| Cnδa / Cnδr | < 0.2 ( Yaw Due to Aileron Deflection ) | Cmα / Cmδ | < 1 ( Pitch Due to α )

| Clβ / Clδa | < 0.3 ( Rol l Due to Sideslip ) | Cnβ / Cnδr | < 1 ( Yaw Due to Sideslip )

zy

x

Cnδr 

Cnβ

Note: The primary control derivative ( larger bold font ) should be larger than the undesirable stability and control derivative.

Most of the Rocket Baseline Body Buildup Normal 

Force Is Provided by the Wing 

Most of the Rocket Baseline Body Buildup Normal 

Force Is Provided by the Wing 

Page 74: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 74/421

2/24/2008  ELF  74 

CN, Normal ForceCoefficient of 

Rocket Baseline

15

10

5

0 0 5 10 15 20 25

α, Angle of Attack, Deg

Body + Wing + Tail

Body + Wing

Body

Note for figure: M = 2, δ = 0

( CN )Total = ( CN )Wing-Body-Tail ≅ ( CN )Body + ( CN )Wing + ( CN )Tail

Note: ( CD0)Total = ( CD0

)Wing-Body-Tail ≅ ( CD0)Body + ( CD0

)Wing + ( CD0)Tail

( Cm )Total = ( Cm )Wing-Body-Tail ≅ ( Cm )Body + ( Cm )Wing + ( Cm )Tail

Summary of Aerodynamics Summary of Aerodynamics 

Page 75: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 75/421

2/24/2008  ELF  75 

Conceptual Design Prediction Methods of Bodies and Surfaces Normal force coefficient

Drag coefficient

 Aerodynamic center / pitching moment coefficient / hinge moment

Design Tradeoffs Diameter 

Nose fineness

Boattail

Lifting body versus axisymmetric body

Wings versus no wings

Tails versus flares

Surface planform geometry

Flight control alternatives Maneuver alternatives

Roll orientation

Static margin / time to converge or diverge

Tail sizing

Summary of Aerodynamics ( cont ) Summary of Aerodynamics ( cont ) 

Page 76: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 76/421

2/24/2008  ELF  76 

Stability and Control Design Criteria Static stability

Control effectiveness

Cross coupling

Body Buildup

New Aerodynamics Technologies Faceted / window / multi-lens domes

Bank-to-turn maneuvering

Lifting body airframe Forward swept surfaces

Neutral static margin

Lattice fins

Split canard control Free-to-rol l tails

Discussion / Questions?

Classroom Exercise

Aerodynamics Problems Aerodynamics Problems 

Page 77: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 77/421

2/24/2008  ELF  77 

1. Missile diameter tradeoffs include consideration of seeker range, warheadlethality, structural mode frequency, and d___.

2. Benefits of a high f ineness nose include lower supersonic drag and lower r____ c____ s______.

3. Three contributors to drag are base drag, wave drag, and s___ f_______drag.

4. To avoid flow separation, a boatail or flare angle should be less than __ deg.

5.  A lifting body is most ef ficient at a d______ p_______ of about 700 psf.

6.  At low angle of attack the aerodynamic center of the body is on the n___.

7. Subsonic missi les often have w____ for enhanced range.

8. The aerodynamic center of the wing is between 25% and 50% of the m___

a__________ c____.9. Hinge moment increases with the local flow angle due to control surface

deflection and the a____ o_ a_____.

10. Increasing the surface area increases the s___ f_______ d___.

Aerodynamics Problems ( cont ) Aerodynamics Problems ( cont ) 

Page 78: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 78/421

2/24/2008  ELF  78 

11. Leading edge sweep reduces drag and r____ c____ s______.

12.  A missile with six control surfaces, four surfaces providing combined pitch /yaw control plus two surfaces providing roll control, has an advantage of good c______ e____________.

13.  A missile with two control surfaces providing only combined pitch / yawcontrol has advantages of lower c____ and good p________.

14.  A tail control missile has larger trim normal force if it is statically u_______.

15. Lattice fins have low h____ m_____.

16. Split canards allow higher maximum angle of attack and higher m______________.

17. Two types of unconventional control are thrust vector control and r_______ j__ control.

18. The most common type of TVC for tactical missiles is j__ v___ control.

19. Three maneuver laws are skid to turn, bank to turn, and r______ a_______.

20. Bank to turn maneuvering is usually required for missiles with a single wing

or with a_________ inlets.

Aerodynamics Problems ( cont ) Aerodynamics Problems ( cont ) 

Page 79: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 79/421

2/24/2008  ELF  79 

21.  A missile is statically stable if the aero center is behind the c_____ o_g______.

22. Tail stabilizers have low drag while a f____ stabilizer has low aero heatingand a relatively small shift in static stability.

23. If the moments on the missile are zero the missile is in t___.

24. Total normal force on the missi le is approximately the sum of the normalforces on the surfaces ( e.g., wing, tail, canard ) plus normal force on theb___.

25. Increasing the tail area increases the s_____ m________.

Outline Outline 

Page 80: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 80/421

2/24/2008  ELF  80 

Introduction / Key Drivers in the Design Process  Aerodynamic Considerations in Tactical Missile Design

Propulsion Considerations in Tactical Missile Design

Weight Considerations in Tactical Missile Design Flight Performance Considerations in Tactical Missile Design

Measures of Merit and Launch Platform Integration

Sizing Examples Development Process

Summary and Lessons Learned

References and Communication  Appendices ( Homework Problems / Classroom Exercises,

Example of Request for Proposal, Nomenclature, Acronyms,

Conversion Factors, Syllabus )

Missile Concept Synthesis Requires Evaluation 

of Alternatives and Iteration 

Missile Concept Synthesis Requires Evaluation 

of Alternatives and Iteration 

Page 81: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 81/421

2/24/2008  ELF  81 

Yes

Establish Baseline

Weight

Trajectory

MeetPerformance?

Measures of Merit and ConstraintsNo

No

Yes

Resize / Alt Conf ig / Subsystems / Tech

 Al t Mission

 Al t Baseline

Define Mission Requirements

 Aerodynamics

Propulsion

High Specific Impulse Is Indicative of Lower Fuel / Propellant Consumption 

High Specific Impulse Is Indicative of Lower Fuel / Propellant Consumption 

Page 82: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 82/421

2/24/2008  ELF  82 

Scramjet: ISP typicallyconstrained by thermal choking

Turbojet: ISP typically constrained by turbine temperature limit

Ramjet: ISP typically constrained bycombustor insulation temperature limit

Solid Rocket: ISP typically constrainedby safety

4,000

3,000

2,000

1,000

0    I    S    P ,

    S   p   e   c    i    f    i   c    I   m   p   u    l   s   e

 ,    T    h   r   u   s    t    /    (    F   u   e    l    o   r    P   r   o   p   e    l    l   a   n    t

    W   e    i   g    h

    t    F    l   o   w    R   a    t   e    ) ,    S

0 2 4 6 8 10 12

Mach Number 

Ducted Rocket

Cruise Range Is Driven by L/D, sp , Velocity, and Propellant or Fuel Weight Fraction 

Cruise Range Is Driven by L/D, sp , Velocity, and Propellant or Fuel Weight Fraction 

Page 83: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 83/421

2/24/2008  ELF  83 

Typical Value for 2,000 lb Precision Strike Missi le

Note: Ramjet and Scramjet miss iles booster propellant for Mach 2.5 to 4 take-over speed not included in WP

for cru ise. Rockets require thrust magnitude control ( e.g., pintle, pulse, or gel motor ) for effective cruise.Max range for a rocket is usually a semi-ballistic flight profile, instead of cruise flight. Multiple stages maybe required for rocket range greater than 200 nm.

R = ( L / D ) Isp V In [ WL / ( WL – WP )] , Breguet Range Equation

Parameter 

L / D, Lift / DragIsp, Specific Impulse

V AVG , Average Velocity

WP / WL, Cruise Propellant or 

Fuel Weight / Launch WeightR, Cruise Range

103,000 s

1,000 ft / s

0.3

1,800 nm

51,300 s

3,500 ft / s

0.2

830 nm

31,000 s

6,000 ft / s

0.1

310 nm

5250 s

3,000 ft / s

0.4

250 nm

Solid RocketHydrocarbon FuelScramjet Missile

Liquid FuelRamjet Missile

Subsonic TurbojetMissile

Solid Rockets Have High Acceleration Capability Solid Rockets Have High Acceleration Capability 

Page 84: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 84/421

2/24/2008  ELF  84 

1,000

100

10

1

0 1 2 3 4 5

RamjetTMax = (π / 4 ) d2 ρ0 V0

2 [( Ve / V0 ) -1 ]

Solid RocketT

Max= 2 P

c A

t= m

.V

e

M, Mach Number 

    (    T    /    W    )    M   a   x ,

    (    T    h   r   u   s    t    /    W   e    i   g    h    t    )    M   a   x

Note:Pc = Chamber pressure, At = Nozzle throat area, m

.= Mass flow rate

d = Diameter, ρ0 = Free stream densi ty, V0 = Free stream velocity,V

e= Nozzle exit veloc ity ( Turbojet: V

e~ 2,000 ft / s, Ramjet: V

e~ 4,500 ft / s, Rocket: V

e~ 6,000 ft / s )

TurbojetTMax = (π / 4 ) d2 ρ0 V0

2 [( Ve / V0 ) -1 ]

Turbojet Nomenclature Turbojet Nomenclature 

Page 85: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 85/421

2/24/2008  ELF  85 

0

Free Stream

1

Inlet Entrance

3

Compressor Exit

2

Compressor Entrance4

Turbine Entrance

Inlet Compressor Combustor Turbine Nozzle

5

Turbine Exit

High Temperature Compressors Are Required to 

Achieve High Pressure Ratio at High Speed 

High Temperature Compressors Are Required to 

Achieve High Pressure Ratio at High Speed 2 ( γ - 1 ) / γ

Page 86: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 86/421

2/24/2008  ELF  86 

0

1000

2000

3000

0 1 2 3 4

M0, Free Stream Mach Number 

    T    3 ,

    C   o   m   p   r   e   s

   s   o   r    E   x    i    t    T   e   m   p   e   r   a    t   u   r   e ,

p3 / p2 = 1

p3 / p2 = 2

p3 / p2 = 5

p3 / p2 = 10

T3 ≈ T0 { 1 + [( γ0 - 1 ) / 2 ] M0 }( p3 / p2 ) 3 3

γ0 = 1.4, γ3 ≈ 1.29 + 0.16 e-0.0007 T3

Note: Ideal in let; ideal compressor; low subsonic,isentropic flow

Example:M0 = 2, h = 60k ft ( T0 = 398 R )

p3 / p2 = 5 ⇒ T3 = 1118 R, γ3 = 1.36

T3 = Compressor exit temperature in Rankine, T0 = free stream temperature in Rankine, γ = specific heat

ratio, M0 = free stream Mach number, p3 = compressor exit pressure, p2 = compressor entrance pressure

T3

High Turbine Temperature Is Required for High 

Speed Turbojet Missiles 

High Turbine Temperature Is Required for High 

Speed Turbojet Missiles 

( / ) f /

Page 87: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 87/421

2/24/2008  ELF  87 

0

1000

2000

3000

4000

5000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

f / a, Fuel-to-Air Ratio

    T    4 ,    T   u   r    b   o    j    e    t

    T   u   r    b    i   n   e    T   e   m   p   e

   r   a    t   u   r   e ,

T3 = 500 R

T3 = 1000 R

T3 = 2000 R

T3 = 4000 R

T4 ≈ T3 + ( Hf  / cp ) f / a, T in Rcp4

≈ 0.122 T40.109, cp in BTU / lb / R

Example:

M0 = 2, h = 60K ft ( T0 = 398 R ),p3 / p2 = 5 ⇒ T3 = 1118 R

RJ-5 fuel ( Hf  = 14,525 BTU / lb ),cp = 0.302 BTU / lb / R , f / a =0.067 ( stochiometric ) ⇒ T4 =1118 + ( 14525 / 0.302 ) 0.067 =4,340 R

T4 = Turbojet turbine entrance temperature in Rankine, T3 = compressor exit temperature in Rankine,

Hf  = heating value of fuel, cp = specific heat at constant pressure, f / a = fuel-to-air ratio

T4

Turbine Material Temperature Limit Is a 

Constraint for a High Speed Turbojet Missile 

Turbine Material Temperature Limit Is a 

Constraint for a High Speed Turbojet Missile 

T t C t i d I f M hT bi M t i lM Sh t

Page 88: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 88/421

2/24/2008  ELF  88 

Slightly Constrained Turbojet

Moderately Constrained Turbojet

Moderately Constrained Turbojet

Highly Constrained Turbojet

Very Highly Constrained Turbojet, Air Turbo Rocket, Turbo Ramjet

Very Highly Constrained Turbojet, Air Turbo Rocket, Turbo Ramjet

Temperature Constrained

Turbines for Mach 4 Cruise

≈ 1,500 sCeramic Matrix Composites4,000R

≈ 2,000 sRhenium Alloys4,500R

≈ 2,500 sTungsten Alloys5,000R

≈ 1,200 sSingle Crystal Nickel Aluminides

≈ 3,500R

≈ 1,000 sTitanium Aluminides ( lighter weight than nickel super alloys )

≈ 3,000R

≈ 1,000 sNickel Super Alloys3,000R

ISP for Mach4 Cruise

Turbine MaterialMax ShortDuration Temp

Note: Constrained turbojet for Mach 4 cruise imposes a limit on turbine temperature that is less than ideal. Constraintscould consis t of a combination of:

• Constraint on compressor pressure ratio to limi t turb ine temperature

• Constraint on fuel-to-air ratio to limit turbine temperature

• Use of afterburner to limit turbine temperature

Turbin -Based Missiles Are Capable of Subsonic 

to Supersonic Cruise 

Turbin -Based Missiles Are Capable of Subsonic 

to Supersonic Cruise 

T b j t

Page 89: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 89/421

2/24/2008  ELF  89 

Turbojet

Turbo Ramjet

 Air Turbo Rocket

Regulus II

Firebee II

SS-N-19 Shipwreck

SR-71

Compressor Pressure Ratio for Maximum Thrust 

Turbojet Is Limited by Turbine Temperature 

Compressor Pressure Ratio for Maximum Thrust 

Turbojet Is Limited by Turbine Temperature 

( p3 / p2 )@Tmax {( T4 / T0 )1/2

/ { 1 + [( 0 1 ) / 2 ] M02

}}γ4

/ ( γ4

- 1 )

Page 90: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 90/421

2/24/2008  ELF  90 

1

10

100

0 0.5 1 1.5 2 2.5 3 3.5 4

M0, Mach Number 

    (   p    3    /   p    2    )    @    T   m   a   x

T4 = 2000 R T4 = 3000 R

T4 = 4000 R T4 = 5000 R

Source: Ashley, H., Engineering Analysis of Flight Vehicles, Dover Publications, Inc., New York, 1974

( p3 / p2 )@Tmax ≈ {( T4 / T0 ) / { 1 + [( γ0 - 1 ) / 2 ] M0 }} 4 4

 Assumptions: Ideal tu rbojet ( isentropic in let , compressor, turbine, nozzle; low subsonic and constant p ressurecombustion; exit pressure = free stream pressure )

Example:

M0 = 2.0, h = 60k ft (T0 = 390 R ) , T4 = 3,000 R,γ4 = 1.31

( p3 / p2 )@Tmax = {{ ( 3000 / 390 )1/2 / { 1 + [ ( 1.4 -1 ) / 2 ] 2.02 }} 1.31/ ( 1.31 – 1 ) = 6.31

Note:

T0

= Free stream temperature

T4 = Turbine entrance temperature

γ = Specific heat ratio

Turbojet Thrust Is Limited by Turbine Maximum 

Allowable Temperature 

Turbojet Thrust Is Limited by Turbine Maximum 

Allowable Temperature 

TId lM / ( p0 A0 ) = ( 0 M0 / a0 ) ( T / m )Id lM Note:

Page 91: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 91/421

2/24/2008  ELF  91 

0

5

10

15

20

0 1 2 3 4

M0, Mach Number 

    T   m   a   x    /    [    (   p    0    )    (

    A    0    )    ] ,    N   o   n    d    i   m   e   n   s    i   o   n   a    l    M   a   x    i   m   u   m

    T    h   r   u   s    t

T4 = 2000 R T4 = 3000 R

T4 = 4000 R T4 = 5000 R

      R

    a     m      j      e      t       (        p       3

      /      p       2    =      1       ) 

Example: M0 = 2, h = 60 k ft ( T0 = 390 R, p0= 1.047 psi ), T4 = 3,000 R, γ4 = 1.31, ( p3 /

p2 )@Tmax = 6.31, p2 = 8.19 psi , p3 = 51.7 psi, A0 = 114 in2, T2 = 702 R, T3 = 1133 R, γ3 =1.36

T5t= 2569 R, γ5 = 1.32, p5t

= 23.0 psi , Ve =4524 ft / s, ( T / m

.)IdealMax = 2588 ft / s,

TIdealMax / p0 A0 = 7.49

TIdealMax = 7.49 ( 1.047 ) ( 114 ) = 894 lb

TIdealMax / ( p0 A0 ) = ( γ0 M0 / a0 ) ( T / m . )IdealMax

 Assumption: Ideal turbojet

Note:

( T / m.)IdealMax = Ve – V0

Ve = { 2 cp T5t[ 1 – ( p0 / p5t

)( γ5 - 1 ) / γ5 ]}1/2

T5t≈ T4 – T3 + T2

T3

≈ T2

( p3

/ p2

)( γ3 - 1 ) / γ3

T2 ≈ T0 { 1 + [( γ0 - 1 ) / 2 ] M02 }

p5t≈ p4 ( T5 / T4 )γ4 / ( γ4 - 1 )

p4 = p3

p2 ≈ p0 { 1 + [( γ0 - 1 ) / 2 ] M02 }γ0 / ( γ0 - 1 )

p0 = Free stream static pressure

 A0 = Free stream flow area into in let

T4 = Turbine entrance temperature

Turbojet Specific Impulse Decreases with 

Supersonic Mach Number 

Turbojet Specific Impulse Decreases with 

Supersonic Mach Number 

( ISP )Ideal@Tmax gc cp T0 / ( a0 Hf ) = TIdealMax T0 / [( p0 A0 0 M0 ) ( T4 T3 )]

Page 92: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 92/421

2/24/2008  ELF  92 

0

0.2

0.4

0.6

0.8

0 1 2 3 4M0, Mach Number 

    (    I    S    P    )    I    d   e   a    l    (   g

   c    )    (   c   p    )    (    T    0    )    /    [    (   a    0    )

    (    H    f    )    ] ,

    N   o   n    d    i   m   e   n   s    i   o   n   a    l    I    d   e   a    l    S   p   e   c    i    f    i   c    I   m   p

   u    l   s   e

T4 = 2000 R T4 = 3000 R

T4 = 4000 R T4 = 5000 R

( ISP )Ideal@Tmax gc cp T0 / ( a0 Hf  ) = TIdealMax T0 / [( p0 A0 γ0 M0 ) ( T4 – T3 )] Assumptions: Ideal turbojet ( isentropic inlet, compressor, turbine, nozzle; flow, low subsonic, constant pressure combustion;exit pressure = free stream pressure), max thrust

Example:

M0 = 2, h = 60k ft ( T0 = 390 R, a0 = 968 ft / s), RJ-5 fuel ( Hf  = 14,525 BTU / lbm ), T4 =

3,000 R, cp = 0.293 BTU / lbm / R, γ0 = 1.4Calculate ( ISP )Ideal@Tmax

gc cp T0 / ( a0 Hf  ) =0.559

( ISP )Ideal@Tmax = 0.559 ( 968 ) ( 14525 ) / [ 32.2( 0.293 ) ( 390 )] = 2136 s

Note:gc = Gravitational constant = 32.2

cp = Specific heat at constant pressure

T0 = Free stream temperature

a0 = Free stream speed of sound

Hf  = Heating value of fuel

TIdealMax = Ideal maximum thrust

γ = Specific heat ratio

T4 = Combustor exit temperature

T3 = Compressor exit temperature

R  a m  j  e t   (    p 3   /    p 

2  =   1    ) 

Tactical Missile Ramjet Propulsion Alternatives Tactical Missile Ramjet Propulsion Alternatives 

Liquid Fuel Ramjet

Page 93: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 93/421

2/24/2008  ELF  93 

Rocket Boost Inboard Profile

Ramjet Sustain Inboard Profi le

Liquid Fuel Ramjet

Solid Fuel Ramjet

Solid Ducted Rocket

Boost

Sustain

Boost

Sustain

Note:Booster PropellantFuel

High Specific Impulse for a Ramjet Occurs Using 

High Heating Value Fuel at Mach 3 to 4 

High Specific Impulse for a Ramjet Occurs Using 

High Heating Value Fuel at Mach 3 to 4 

( ISP

)Ideal

gc

cp

T0

/ ( a0

Hf 

) = { M0

{{( T4

/ T0

) / { 1 + [( γ0

- 1 ) / 2 ] M0

2 }}1/2 - 1 } / {{ 1 + [( γ0

- 1 ) / 2 ] M0

2 } {( T4

/ T0

) / {1 + [( 0 - 1 ) / 2 ] M0

2 }} – 1 }

Page 94: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 94/421

2/24/2008  ELF  94 

0

0.2

0.4

0.6

0 1 2 3 4 5M0, Free Stream Mach Number 

    (    I    S    P    )    I    d   e   a    l    (   g   c

    )    (   c   p    )    (    T    0    )    /    [    (   a    0    )    (    H    f    )    ] ,

    N   o   n    d    i   m   e   n   s    i   o   n   a    l    I    d   e   a    l    S   p   e   c    i    f    i   c    I   m

   p   u    l   s   e

T4 / T0 = 3 T4 / T0 = 5

T4 / T0 = 10 T4 / T0 = 15

p1 + [( γ0 1 ) / 2 ] M0 }} 1 }

 Assumptions: Ideal ramjet , isentropic inlet and nozzle, low subsonic and constant pressure combustion, ex it pressure = freestream pressure, φ ≤ 1

Example for Ramjet Baseline:

M = 3.5, h = 60k ft ( T0 = 390 R, a0 = 968 ft / s ),RJ-5 fuel ( H

= 14,525 BTU / lbm ), T4

= 4,000 R,cp = 0.302 BTU / lbm / R, γ0 = 1.4

Calculate ( ISP )Ideal gc cp T0 / ( a0 Hf  ) = { 3.5 {{(4000 / 390 ) / { 1 + [( 1.4 - 1 ) / 2 ] 3.52 }} 1/2 - 1 } / {{1 + [( 1.4 - 1 ) / 2 ] 3.52 } { ( 4000 / 390 ) / { 1 + [(1.4 - 1 ) / 2 ] 3.52 }} – 1 } = 0.372

( ISP )Ideal = 0.372 ( 968 ) ( 14525 ) / [ 32.2 ( 0.302 ) (

390 ) = 1387 s

Note:

gc = Gravitational constant = 32.2

cp = Specific heat at constant pressure

T0 = Free stream temperature

a0 = Free stream speed of sound

Hf  = Heating value of fuel

γ = Specific heat ratio

T4 = Combustor exit temperature

Source: Ashley, H., Engineering Analysis of Flight Vehicles, Dover Publications, Inc., New York, 1974

High Thrust for a Ramjet Occurs from Mach 3 to 

5 with High Combustion Temperature 

High Thrust for a Ramjet Occurs from Mach 3 to 

5 with High Combustion Temperature 

TIdeal / ( p0 A0 ) = 0 M0

2

{{[ T4 / T0 ] / { 1 + [( 0 - 1 ) / 2 ] M0

2

}}1/2

- 1 }

Page 95: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 95/421

2/24/2008  ELF  95 

0

5

10

15

20

25

0 1 2 3 4 5M0, Free Stream Mach Number 

    T    /    [    P    H    I    (   p    0    )

    (    A    0    )    ] ,    N   o   n    d    i   m    i   m   e   n   s    i   o   n   a    l

    T    h   r   u   s    t

T4 / T0 = 3 T4 / T0 = 5

T4 / T0 = 10 T4 / T0 = 15

T / ( φ p  A ) γ M {{[ T / T ] / { 1 [( γ 1 ) / 2 ] M }} 1 } Assumptions: Ideal ramjet, isentropic inlet and nozzle, low subsonic and constant pressurecombustion, exit pressure = free stream pressure, φ ≤ 1

Note: T4 and T0 in R Example for Ramjet Baseline:

M0 = 3.5, α = 0 deg, h = 60k ft ( T0 = 390 R, p0 =

1.047 psi ), T4 = 4,000 R, ( f / a ) = 0.055, φ =0.82, A0 = 114 in2, γ0 = 1.4

TIdeal / ( φ p0 A0 ) = 1.4 ( 3.5 )2 {{[ 4000 / 390 ] / { 1+ [( 1.4 – 1 ) / 2 ] ( 3.5 )2 }} 1/2 – 1 } = 12.43

TIdeal = 12.43 ( 0.82 ) ( 1.047 ) ( 114 ) = 1216 lb

Note:

( T )Ideal = Ideal thrus t

p0 = Free stream static pressure

 A0 = Free stream flow area into inlet

γ0 = Free stream specific heat ratio

M0 = Free stream Mach number T4 = Combustor exit temperature

T0 = Free stream temperature

φ = Equivalence ratio = fuel-to-air ratio /stochiometric fuel-to-air ratio

Source: Ashley, H., Engineering Analysis of Flight Vehicles, Dover Publications, Inc., New York, 1974

Ramjet Combustor Temperature Increases with 

Mach Number and Fuel Flow 

Ramjet Combustor Temperature Increases with 

Mach Number and Fuel Flow 

T4 T0 { 1 + [( 0 - 1 ) / 2 ] M02

} + ( Hf  / cp ) ( f / a )

Page 96: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 96/421

2/24/2008  ELF  96 

0

2000

4000

6000

0 1 2 3 4 5

M0, Free Stream Mach Number 

    T    4 ,    C   o   m    b   u   s    t   o   r    E   x

    i    t    T   e   m   p   e   r   a    t   u   r   e    f   o   r

    R    J  -    5

    F   u   e    l ,    R   a   n    k    i   n   e

f / a = 0.01 f / a = 0.03 f / a = 0.05 f / a = 0.067

Example:

•M0 = 3.5

•h = 60k ft ( T0 = 390 R )

•RJ-5 fuel ( Hf  = 14,525 BTU / lb / R )

•f / a = 0.055

•γ0 = 1.4

•cp = 0.122 T0.109 BTU / lbm / R.

Note: cp ≈ 0.302 +/- 5% if 2500 R < T < 5000 R

•Then T4 = 390 { 1 + [( 1.4 – 1 ) / 2 ] ( 3.5 )2

} +[( 14525 ) / ( 0.302 )] 0.055 = 3,991 R

Note: ( f / a )φ = 1

≈ 0.067 for stochiometric combustion of li quid hydrocarbon fuel, e.g., RJ-5.

T ≈ T { 1 [( γ 1 ) / 2 ] M } ( H / c ) ( f / a ) Assumptions: Low subsonic combust ion. No heat t ransfer through in let ( isentropicflow ). φ ≤ 1.

T4 = combustor exit temperature in Rankine, T0 = free stream temperature in Rankine,γ = specific heat ratio, M0 = free stream Mach number, Hf  = heating value of fuel, cp =specific heat at constant pressure, f / a = fuel-to-air ratio.

Ramjet Combustor Entrance Mach Number 

Should Be Low, to Avoid Thermal Choking 

Ramjet Combustor Entrance Mach Number 

Should Be Low, to Avoid Thermal Choking ( M

3

)TC

= {{ - b + [ b2 – 4 γ3

2 ]1/2 } / ( 2 γ3

2 )}1/2

b = 2 + ( T / T )( 1 + )2 / {( 1 + 0 2 M 2 )[ 1 + ( – 1 ) / 2 ]}

Page 97: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 97/421

2/24/2008  ELF  97 

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5

M0, Free Stream Mach Number 

    (    M    3    )    T    C ,

    C   o   m

    b   u   s    t   o   r    E   n    t   r   a   n   c   e    M

   a   c    h

    N   u   m    b   e   r   w    i    t    h    T    h   e   r   m   a    l    C    h   o    k    i   n

   g

T4t / T0 = 3 T4t / T0 = 5

T4t / T0 = 10 T4t / T0 = 15

b = 2 γ3 + ( T4t/ T0 )( 1 + γ4 )2 / {( 1 + 0.2 M0

2 )[ 1 + ( γ4 – 1 ) / 2 ]}

 Assumptions: Constant area combust ion, [( γ 3 – 1 ) / 2 ] M32 << 1, isentropic inlet

Example:

M0 = 2, h = 60k ft ( T0 = 390 R ), T4t= 4,000 R, γ0 = 1.4

γ4 = 1.29 + 0.16 e-0.0007 ( 4000 ) = 1.300

T0t= ( 1 + 0.2 M0

2 ) T0 = 702 R

γ 3 = 1.29 + 0.16 e-0.0007 ( 702 ) = 1.388

b = 2 ( 1.388 ) + ( 4000 / 390 )( 1 + 1.300 )2 / {( 1 + 0.2( 22 )[ 1 + ( 1.300 – 1 ) / 2 ]} = - 24.211

( M3 )TC = {{ 24.211 + [( -24.211 )2 – 4 ( 1.3882 )]1/2 } / [ 2 ( 1.3882 )]}1/2 = 0.204

Note:

( M3 )TC = Combustor entrance Mach number withthermal choking ( M4 = 1 )

γ3 = Specific heat ratio at combustor entranceM0 = Free stream Mach number 

T4t= Combustor exit total temperature

T0 = Free stream static temperature

γ4 = Specific heat ratio in combust ion

A Ramjet Combustor with a Low Entrance Mach 

Number Requires a Small Inlet Throat Area 

A Ramjet Combustor with a Low Entrance Mach 

Number Requires a Small Inlet Throat Area 

 AIT / A3 = [( + 1 ) / 2 ]( γ + 1 ) / [ 2 ( γ - 1 )] M3 {[ 1 + ( - 1 ) / 2 ] M32 }-( γ + 1 ) / [ 2 ( γ - 1 )] = ( 216 / 215 ) M3 ( 1 + M32 / 5 )-3

Page 98: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 98/421

2/24/2008  ELF  98 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

( A )IT / A3, Inlet Throat Area to Combusto r Area Ratio

    M   3 ,

   C   o   m   b   u   s   t   o   r   E   n

   t   r   a   n   c   e   M   a   c   h   N   u   m   b   e

   r

[( γ ) ] {[ ( γ ) ] } ( ) ( ) Assumptions: Isentropic in let , MIT = 1, γ = 1.4

Note:

 AIT = Inlet throat area

 A3 = Combustor entrance areaM3 = Combustor entrance Mach number 

γ = Specific heat ratio

Example:

Ramjet Baseline

 AIT = 41.9 in2

 A3 = 287 in2

 AIT / A3 = 41.9 / 287 = 0.1459

 Assume sonic flow ( M = 1 ) at AIT

M3 = 0.085M3 = 0.085 < ( M3 )TC = 0.204

Typical Ramjet Has Nearly Constant Pressure 

Combustion 

Typical Ramjet Has Nearly Constant Pressure 

Combustion 

 Assume Rayleigh Flow, with Heat Addition at

Page 99: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 99/421

2/24/2008  ELF  99 

y g , Constant Area

Negligible Friction

Pressure Loss in Combustor is Given by p

4

/ p3

= ( 1 + γ3

M3

2 ) / ( 1 + γ4

M4

2 )

Mach Number Increase in Combustor Is Given by T4t

/ T0 = [( 1 + γ3 M32 ) / ( 1 + γ4 M4

2 )]2 ( M4 / M3 )2 { 1 + [( γ4 – 1 ) / 2 ] M42 } / { 1 + [( γ3 – 1 ) / 2 ] M3

2 }

From Prior Example

M0 = 2, h = 60k ft ( T0 = 390 R ), T4t= 4,000 R, γ0 = 1.4, γ4 = 1.300, and γ 3 = 1.388

 Assume Ramjet Baseline with Sonic Inlet Throat

 AIT / A3 = 41.9 / 287 = 0.1459 ⇒ M3 = 0.085

Solving Above Equations

M4

= 0.304

p4 / p3 = 0.902

 Assumption of Nearly Constant Pressure Combustion Is Reasonably Accurate

10% error 

Minimum Length for the Combustor Is a 

Function of Combustion Velocity 

Minimum Length for the Combustor Is a 

Function of Combustion Velocity 

( l ) = t V

Page 100: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 100/421

2/24/2008  ELF  100 

0.1

1

10

100 1000 10000

Vcomb, Combustion Velocity, ft / s

    M    i   n    i   m   u   m    C

   o   m    b   u   s    t   o   r    L   e   n   g

    t    h ,

    f    t

tcomb = 0.001 s

tcomb = 0.002 s

tcomb = 0.004 sExample for tcomb = 0.002 s and

Subsonic Combustion Ramjet:

•Vcomb = 200 ft / s

•( lcomb

)min

= 0.002 ( 200 ) = 0.4 ft

Example for tcomb = 0.002 s andScramjet:

•Vcomb = 3,000 ft / s

•( lcomb )min = 0.002 ( 3000 ) = 6.0 ft

( lcomb )min = tcomb Vcomb

Ramjet Engine / Booster Integration Options Ramjet Engine / Booster Integration Options 

I t l R k t R j t ( IRR )

FuelBoost PropellantLow Cruise Drag ( Modern Ramjets )

Page 101: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 101/421

2/24/2008  ELF  101 

Integral-Rocket Ramjet ( IRR )  Af t Drop-of f Booster 

Podded Drop-off Booster Forward Booster 

Podded Ramjet

Podded Ramjet, Aft Drop-off Booster 

Podded IRR

p

Source: Kinroth, G.D. and Anderson, W.R., “ RamjetDesign Handbook,” CPIA Pub. 319, June 1980

g ( j )

High Cruise Drag

Ramjet Engine / Booster Integration Trades Ramjet Engine / Booster Integration Trades 

a   g g l    i    t   y

l    i    t   ySelection Factors

Page 102: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 102/421

2/24/2008  ELF  102 

Superior Above Average Average Below average

    L   e   n   g    t    h

    D    i   a   m   e    t   e   r

    W   e    i   g    h    t

    E    j    e   c    t   a    b    l   e   s

    C   r   u    i   s   e    D   r   a

    C   a   r   r   y    D   r   a   g

    C   o   s    t

    C   y   c    l   e

    C   o   m   p   a    t    i    b    i    

    I   n    l   e    t

    C   o   m   p   a    t    i    b    i    

Source: Kinroth , G.D. and Anderson, W.R., “ Ramjet Design Handbook,” CPIA Pub. 319, June 1980

Integral Rocket – Ramjet ( IRR )

 Af t Booster ( Drop-off )

Forward Booster 

Podded Booster ( Drop-off )

Podded Ramjet

Podded IRR

Podded Ramjet Af t Booster ( Drop-off )

 –

 –

 –

 –

 –

 – –

 –

 – – – –

 –

 –

 –

 –

 –

 –

Ramjets with Internal Boosters and No Wings 

Have Low Drag 

Ramjets with Internal Boosters and No Wings 

Have Low Drag 

1 2

Page 103: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 103/421

2/24/2008  ELF  103 

1.2

0.8

0.4

0

2 3 4 5

M, Mach Number 

CD0= DO / ( q SREF ), Zero-Lift Drag

Coefficient

Note:Nose Fineness Ratio ≥ 2.25Nose Bluntness Ratio ≤ 0.20

• IRR

•  Af t Drop Off Booster 

• Forward Booster 

• Podded Drop Off Booster 

With Wings

Without Wings• IRR

•  Af t Drop-of f Booster 

• Forward Booster 

• Podded Drop-off Booster 

• Podded Ramjet

• Podded IRR• Podded Ramjet, Aft Drop

Off Booster 

Source: Kinroth, G.D. and Anderson, W.R., “Ramjet Design Handbook,” CPIA Pub. 319, June 1980

CD0

Sketch

Ramjet Inlet Options Ramjet Inlet Options 

PlacementType Inlet

Page 104: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 104/421

2/24/2008  ELF  104 

Nose

Source: Kinroth, G.D. and Anderson, W.R., “ Ramjet Design Handbook,” CPIA Pub. 319, June 1980.

Nose-full axisymmetric

 Af t-crucifo rm ( four ) two d imensional

 Af t unders ide-belly mounted two dimensional

 Af t unders ide-ful l ax isymmetri c

 Af t-twin cheek-mounted two dimensional

Cruciform Two-dimensional

Underslung Two-dimensional

Underslung Axisymmetric

Twin Two-dimensional

Under Wing Axisymmetric

 Af t Cruciform Axisymmetric

Forward Cruciform Axisymmetric

Chin

In planar wing compression field-twin axisymmetric

 Af t-c ruci form ( four ) axisymmetric

Forward in nose compression field-cruciform ( four )axisymmetric

Forward underside in nose compression field-partial axisymmetric

Ramjet Inlet Concept Trades Ramjet Inlet Concept Trades 

e t   y n   g

s    t d d t   y

Selection Factorse y

Page 105: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 105/421

2/24/2008  ELF  105 

Superior Above Average Average Below average

Source: Kinroth, G.D. and Anderson, W.R., “Ramjet Design Handbook,” CPIA Pub. 319, June 1980

 –

    C   a   r   r    i   a   g   e

    E   n   v   e    l   o   p   e

    A    l   p    h   a

    C   a   p   a    b    i    l    i    t

    W   e    i   g    h    t

    D   r   a   g

    W   a   r    h   e   a    d

    S    h   r   o   u    d    i   n

    i   n    l   e    t    C   o   s

    P   r   e    f   e   r   r   e    d

    S    t   e   e   r    i   n   g

    P   r   e    f   e   r   r   e    d

    C   o   n    t   r   o    l

    P   r    i   m   e

    M    i   s   s    i   o   n

    S   u    i    t   a    b    i    l    i    t

Note:BTT = Bank to TurnSTT = Skid to TurnW = Wing C = CanardT = Tail

STT W, C ATS, STA

BTT T ATS, ATA, STA –  – STT T ATS, ATA, STA

STT T ATS

BTT T ATS, ATA, STA –

BTT T ATS, ATA, STA

 – BTT T ATS

 – BTT T ATS, ATA, STA

STT T ATS

Type Inlet     P   r   e   s   s   u   r   e

    R   e   c   o   v   e   r   y

 –

 –

 –

 –

United Kingdom

Current Supersonic Air-breathing Missiles Have Either a Nose Inlet or Axisymmetric Aft Inlets 

Current Supersonic Air-breathing Missiles Have Either a Nose Inlet or Axisymmetric Aft Inlets 

Page 106: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 106/421

2/24/2008  ELF  106 

Sea Dart GWS-30

France

 ASMP ANS

Russia

 AS-17 / Kh-31 Kh-41 SS-N-22 / 3M80

SA-6 SS-N-19 SS-N-26

China

C-101 C-301

Taiwan

Hsiung Feng III

India

BrahMos

• Af t in lets have lower inlet volume and do not degrade lethali ty of fo rward located warhead.

• Nose Inlet may have higher f low capture, pressure recovery, smaller carriage envelope, and lower drag.

Shock on Inlet Cowl Lip Prevents Spillage Shock on Inlet Cowl Lip Prevents Spillage 

Inlet w/o External CompressionInlet Swallows 100% of the Free

Page 107: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 107/421

2/24/2008  ELF  107 

Stream Flow

External Compression Required for Efficient Pressure Recovery if MachNumber > 2 and Inlet Start at LowSupersonic Mach number 

External Compression Inlet ( wi thSpillage )

Shocks Converge Outside Inlet Lip( Results in Spillage Air )

External Compression Inlet ( w/o

Spillage )Inlet Swallows 100% of the FreeStream Flow

Shocks Converge at Inlet Lip ( InletCaptures Maximum Free Stream

Flow )

Shocks

Spillage

Shocks

Shock Wave Angle Increases with Deflection 

Angle and Decreases with Mach Number 

Shock Wave Angle Increases with Deflection 

Angle and Decreases with Mach Number tan ( α + δ ) = 2 cot θ

2D

( M2 sin2 θ2D

 – 1 ) / [ 2 + M2 ( γ + 1 – 2 sin2 θ2D

)] , for 2D flow, perfect gas

Note: θ2D = 2D shock wave angle, M = Mach number, α = angle of attack, δ = body deflection angle, γ = specific heatratio 0 81

Page 108: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 108/421

2/24/2008  ELF  108 

0

10

20

30

40

50

0 5 10 15 20

 Alpha + Delta, Deflectio n Angle, Degrees

    T    h   e    t   a ,    2

    D    S    h   o   c

    k    W   a   v   e    A   n   g    l   e    @    G   a   m   m   a   =

    1 .    4 ,    D   e   g   r   e   e   s

Mach 2 ( Deltamax = 23 deg ) Mach 3 ( Deltamax = 34 deg )

Mach 5 ( Deltamax = 41 deg )

ratio, θconical ≈ 0.81 θ2D

Example for Ramjet Baseline:

δ = 17.7 deg, M = 3.5, α = 0 deg, γ = 1.4

⇒ θ2D = 32 deg

θconical ≈ 0.81 θ2D = 0.81 ( 32 ) = 26 deg

δ

θ

α

 Approximate est imate of θ:

θ2D ≈ μ + α + δ = sin-1

( 1 / M ) + α + δθconical ≈ 0.81 θ2D = 0.81 [ sin-1 ( 1 / M ) +α + δ ]

Capture Efficiency of an Inlet Increases with Mach 

Number 

Capture Efficiency of an Inlet Increases with Mach 

Number ( A0 / Ac )conical = ( h / l ) ( 1 + δ M + αM ) / [( 1 – 0.23δM + αM )( δ + h / l )] , conical nose with forward inlet

( A0 / Ac )2D = ( h / l ) ( 1 + δ M + αM ) / [( 1 + αM )( δ + h / l )] , 2D nose with forward in let

Page 109: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 109/421

2/24/2008  ELF  109 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

M, Mach Numb er 

    A    0    /    A   c ,    B   a   s   e    l    i   n   e    R   a   m    j    e    t    I   n    l   e    t    C   a   p    t   u   r   e

    E    f

    f    i   c    i   e   n   c   y

 Alpha = 0 Deg Alpha = 10 Deg

 Ac

 A0 s tream l ine s t r e a m l i n e 

oblique shock

h inlet

nose body

δ

s t r e a m l i n e s tream l ine

Note: A0 / Ac ≤ 1, AC = inlet capture area, A0 = free stream flow area, δ = defection angle in rad, h = inlet height, l =distance from nose tip to inlet

α

Example for baseline ramjet ( conicalnose )

h = 3 in

l = 23.5 in

h / l = 0.1277

 AC

= 114 in2

δ = 17.7 deg ( 0.3089 rad )

M = 3.5, α = 0 deg

 A0 / Ac = 0.81 ⇒ A0 = 92 in2

Spillage = Ac - A0 = 114 - 92 = 22 in2

Isentropic Compression Allows Inlet Start at 

Lower Mach Number 

Isentropic Compression Allows Inlet Start at 

Lower Mach Number  AIT / A0 = 1.728 ( MIE )start [ 1 + 0.2 ( MIE )start

2 )-3, Assumptions: 2-D in let , Isentropic f low through in let ( n = ∞ ), γ = 1.4

 AIT / A0 = ( MIE )start {[ 0.4 ( MIE )start2 + 2 ] / [ 2.4 ( MIE )start

2 ]3.5 }{[2.8 ( MIE )start2 – 0.4 ] / 2.4 }2.5 {[ 1.2 / ( 1 + 0.2 (

MIE ) t t2 ]}3 Assumptions: 2-D inlet s ingle normal shock ( n = 1 ) = 1 4

Page 110: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 110/421

2/24/2008  ELF  110 

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

 AIT / A0

    (    M    )    I    E ,    I   n

    l   e    t    E   n    t   r   a   n   c   e    S    t   a   r    t    M   a   c    h

    N

   u   m    b   e   r

Inlet Start for Isentro pic Compression

Inlet Start for Single Normal Shock

MIE )start ]} , Assumptions: 2 D inlet, s ingle normal shock ( n = 1 ), γ = 1.4

Note: AIT = inlet throat area, A0 = free stream flow area, ( MIE )start = inlet entrance start Mach number, γ = specific heatratio, n = number of shocks

Example for ramjet baseline

 AIT = 0.29 ft2

 Ac = 114 in2 = 0.79 ft2 ⇒ AIT / Ac = 0.367

Process:

1. Assume ( MIE )start

2. Compute capture efficiency AIT / A0

3. Compute ( MIE )start and compare withassumed ( MIE )start

4. Iterate unti l convergence

Limit for isentropic compression

- From Prior Figure, A0 / Ac = 0.53- Compute AIT / A0 = ( A IT / Ac ) / ( A0 / Ac ) =

0.367 / 0.53 = 0.69 ⇒ ( MIE )start = 1.8

Ramjet baseline has mixed compressionwith n = 5. Actual inlet start Machnumber is ( MIE )start > 1.8

n = 1n = ∞

Forebody Shock Compression Reduces the Inlet 

Entrance Mach Number 

Forebody Shock Compression Reduces the Inlet 

Entrance Mach Number ( MIE )2D = {{ 36 M0

4 sin2 θ2D - 5 [ M02 sin2 θ2D - 1 ][ 7 M0

2 sin2 θ2D + 5 ]} / {[ 7 M02 sin2 θ2D - 1 ] [ M0

2 sin2 θ2D + 5 ]}}1/2

tan ( α + δ ) = 2 cot θ2D ( M02 sin2 θ2D – 1 ) / [ 2 + M0

2 ( 2.4 – 2 sin2 θ2D )]

Page 111: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 111/421

2/24/2008  ELF  111 

0

1

2

3

4

0 10 20 30 40

 Alpha + Delta, Local Angle of At tack at Inlet Entrance, Deg

    (    M    )    I    E ,

    I   n    l   e    t    E   n    t   r   a   n   c   e    M   a   c    h    N   u   m    b   e   r

M0 = 2 M0 = 3 M0 = 5

 Assumptions: 2D flow, perfect gas, γ = specific heat ratio = 1.4

Note: MIEt= inlet entrance Mach number, M0 = free stream Mach number, θ = oblique shock angle, α = angle of attack, δ = bodydeflection angle

Example for ramjet baseline

δ = 17.7 deg

( MIE )start = 1.8 ( from prior example )

Compute M0 = 2.55

Note: Ramjet baseline forebody isconical, not 2D

Optimum Forebody Deflection Angle(s) for Best 

Pressure Recovery Increases with Mach Number 

Optimum Forebody Deflection Angle(s) for Best 

Pressure Recovery Increases with Mach Number 

First External Shock

Second External Shock

Note: δTotal = Total deflection angle,δ1 = 1st deflection angle, δ2 = 2nd

deflection, δ3 = 3rd deflection.

Page 112: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 112/421

2/24/2008  ELF  112 

0

20

40

60

0 1 2 3 4

M0, Free Stream Mach Number 

    O   p    t    i   m   u   m    T   o    t   a    l    D   e

    f    l   e   c    t    i   o   n    A   n   g    l   e ,

    D   e   g

n = 1 n = 2 n = 3 n = 4 Isentropic Compression

δ1

Second External Shock

δ2

3

Optimum deflection angle providesequal loss in total pressure acrosseach shock wave.

Optimum deflection angles arenearly equal for M > 4.

Reference: “ Technical Aerodynamics Manual,” North American Rockwell Corporation , DTIC AD 723823, June 1970.

Example: Optimum forebody deflection angles for double wedge ( n = 3 ) at Mach 2: δ1 = 10.4 deg, δ2= 11.2 deg ⇒ δtotal = 10.4 + 11.2 = 21.6 deg

δTotal

10.4, 11.2

15.0, 18.816.1, 22.1

7.6, 8.2, 8.2

11.1, 13.0, 15.5

12.1, 15.2, 19.4

Oblique Shocks Prior to the Inlet Normal Shock 

Are Required to Satisfy MIL-E-5008B 

Oblique Shocks Prior to the Inlet Normal Shock 

Are Required to Satisfy MIL-E-5008B 

1

e ( l Sh k )

MIL-E-5008B Requirement: ptInlet / pt0 = 1 – 0.075 ( M – 1 )1.35

Page 113: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 113/421

2/24/2008  ELF  113 

0.01

0.1

0 1 2 3 4 5

M, Mach Number 

   P   t   I  n   l  e   t   /  p   t   0 ,

   I  n   l  e   t   T  o   t  a

   l    P  r  e  s  s  u  r  e

   R  a   t   i  o

n = 1 ( Normal Shock )

n = 2 ( 1 Optimum ObliqueShock + Normal Shock )

n = 3 ( 2 Opt ObliqueShocks + Normal Shock )

n = 4 ( 3 Opt ObliqueShocks + Normal Shock

Ideal Isentropic Inlet

MIL-E-5008B

Source for Optimum 2D Shocks: Oswatitsch, K.L., “Pressure Recovery for Missiles with Reaction Propulsion at HighSupersonic Speeds”, NACA TM - 1140, 1947.

Example: MIL-E-5008B requirement for Mach 3.5 ( ptInlet/ p t0

= ηinlet = 0.74 ) can be satisf ied only if there are morethan three oblique shocks prior to inlet normal shock.

Note: 2D flow assumed

ptInlet= Inlet total pressure

pt0 = Free stream total pressure

High Density Fuels Provide Higher Volumetric Performance but Have Higher Observables 

High Density Fuels Provide Higher Volumetric Performance but Have Higher Observables 

Type FuelVolumetricPerformance,BTU / in3

LowObservables

Density,lb / in3

Page 114: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 114/421

2/24/2008  ELF  114 

Turbine ( JP-4, JP-5, JP-7, JP-8, JP-10 ) ~ 0.028 559

Liquid Ramjet ( RJ-4, RJ-5, RJ-6, RJ-7 ) ~ 0.040 581

HTPB ~ 0.034 606

Slurry ( 40% JP-10 / 60% carbon ) ~ 0.049 801

Solid Carbon ( graphite ) ~ 0.075 1132

Slurry ( 40% JP-10 / 60% aluminum ) ~ 0.072 866

Slurry ( 40% JP-10 / 60% boron carbide ) ~ 0.050 1191

Solid Mg ~ 0.068 1200

Solid Al ~ 0.101 1300

Solid Boron ~ 0.082 2040

 –

yp BTU / in3

Superior   Above average  Average Below average

Observables

 –

 –

 –

 –

 –

lb / in

 –

Ducted Rocket Design Implications Ducted Rocket Design Implications 

Excess Fuel from Gas Generator  ~ 30 % ⇒ Behaves more like a rocket ( higher burn rate, higher burn

Page 115: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 115/421

2/24/2008  ELF  115 

( g gtemperature, lower ISP )

~ 70 % ⇒ Behaves more like a ramjet ( higher ISP, lower burn rate, lower burn temperature )

Choice of Fuel Metal ( e.g., B, Al, Mg ) ⇒ Higher ISP, higher density, deposits, higher 

observables

Carbon based ( e.g., C, HTPB ) ⇒ Lower observables, higher reliability,

lower ISP

Choice of Oxidizer   AP ⇒ Higher burn rate, lower hazard, HCl contrail

Min Smoke ( e.g., HMX, RDX ) ⇒ Lower Observables, lower heating value,lower burn rate, hazardous

Thrust Magnitude Control Approaches Pintle or valve in gas generator throat

Retractable wires in grain

High Propellant Fraction Increases Burnout Velocity 

High Propellant Fraction Increases Burnout Velocity 

5000

 Assumption: T >> D, T >> W sin γ, γ = constΔV = -gc Isp ln (1 - Wp / Wi)

Page 116: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 116/421

2/24/2008  ELF  116 

0

4000

3000

2000

1000

0 0.1 0.2 0.3 0.4 0.5

Example: Rocket BaselineWi,boost = WL = 500 lb, Wp, boost = 84.8 lbISP, boost = 250 sWP, boost / Wi = 84.8 / 500 = 0.1696

ΔV = -32.2 ( 250 ) ln ( 1 - 0.1696 ) = 1496 ft / s

ΔV, MissileIncremental

Burnout Velocity,

ft / s

WP / Wi, Propellant Weight / Initial Missi le Weight

Isp = 250 s

Isp = 200 s

High Specific Impulse Requires High Chamber 

Pressure and Optimum Nozzle Expansion 

High Specific Impulse Requires High Chamber 

Pressure and Optimum Nozzle Expansion 

ISP = cd {{[ 2 γ2 / ( γ - 1 )] [ 2 / ( γ + 1 )] ( γ + 1 ) / ( γ - 1 ) [ 1 – ( pe / pc ) ( γ - 1 ) / γ ]}1/2 + ( pe / pc ) ε - ( p0 / pc ) ε } c* / gc

T = w.p ISP = ( gc / c* ) pc At ISP

= {[ 2 / ( + 1 )]1 / ( γ - 1 ) [( -1 ) / ( + 1 )]1/2 } / {( p / p )1 / γ [ 1 - ( p / p ) ( γ - 1 ) / γ ]1/2 }

Page 117: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 117/421

2/24/2008  ELF  117 

200

250

300

0 10 20 30Nozzle Expansion Ratio

    I   s   p ,

    S   p   e   c    i    f    i   c    I   m   p

   u    l   s   e   o    f    R   o   c    k   e    t    B   a   s   e    l    i   n   e ,   s

pc = 300 psi pc = 1000 psi

pc = 2000 psi pc = 3000 psi

Note:ε = nozzle expansion ratiope = exit pressure

pc = chamber pressurep0 = atmospheric pressurew.

P = propellant weight f low rate At = nozzle throat area ( minimum, sonic, choked )γ = specific heat ratio = 1.18 in figurecd = discharge coefficient = 0.96 in figure

c* = characterist ic veloc ity = 5,200 ft / s in f igureh = 20k ft, p0 = 6.75 psi in figure

Example for Rocket Baseline:

ε = Ae / A t = 6.2 ⇒ pe / pc = 0.02488, A t = 1.81 in2

( pc )boost = 1769 psi, pe = 44 psi , ( ISP )boost = 257 s

( ISP )ε = 6.2 / ( ISP )ε = 1 = 257 / 200 = 1.29( T )boost = ( 32.2 / 5200 ) ( 1769 ) (1.81 )( 257 ) = 5096 lb

( pc )sustain = 301 psi , pe = 7.49 psi , ( ISP )sustain = 239 s

( ISP )ε = 6.2 / ( ISP )ε = 1 = 240 / 200 = 1.20

( T )sustain = ( 32.2 / 5200 ) ( 301 ) (1.81 )( 240 ) = 810 lb

ε {[ 2 / ( γ + 1 )] ( ) [( γ 1 ) / ( γ + 1 )] } / {( pe / pc ) [ 1 ( pe / pc ) ( ) ] }

High Propellant Weight Flow Rate Requires High 

Chamber Pressure and Large Nozzle Throat 

High Propellant Weight Flow Rate Requires High 

Chamber Pressure and Large Nozzle Throat 

100000

w.

p = gc pc At / c*

Page 118: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 118/421

2/24/2008  ELF  118 

100

1000

10000

100000

1 10 100

Propellant Weight Flow Rate, lb / s

    (   p   c    )    A    t ,    C    h   a   m

    b   e   r    P   r   e   s   s   u   r   e   x    N   o   z   z    l   e

    T    h

   r   o   a    t    A   r   e   a ,

    l    b

c* = 4800 ft / s

c* = 5200 ft / s

c* = 5600 ft / s

Rocket Baseline A t for Boost:

c* = 5200 ft / s

( pc )boost = 1,769 psi

w.

p = Wp / tb = 84.8 / 3.69 = 23.0 lb / s

pc At = c* w .p / gc = 5200 ( 23.0 ) / 32.2= 3,714 lb

 At = 3714 / 1769 = 2.10 in2

Note: At = nozzle throat area, c* = characteristic velocity, w.

p = propellant weight flow rate, gc = gravitational constant,p

c

= chamber pressure

High Chamber Pressure Requires Large 

Propellant Burn Area and Small Nozzle Throat 

High Chamber Pressure Requires Large Propellant Burn Area and Small Nozzle Throat 

600

a ,

    i   n    2

 Ab

= gc

pc A

t/ ( ρc*r )

r = r pc=1000 psi ( pc / 1000 )n

Example Ab for Rocket

Baseline: At= 1.81 in2

= 0 065 lb / in3

Page 119: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 119/421

2/24/2008  ELF  119 

0

200

400

0 500 1000 1500 2000Pc, Rocket Baseline Motor Chamber Pressure, psi

    A    b ,

    R   o   c    k   e    t    B   a   s   e    l    i   n   e    P   r   o   p   e    l    l   a   n    t    B   u   r   n    A   r   e   a ρ = 0.065 lb / in3

n = 0.3

r pc = 1000 psi = 0.5 in / s

c* = 5,200 ft / s

Tatmosphere = 70 °F

For sustain ( pc = 301 psi ):

•r = 0.5 ( 301 / 1000 )0.3 = 0.35in / s

• Ab = 149 in2

For boost ( pc = 1,769 psi )

•r = 0.59 in / s

• Ab = 514 in2

Note: Ab = propellant burn area, gc = gravitation constant, At = nozzle throat area,ρ = density of propellant, c* = characteristic velocity,r = propellant burn rate, r pc=1000 psi = propellant burn rate at pc = 1,000 psi, pc = chamber pressure, n = burn rate exponent

Conceptual Design Sizing Process for a Rocket 

Motor 

Conceptual Design Sizing Process for a Rocket 

Motor 1. Define Altitude and Required Thrust-time

New Value ( s )

2. Assume Propellant ( Characterist ic Velocity, Nominal) C

Page 120: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 120/421

2/24/2008  ELF  120 

Yes

4. Compute Propellant Weight Flow Rate and Propellant Used

No

NoYes

5. Determine Diameter and Length to Satisfy wp and Ae

OK? 

OK? 

OK? 

Yes

New Value ( s )

No

Burn Rate, Burn Rate Exponent ), Chamber Pressure, Burn Area, and Nozzle Geometry ( Expansion Ratio, Throat Area )

3. Compute ISP andThrust

Example Web Cross Section / Volumetric Loading

~ 82% ~95% ~90%

Conventional Solid Rocket Thrust-Time Design Alternatives with Propellant Cross-Section 

Conventional Solid Rocket Thrust-Time Design Alternatives with Propellant Cross-Section 

   l   b   )

Constant

Example Mission•≈ Cruise

Thrust Profile

Page 121: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 121/421

2/24/2008  ELF  121 

82% 95% 90%

End Burner Radial Slotted Tube~ 79%

~ 87%

~ 85%

~ 85%

   T   h  r  u  s   t   (

Burning Time ( s )

Thrust

RegressiveThrust

ProgressiveThrust

Boost-Sustain

Boost-Sustain-Boost

Burning Time ( s )

Burning Time ( s )

Burning Time ( s )

Burning Time ( s )

   T   h  r  u  s   t   (   l   b

   )

   T   h  r  u  s   t   (   l   b   )

   T   h  r  u  s   t   (   l   b   )

   T   h  r  u  s   t   (   l   b   )

Medium Burn Rate Propellant

High Burn Rate PropellantNote: High thrus t and chamber pressure require large surface burn area.

•Dive at ≈constantdynamicpressure

•Climb at ≈constant

dynamicpressure

•Fast launch –≈ cruise

•Fast launch –≈ cruise – highspeed terminal

Production of Star Web Propellant.Photo Courtesy of BAE

Conventional Rocket Has Fixed Burn while Thrust Magnitude Control Can Vary Burn Interval 

Conventional Rocket Has Fixed Burn while Thrust Magnitude Control Can Vary Burn Interval 

Conventional Fixed Burn Interval ( Boost )

Page 122: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 122/421

2/24/2008  ELF  122 

End Burning

Conventional Fixed Burn Interval ( Boost – Sustain )

Radial BoostEnd Burning Sustain

Simultaneous Burning

1st Pulse: Radial Boost2nd Pulse: End Burning Sustain

Separate Burning ( Pulsed Motor )

1st Pulse: Radial Boost2nd Pulse: Radial Sustain / Boost

Separate Burning ( Pulsed Motor )

Concentric Radial BurningHigh Burn Rate Boost

Low Burn Rate Sustain

Radial Burning

Boost Propellant

Sustain Propellant

Pulse Motor TMC Variable Burn Interval ( Boost – Coast – Boost / Sustain - Coast )

Note: Each pulse increases motor cost approximately 40%.

Tactical Rocket Motor Thrust Magnitude Control 

Alternatives 

Tactical Rocket Motor Thrust Magnitude Control 

Alternatives 

Solid Pulse Motor 

☺ High ISP

Page 123: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 123/421

2/24/2008  ELF  123 

SP

Limited Pulses

Solid Pintle Motor ☺ Continuously Select Up to

40:1 Variation in Thrust

☺ Reduce MEOP on Hot Day

Good ISP Only If Burn RateExponent n → 1

Bi-propellant Gel Motor 

☺ High ISP

☺ Duty Cycle Thrust

☺ Insensitive Munition

Lower Max Thrust

Toxicity

Thermal or Mechanical Barriers

Pintle

Pressurization Gelled Oxidizer Gelled Fuel Combust ionChamber 

Solid Rocket Propellant Alternatives Solid Rocket Propellant Alternatives 

B

Page 124: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 124/421

2/24/2008  ELF  124 

250 - 260 0.062 0.1 - 1.5

Superior Above Average Average Below Average

• Min Smoke . No Al fuel or AP

oxidizer. Either Composite with

Nitramine Oxidizer ( CL-20, ADN,

HMX, RDX ) or Double Base. Very low

contrail (H2O).

• Reduced Smoke . No Al ( binder 

fuel ). AP oxidizer. Low contrail ( HCl ).

• High Smoke .  Al fuel. AP oxidizer.High smoke ( Al2O3).

 –

ISP,Specific

Impulse, s

ρ,Density,lb / in3

BurnRate @

1,000 psi,in / s Safety Observables

 –  –  –

 –

Type

220 - 255 0.055 - 0.062 0.25 - 2.0

260 - 265 0.065 0.1 - 3.0

Steel is the Most Common Motor Case Material Steel is the Most Common Motor Case Material 

VolumetricEffi i Weight

 Airframe /Launcher 

C tTypeTemper-

t IM

Page 125: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 125/421

2/24/2008  ELF  125 

Superior Above Average Average Below Average

Steel

 Aluminum

Strip Steel /Epoxy Laminate

Composite

Titanium

 –

Efficiency Weight  Attachment Cost

 –

Type

 –

 –

 –  –

 –  –

ature

 –

IM

Heat Transfer Drives Rocket Nozzle Materials,

Weight, and Cost 

Heat Transfer Drives Rocket Nozzle Materials,Weight, and Cost 

HousingThroat

Exit Cone

Dome Closeout

Page 126: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 126/421

2/24/2008  ELF  126 

Throat

Rocket Nozzle Element High Heating ( High Chamber Pressure or Long Burn )⇒ High Cost / Heavy Nozzle

Low Heating ( Low Chamber Pressure or Short Burn ) ⇒ Low Cost / Light Weight Nozzle

♦ Housing Material Al ternat ives

♦ Steel ♦ Cellulose / Phenolic♦

  Aluminum

♦ Throat Material Al ternatives

♦ Tungsten Insert♦ Rhenium Insert♦ Molybdenum Insert

♦ Cellulose / Phenolic Insert♦ Silica / Phenolic Insert♦ Graphite Insert♦ Carbon – Carbon Insert

♦ Exit Cone, Dome Closeout,and Blast Tube Material Al ternatives

♦ Silica / Phenol ic Insert♦ Graphite / Phenolic Insert♦ Silicone Elastomer Insert

♦ No Insert♦ Glass / Phenolic Insert

Summary of Propulsion Summary of Propulsion 

Emphasis Turbojet propulsion

Ramjet propulsion

Page 127: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 127/421

2/24/2008  ELF  127 

Ramjet propulsion

Rocket propulsion

Conceptual Design Prediction Methods Thrust

Specific impulse

Design Trades

Turbojet turbine material, compressor ratio, and cycle Ramjet engine / booster / inlet integration

Ramjet fuel

Propellant burn area requirement

Nozzle throat area Nozzle expansion ratio

Rocket motor grain

Thrust magnitude control

Summary of Propulsion ( cont ) Summary of Propulsion ( cont ) 

Design Trades ( cont ) Solid propellant alternatives

Motor case material alternatives

Page 128: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 128/421

2/24/2008  ELF  128 

Nozzle materials

New Propulsion Technologies Hypersonic turbojet

Ramjet / ducted rocket

Scramjet

Combined cycle propulsion High temperature turbine materials

High temperature combustor 

Oblique shock airframe compression

Mixed compression inlet Low drag inlet

High density fuel / propellant

Endothermic fuel

Summary of Propulsion ( cont ) Summary of Propulsion ( cont ) 

New Propulsion Technologies ( cont ) Solid rocket thrust magnitude control

High burn exponent propellant

Page 129: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 129/421

2/24/2008  ELF  129 

g p p p

Low observable fuel / propellant

Discussion / Questions? Classroom Exercise ( Appendix A )

Propulsion Problems Propulsion Problems 

1.  An advantage of turbojets compared to ramjets is s_____ thrust.2. The specific impulse of a turbojet is often limited by the maximum

allowable temperature of the t______.

Page 130: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 130/421

2/24/2008  ELF  130 

3. The specific impulse of a ramjet is often limited by the maximum allowable

temperature of the c________.4. Ducted rockets are based on a fuel-rich g__ g________.

5.  A safety advantage of solid rocket propulsion over liquid propulsion is lesst_______.

6.  A rocket boost to a take-over Mach number is required by ramjets ands________.

7. Parameters that enable the long range of subsonic cruise turbojet missilesare high lif t, low drag, available fuel volume, and high s_______ i______.

8. High thrust and high acceleration are achievable with s____ r_____propulsion.

9. In a turbojet the power to dr ive the compressor is provided by the t______.

Propulsion Problems ( cont ) Propulsion Problems ( cont ) 

10.The compressor exit temperature is a function of the flight Mach number and the compressor p_______ r____.

11. Compressor exit temperature, fuel heating value, and fuel-to-air ratio

Page 131: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 131/421

2/24/2008  ELF  131 

determine the turbojet t______ temperature.

12. Three types of turbine based propulsion are turbojet, turbo ramjet, and a__t____ r_____.

13. Mach number and fuel-to-air ratio determine the ramjet c________temperature.

14.  An example of a ramjet with low drag and light weight is an i_______ r_____ramjet.

15. Russia, France, China, United Kingdom, Taiwan, and India are the onlycountries with currently operational r_____ missiles.

16. 100% inlet capture efficiency occurs when the forebody shock wavesintercept the i____ l__.

17. Excess air that does not flow into the inlet is called s_______ air.

Propulsion Problems ( cont ) Propulsion Problems ( cont ) 

18. Starting a ramjet inlet at lower supersonic Mach number requires a larger area of the inlet t_____.

19. Optimum pressure recovery across shock waves is achieved when the total

Page 132: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 132/421

2/24/2008  ELF  132 

pressure loss across each shock wave is e____.

20. The specific impulse and thrust of a ramjet are a function of the efficiencyof the combustor, nozzle, and i____.

21. High density fuels have high payoff for v_____ limited missiles.

22. The specific impulse of a ducted rocket with large excess fuel from the gas

generator can approach that of a r_____.23. High speed rockets require large p_________ weight.

24.  At the throat, the flow area is minimum, sonic, and c_____ .

25. For an optimum nozzle expansion the nozzle exit pressure is equal to the

a__________ pressure.26. High thrust and chamber pressure are achievable through a large propellant

b___ area.

Propulsion Problems ( cont ) Propulsion Problems ( cont ) 

27. Three approaches to solid rocket thrust magnitude control are pulse motor,pintle motor, and g__ motor.

28.  A high burn exponent propellant al lows a large change in thrust with only a

Page 133: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 133/421

2/24/2008  ELF  133 

small change in chamber p_______.

29. Three tradeoffs in selecting a sol id propellant are safety, observables, ands_______ i______.

30.  A low cost motor case is usually based on steel or aluminum material whilea light weight motor case is usually based on c________ material.

31. Rockets with high chamber pressure or long burn time may require at_______ throat insert.

Outline Outline 

Introduction / Key Drivers in the Design Process

 Aerodynamic Considerations in Tactical Missile Design

Page 134: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 134/421

2/24/2008  ELF  134 

y g

Propulsion Considerations in Tactical Missile Design

Weight Considerations in Tactical Missile Design Flight Performance Considerations in Tactical Missile Design

Measures of Merit and Launch Platform Integration

Sizing Examples Development Process

Summary and Lessons Learned

References and Communication

 Appendices ( Homework Problems / Classroom Exercises,Example of Request for Proposal, Nomenclature, Acronyms,Conversion Factors, Syllabus )

Missile Concept Synthesis Requires Evaluation of Alternatives and Iteration 

Missile Concept Synthesis Requires Evaluation of Alternatives and Iteration 

Establish Baseline

 Al t Mission

Alt Baseline

Define Mission Requirements

Page 135: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 135/421

2/24/2008  ELF  135 

Yes

Trajectory

MeetPerformance?

Measures of Merit and ConstraintsNo

No

Yes

Resize / Alt Conf ig / Subsystems / Tech

 Al t Baseline

 Aerodynamics

Propulsion

Weight

Designing Light Weight Missile Has High Payoff Designing Light Weight Missile Has High Payoff 

Production cost

Page 136: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 136/421

2/24/2008  ELF  136 

Logistics cost

Size

Firepower 

Observables

Mission flexibil ity

Expeditionary warfare

Flight Performance ( Range, Speed,Maneuverability ) Sensitive to Subsystem Weight 

Flight Performance ( Range, Speed,Maneuverability ) Sensitive to Subsystem Weight 

Dome - Seeker - Guidance and Propulsion Wings Stabilizers

Page 137: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 137/421

2/24/2008  ELF  137 

High Sensitivity Low Sensitivity - Minor Sensitivity

Control -

Warhead Insulation FlightControl

Power Supply

Structure DataLink -

Missile Range is a Function of Launch Weight,Propellant Weight, and Specific Impulse 

Missile Range is a Function of Launch Weight,Propellant Weight, and Specific Impulse 

1000

ΔV ≈ -gc Isp ln ( 1 - WPropellant / Wi )

R ≈ V2 sin ( 2θi ) / gc

 Assumptions:

θI = Launch Incidence Angle = 45 deg for maxrange

Thrust Greater Than Drag and Weight

Page 138: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 138/421

2/24/2008  ELF  138 

10

100

100 1000 10000

Wi, Example Initial Launch Weight, lb

    R   m   a

   x ,    M   a   x    i   m   u   m    R   a   n   g   e ,   n   m

Sing le-Stag e Miss ile Two-Stag e Missile

Flat, Non-rotating Earth

For Two-Stage Missi le with ( Wi )Min : ΔV1 = ΔV2

Example: Two-Stage Missi le with Min imumWeight and Rmax = 200 nm = 1.216 x 106 ft

 Assume ISP = 250 sec, WPayload = 500 lb, WInert =0.2 WPropellant

V = [( 32.2 ) ( 1.216 x 106 )]1/2 = 6251 ft / sΔV1 = ΔV2 = V / 2 = 3125 ft / s

Wi,SecondStage = WPayload + WInert + WPropellant = 814 lb

Wi, FirstStage = WInert + WPropellant = 85 + 427 = 512 lb

Wi = Wi,FirstStage + Wi,SecondStage = 1326 lbCompare: Single-Stage Missile, R = 200 nm

ΔV = 6251 = - 32.2 ( 250 ) ln [ 1 – WPropellant / (WPropellant + 0.2 WPropellant + 500 )] ⇒ Wp = 767 ⇒Wi = 1420 lb

Missile Weight Is a Function of Diameter and Length 

Missile Weight Is a Function of Diameter and Length 

1000

10000

W   e    i   g    h    t ,    l    b

WL = 0.04 l d2

Units: WL( lb ), l ( in ), d ( in )

Page 139: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 139/421

2/24/2008  ELF  139 

10

100

1000

100 1000 10000 100000 1000000

ld2, Missile Length x Diameter2, in3

    W    L ,

    M    i   s   s    i    l   e    L   a   u

   n   c    h    W

FIM-92 SA-14 Javelin RBS-70 Starstreak Mistral HOT Trigat LR

LOCAAS AGM-114 Roland RIM-116 Crotale AIM-132 AIM-9M Magic 2Mica AA-11 Python 3 AIM-120C AA-12 Skyflash Aspide AIM-9P

Super 530F Super 530D AGM-65G PAC-3 AS-12 AGM-88 Penguin III AIM-54C

 Arm at Sea Dart Sea Eagle Kormoran II AS34 AGM-84H MIM-23F ANS

MM40 AGM-142 AGM-86C SA-10 BGM-109C MGM-140 SSN-22 Kh-41

Most Subsystems for Tactical Missiles Have a Density of about 0.05 lb / in 3 

Most Subsystems for Tactical Missiles Have a Density of about 0.05 lb / in 3 

Guidance: Flight Control : Warhead: Propellant: Data Link:

Page 140: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 140/421

2/24/2008  ELF  140 

Guidance:0.04 lb / in3

Flight Control :0.04 lb / in3

Warhead:0.07 lb / in3

Propellant:0.06 lb / in3

Structure and Motor Case:0.10 ( Al ) to 0.27 ( steel ) lb / in3

 Aero Surfaces:

0.05 ( bui lt-up Al ) to 0.27 ( solidsteel ) lb / in3

Data Link:0.04 lb / in3

Dome Material:0.1 lb / in3

Modeling Weight, Balance, and Moment-o -Inertia Is Based on a Build-up of Subsystems 

Modeling Weight, Balance, and Moment-o -Inertia Is Based on a Build-up of Subsystems 

Example Missile Configuration EngineInlet SectionWith Fuel

Wing SectionWith Fuel

FuelPl

Nose G&C Warhead

Page 141: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 141/421

2/24/2008  ELF  141 

Model

Structure and Subsystems Engine Structure and Subsystems

Warhead and Structure Fuel

Inlet Structure and Subsystems Aero Surfaces

Legend Assume Uniform Weight Distribut ion For a Given Segment

+x

Inlet

Plug

+z

Nose G&C Warhead

xCG = Σ ( xsubsystem1 Wsubsystem1 + xsubsystem2 Wsubsystem2 + … ) / Wtotal

IY = Σ [ ( Iy,subsystem1 )local + Wsubsystem1 ( xsubsystem1 - xCG )2 / gc + ( Iy,subsystem2 )local + Wsubsystem2 ( xsubsystem2 - xCG )2 / gc + … ]

Moment-o -Inertia Is Higher for High Fineness Ratio Body 

Moment-o -Inertia Is Higher for High Fineness Ratio Body 

100

    L   o   c   a    l     M   o   m   e   n

 C y l i n d e r

 C o n e

( Iy,cylinder )local = [ W d2 / gc ] [ ( 1 / 16 ) + ( 1 / 12 ) ( l / d )2 ]

( Iy,cone )local = [ W d2 / gc ] [ ( 3 / 80 ) + ( 3 / 80 ) ( l / d )2 ]

Page 142: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 142/421

2/24/2008  ELF  142 

0.01

0.1

1

10

0 10 20 30

l / d, Length / Diameter 

    (    I   y ,    l   o   c   a    l     )   g    /    (    W

    d    2    )

 ,    N   o   n    d    i   m   e   n   s    i   o   n   a    l     Y

   a   w

   o    f    I   n   e   r    t    i   a

Example for Ramjet Baseline at Launch ( xcg = 8.04 ft )

 Assume missi le can be approximated as a conical nose-cyl inder 

For the cone, d = 1.25 ft, l / d = 1.57, Wcone = 15.9 lb, xcg,cone = 1.308 ft

For the cyl inder, l / d = 7.22, d = 1.698 ft, Wcylinder = 2214 lb, xcg,cylinder = 8.09 ft

Iy = ( Iy,cone )local + Wcone ( xcg,cone - xCG )2 / gc + ( Iy,cylinder  )local + Wcylinder ( xcg,cylinder  -xCG )2 / gc

( Iy,cone )local = [ 15.9 ( 1.25 )2 / 32.2 ] [ 0.0375 + 0.0375 ( 1.57 )2 ] = 0.10 slug-ft2

( Iy,cylinder  )local = [ 2214 ( 1.698 )2 / 32.2 ] [ 0.0625 + 0.0833 ( 7.22 )2 ] = 872 slug-ft2

Iy = 0.10 + 22.4 + 872 + 0.16 = 895 slug-ft2

Structure Design Factor of Safety Is Greater for Hazardous Subsystems / Flight Conditions 

Structure Design Factor of Safety Is Greater for Hazardous Subsystems / Flight Conditions 

3.0

Pressure Bott le ( 2.50 / 1.50 )Ground Handling Loads ( 1.50 / 1.15 )

Captive Carriage and Separation Flight Loads ( 1.50 / 1.15 )

Page 143: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 143/421

2/24/2008  ELF  143 

2.0

1.0

0

FOS,Factor of Safety

( Ultimate / Yield )

Note:• MIL STDs include envi ronmental ( HDBK-310, NATO STANAG 4370, 810F, 1670A ), strength and rigid ity ( 8856 ), and captivecarr iage ( 8591 ).•The entire environment ( e.g., manufactur ing, transpor tation, storage, ground handling, captive carriage, launch separation,post-launch maneuvering, terminal maneuvering ) must be examined for driving conditions in structure design.•FOS Δ for castings is expected to be reduced in future as casting technology matures.•Reduction in required factor of safety is expected as analysis accuracy improves wi ll result in reduced miss ile weight / cost.

Motor Case ( MEOP ) ( 1.50 / 1.10 )

Free Flight Loads ( 1.25 / 1.10 )

Δ Castings ( 1.25 / 1.25 )

Δ Fittings ( 1.15 / 1.15 )

Thermal Loads ( 1.00 / 1.00 )

Structure Concepts and Manufacturing Processes for Low Parts Count 

Structure Concepts and Manufacturing Processes for Low Parts Count 

Structure Manufacturing Process AlternativesComposites Metals

GeometryAl t t i

Vacuum Assist

VacuumBag /

HighSpeedCompression Filament Thermal

StructureConcept

Al t t iStrip

Page 144: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 144/421

2/24/2008  ELF  144 

 Al ternat ivesRTM

g Autoclave

pMachine

pMold Wind Pultrusion Form FormingCast

MonocoqueIntegrally HoopStiffened

IntegrallyLongitudinalStiffened

Solid

Sandwich

 Axisymmetr ic Ai rf rame

Surface

Lifting Body Ai rf rame

 Al ternat ives

MonocoqueIntegrally HoopStiffened

IntegrallyLongitudinalStiffened

StripLaminate

Note: Manufacturing process cost is a function of recurring cost ( unit material, unit labor ) and non-recurring cos t ( tooling ).

Note: Very Low Parts Count Low Parts Count Moderate Parts Count High Parts Count –

 –

 –

Low Parts Count Manufacturing Processes for Complex Airframes 

Low Parts Count Manufacturing Processes for Complex Airframes 

Vacuum Assisted RTM

Resin Pump

Page 145: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 145/421

2/24/2008  ELF  145 

Filament Wind

Pultrusion ………………………………….

Metal CastingMold Cavity

Riser 

Pour Cup Vent

Parting Line

p3D Fiber Orientation

2D Fiber Orientation ( 0-±45-90 deg )Helical wind versusradial w ind

Tactical Missile Airframe Material Alternatives Tactical Missile Airframe Material Alternatives 

Tension( σTU / ρ )

 Aluminum 2219

MaterialTypeBucklingStability

( σBuckling / ρ )

MaxShort – Life

Temp

ThermalStress

Joining Cost Weight

MetallicIncreasing

 –  –

Page 146: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 146/421

2/24/2008  ELF  146 

Superior Above Average Average Below Average –Note:

Steel PH 15-7Mo

Titanium 6Al-4V

S994 Glass /Epoxy and S994Glass / Polyimide

Glass or Graphite ReinforceMolding

Graphite / Epoxyand Graphite

Polyimide

IncreasingCost

CompositeIncreasingCost

 –

 –

 –  –

 –

 –

Strength –Elasticity of Airframe Material Alternatives Strength –Elasticity of Airframe Material Alternatives 

400

Glass Fiber w / o Matrix

Kevlar Fiber w / o Matrix

Graphite Fiber w / o Matrix

Note:• High strength fibers are:

 – Very small d iameter  – Unidirectional

Hi h d l f

σ

t = P / A = E ε

Page 147: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 147/421

2/24/2008  ELF  147 

 Aluminum Al loy ( 2219-T81 )

300

200

100

0

σt, Tensile Stress,103 psi

0 1 2 3 4 5

ε, Strain, 10-2 in / in

Titanium Alloy ( Ti-6Al-4V )

Very High Strength Stainless Steel( PH 15-7 Mo, CH 900 )

( 400 – 800 Kpsi )

E, Young’s modulus of elasticity, psiP, Load, lbε, Strain, in / in A, Area, in2

Room temperature

 – High modulus of elasticity

 – Very elastic – No yield before failure – Non forgiving failure

• Metals: – Ductile,

 – Yield before failure –  Al low adjacent st ructure

to absorb load – Resist crack formation – Resist impact loads – More forgiving failure

High Strength Stainless Steel( PH 15-7 Mo, TH 1050 )

Structural Efficiency at High Temperature of Short Duration Airframe Material Alternatives Structural Efficiency at High Temperature of Short Duration Airframe Material Alternatives 

10.0

12.0

g    t    h    /

Graphite / Epoxy( ρ = 0.065 lb / in3 )0-±45-90 Laminate

Graphite / Polyimide ( ρ = 0.057 lb / in3 ), 0-±45-90 Laminate

Ti3 Al ( ρ = 0.15 lb / in3 )

Page 148: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 148/421

2/24/2008  ELF  148 

200 400 600 800 1,0000

Short Duration Temperature, ° F

8.0

6.0

4.0

2.0

0

σ    T    U    /ρ ,

    U    l    t    i   m

   a    t   e    T   e   n   s    i    l   e    S    t   r   e   n   g

    D   e

   n   s    i    t   y ,

    1    0    5    I   n . Ti-6Al-4V Annealed Titanium ( ρ = 0.160 lb / in

3

)PH15-7 Mo Stainless Steel ( ρ = 0.277 lb / in3 ). Note:Thin wall steel susceptible to buckling.

Graphite

Glass

2219-T81 Aluminum

( ρ = 0.101 lb / in3 )

Chopped EpoxyComposites,Random Orientation( ρ = 0.094 lb / in3 )

3 ( )

Hypersonic Missiles without External Insulation Require High Temperature Structure 

Hypersonic Missiles without External Insulation Require High Temperature Structure 

    F

2,000    r     =

      1

    r     =

      0 .     8

    r     =

      0 .     9

Tr  = T0 ( 1 + 0.2 r M2 )

( Tmax )Nickel Alloys ( e.g., Inconel, Rene,Hastelloy, Haynes )

( Tmax )Titanium Aluminide ≈ 2,500 °F )

( Tmax )Single Crystal Nickel Aluminides ≈ 3,000 °F( Tmax )Ceramic Matrix Composit e ≈ 3,500 °F

Page 149: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 149/421

2/24/2008  ELF  149 

M, Mach Number 

    T   r ,

    R   e   c   o   v   e

   r   y    T   e   m   p   e   r   a    t   u   r   e ,°

•••

•1,500

1,000

500

010 2 3 4 5 6

Note:

• γ = 1.4

• Tr  = Recovery Temperature, R

• T0 = Free stream temperature, R

• Tmax = Max temperature capabili ty

• No external insulation assumed

• r is recovery factor • h = 40k f t ( TFree Stream = 390 R )• Stagnation r = 1

• Turbulent boundary layer r = 0.9• Laminar boundary layer r = 0.8• Short-duration flight ( less than

30 m ), but with thermal soak

( Tmax )Graphite Polyimide

( Tmax ) Al Al loy

( Tmax )Steel

( Tmax )Ti Alloy•

( Tmax )Graphite Epoxy

Structure / Insulation Trades for Short Duration Flight Structure / Insulation Trades for Short Duration Flight 

Example Structure / Insulation Concepts Mach Tmax k c ρ α

Increasing

Hot Metal Structure ( e.g., Al ) withoutInsulation 600 0.027 0.22 0.101 0.000722

Page 150: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 150/421

2/24/2008  ELF  150 

Hot Metal Structure ( e.g., Al ) 600 0.027 0.22 0.101 0.000722

Cold Metal Structure ( e.g., Al ) 600 0.027 0.22 0.101 0.000722

Internal Insulation ( e.g., Min-K ) 2000 0.0000051 0.24 0.012 0.00000106

Note:• Tactical missiles use passive thermal protection ( no active cooling )• Small thickness allows more propellant / fuel for diameter const rained missi les ( e.g., VLS launcher )• Weight and cost are application specific• Tmax = max temp capability, ° F; k = thermal conduct ivi ty, BTU / s / ft2 / ° F / ft; c = specific heat or thermal

capacity, BTU / lbm / ° F; ρ = density, lbm / in3; α = thermal dif fusivi ty = k / ( ρ c ), ft2 / s

Self-insulating Composite Structure( e.g., Graphite Polyimide ) 1100 0.000109 0.27 0.057 0.00000410

Ext Insulation ( e.g., Micro-Quartz Paint ) 1200 0.0000131 0.28 0.012 0.00000226

Internal Insulation ( e.g., Min-K ) 2000 0.0000051 0.24 0.012 0.00000106

External Insulation Has High Payoff for Short Duration Flight 

External Insulation Has High Payoff for Short Duration Flight 

1,000

900

800    F 4.0

Example Airf rame Temperature wi th No ExternalInsulator – Steel Airf rame Selected.

Page 151: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 151/421

2/24/2008  ELF  151 

800

700

600

500

400

300

200

1000

    E   x   a   m   p    l   e    T   e   m   p   e   r   a    t   u   r   e    °

0 2 4 6 8 10 12 14

1.0

2.0

3.0

MachNumber 

Time After Launch ~ s

Mach

Note: Short Range Air-to-Air MissileLaunch ~ 0.9 Mach at 10k ft Alt itude

 Atmosphere ~ Hot Day ( 1% Risk ) Mi l-HDBK-310

Example Airf rame Temperature with 0.012 in Insulator – Aluminum Ai rf rame Acceptable for Short Duration.

Bulk Ceramics• Melt

Graphites• Burn• ρ ~ 0.08 lb / in3

• Carbon / Carbon

6,000

5,000

Medium Density PhenolicComposites

• Char • ρ ~ 0.06 lb / in3

• Nylon Phenolic, Silica

Phenolic Composites Are Good Insulators for High Temperature Structure and Propulsion Phenolic Composites Are Good Insulators for High Temperature Structure and Propulsion 

Page 152: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 152/421

2/24/2008  ELF  152 

Melt• ρ ~ 0.20 lb / in3

• Zirconium Ceramic,Hafnium Ceramic

Tmax, MaxTemperatureCapability,

R

4,000

3,000

2,000

00 1 2 3 4

Insulation Effic iency, Minutes To Reach 300° F at Back Wall

1,000

Note: Assumed Weight Per Unit Area of Insulator / Ablator = 1 lb / ft2

Porous Ceramics• Melt• Resin Impregnated• ρ ~ 0.12 lb / in3

• Carbon-SiliconCarbide

y o e o c, S caPhenolic, Glass

Phenolic, CarbonPhenolic, GraphitePhenolic

Low DensityComposites

• Char 

• ρ ~ 0.03 lb / in3

• Micro-QuartzPaint, Glass-Cork-Epoxy,Silicone Rubber 

Plastics

• Sublime• Depolymerizing• ρ ~ 0.06 lb / in3

• Teflon

A “Thermally Thin” Surface ( e.g., Metal Airframe ) Has Uniform Internal Temperature A Thermally Thin Surface ( e.g., Metal 

Airframe ) Has Uniform Internal Temperature 

1000

r   e    R   a    t   e    f   o   r

/   s   e   c

( dT / dt )t = 0 = ( Tr  - Tinitial ) h / ( c ρ z )

T = Tr  – ( Tr  – Tinitial ) e – h t / ( c ρ z )

h = k NNU / x

Thermally thin ⇒ h ( z / k )surface < 0.1

Example for Rocket Baseline Airf rame:

 Aluminum skin w/o external insulationc = 0.215 BTU / lb / R, ρ = 0.10 lb / in3 = 172.8 lb / f t3,z = 0.16 in = 0.0133 ft, k = 0.027 BTU / s / f t2 / R / ft

 Assume Mach 2 sustain f light, 20k f t al ti tude ( T0 =447 R , k = 3.31 x 10-6 BTU / s / ft2 / R / ft ), Turbulentb d l 1 6 ft

x = 1.6 ft

Page 153: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 153/421

2/24/2008  ELF  153 

1

10

100

0 1 2 3 4 5 6

M, Mach Number 

    d    T    /    d

    t ,    I   n    i    t    i   a    l    S    k    i   n    T   e   m   p   e   r

   a    t   u   r

    R   o   c    k   e    t    B   a   s   e    l    i   n   e ,    D   e   g    F    /

h = sea level h = 20K ft h = 50K ft h = 80K ft

Note: No external insulation; thermally thin struc ture ( uniform internal temperature ); “ Perfect” insulation behind airframe; 1-Dheat transfer; Turbulent boundary layer; Radiation neglected; dT / dt = Temperature rate, R / s; Tr  = Recovery ( max )temperature, R; h = Convection heat transfer coeffic ient, BTU / s / ft2 / R; c = Specific heat, BTU / lb / R; ρ = Densi ty, lb / ft3; z =Thickness, ft; k = Conduct ivi ty, BTU / s / ft2 / R / ft; Re = Reynolds number; NNU = Nusselt number 

boundary layer, x = 1.6 ft

Rex = ρ0 M a0 x / μ0 = 12.56 x 106

NNU = 0.0271 Re0.8 = 12947

h = k NNU / x = 0.0268 BTU / s / ft2 / R

Test: h ( z / k )surface = 0.0132 < 0.1 ⇒ thermally thin

Calculate Tr 

= T0

[ 1 + 0.2 r M2 ] = 447 [ 1 + 0.2 ( 0.9 )( 2 )2 ] = 769 R

 At t = 0, Assume Tinitial = 460 R, or 0° F

( dT / dt )t = 0 = ( 769 - 460 ) ( 0.0268 ) / [( 0.215 )(172.8 ) ( 0.01333 )] = 17°F / s

 At a sustain time t = 10 s, T = 769 - ( 769 – 460 ) e –

0.0268 ( 10 ) / [ 0.215 ( 172.8 ) ( 0.0133 )]

= 589 R, or 129° F

Reference: Jerger, J.J.,Systems Preliminary Design Principles of Guided Missile Design,D. Van Nostrand Company, Inc., Princeton, New Jersey, 1960

A “Thermally Thick” Surface ( e.g., Radome ) Has a Large Internal Temperature Gradient 

A “Thermally Thick” Surface ( e.g., Radome ) Has a Large Internal Temperature Gradient 

1

[ T ( z, t ) - Tinitial ] / [ Tr  – Tinitial ] = erfc { z / [ 2 ( α t )1/2 ] } – e( h z / k ) + h2 α t / k2erfc { z / [ 2 ( α t )1/2 ] + h ( α t )1/2 / k }

[ T ( 0, t ) - Tinitial ] / [ Tr  – Tinitial ] = 1 - eh2

α t / k2

erfc [ h ( α t )1/2 / k ] Appl icable fo r thermal ly th ick sur face: z / [ 2 ( α t )1/2 ] > 1

Example: Rocket Baseline Radome

z = 0.25 in = 0.0208 ft, k = 5.96 x 10-4 BTU / s / ft / R,

= 1 499 x 10-5 ft 2 / s1T    )    i   n    i    t    i   a    l    ] X = 1.6 ft

k=    0

Page 154: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 154/421

2/24/2008  ELF  154 

0

0.5

0.1 1 10 100

Note: T ( z,t ) ∼ ( T )initial; 1-D heat transfer; Radiation neglected; Turbulent boundary layer; Tr  = Recovery temperature, R; h =Heat transfer coeffic ient, BTU / ft2 / s / R; k = Thermal conduct ivity o f material, BTU / s / ft2 / R / ft ; α = Diffusivity o f material,ft 2 / s; zmax = Thickness of material, ft; erfc = Complementary error function

α = 1.499 x 10 5 ft 2 / s

Mach 2, 20k ft alt ( T0 = 447 R ), Turbulent boundary layer,x = 19.2 in = 1.6 ft, t = 10 s, Tr = 769 R, Tinitial = 460 R

⇒ h = 0.0268 BTU / s / ft ⇒ ( h / k )( α t )1/2 = 0.491

Test: z / [ 2 ( α t )1/2 ] = 0.0208 / { 2 [ 1.499x10-5 ( 10 )]1/2 } =0.849 < 1 ⇒ not quite thermally thick

Inner wall ⇒ h z / k = 0.935[ T ( 0.0208, 10 ) - Tinitial ] / [ Tr  – Tinitial ] = 0.0608

T ( 0.0208, 10 ) = 479 R ( Note: Tinner ≈ Tinitial )

Surface ⇒ h z / k = 0

[ T ( 0, 10 ) - Tinitial ] / [ Tr  – Tinitial ] = 0.372

T ( 0, 10 ) = 575 R

Reference: Jerger, J.J.,Systems Preliminary Design Principles of Guided Missile Design,D. Van Nostrand Company, Inc., Princeton, New Jersey, 1960

( h / k )( α t )1/2

         h        z

          /          k

       =         1

        0        0

        h       z         / 

        k        1

       0

        h       z         / 

        k       =        1

    h    z     /     k    =

    0 .   1

    [    T    (   z ,    t

    )  -    (    T    )    i   n    i    t    i   a    l    ]    /    [    (    T    )   r  –    (    T

    h    z    /     k 

   

Internal Insulation Temperature Can Be Predicted Assuming Constant Flux Conduction 

Internal Insulation Temperature Can Be Predicted Assuming Constant Flux Conduction 

1

[ T ( z, t ) – Tinitial ] / [ T ( 0, t ) – Tinitial ] = e- z2 / ( 4 α t ) – ( π / α t )1 / 2 ( z / 2 ) erfc { z / [ 2 ( α t )1/2 ]}

 Appl icable for thermally thick surface: z / [ 2 ( α t )1/2

] > 1 Example for Rocket Baseline Air frame Insulation:

0.10 in Min-K Internal Insulation behind 0.16 in aluminumSkin

X = 1.6 fti    t    i   a

    l    ]

 Aluminum

Min K

0.16 in

0 10 in

Page 155: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 155/421

2/24/2008 ELF  155 

0

0.5

0.1 1 10 100

Note: 1-D conduction heat transfer, Radiation neglected, Constant heat flux input, T ( z,t ) = Inner temperature of insulationat time t, Tinitial = Initial temperature, T ( 0, t ) = Outer temperature of insulation at time t, α = Diffusivity o f insulation material,ft 2 / s; zmax = Thickness of insulation material, ft; erfc = Complementary error function

 Assume M = 2, 20k f t alt , x = 1.6 ft , Tinitial = 460 R, t = 10 s,zMin-K = 0.10 in = 0.00833 ft , αMin-K = 0.00000106 ft2 / s, k =5.96 x 10-4 BTU / s / f t, h = 0.0268 BTU / s / f t

Test: z / [ 2 ( α t )1/2 ] = 0.00833 / {2 [ 0.00000106 ( 10 )]1/2} =1.279 > 1 ⇒ thermally thick

( α t )1/2 / z = [ 0.00000106 ( 10 ) ] 1/2 / 0.00833 = 0.3907

[ TMin-K ( 0.0217, 10 ) – 460 ] / [ TMin-K ( 0, 10 ) – 460 ] = 0.0359

 Assume ( Tinner  )aluminum = ( Touter )Min-K

From prior example, ( Tinner )aluminum = 569 R at = 10 s

Then, ( Touter )Min-K = 569 R at t = 10 s

Compute, ( Tinner )Min-K = 460 + ( 569 – 460 ) 0.0338 = 460 + 4= 464 R

Reference: Carslaw, H. S. and Jaeger, J. C.,Conduction of Heat in Solids, Clarendon Press, 1989

( α t )1/2 / z

    [    T    (   z ,    t    )  –

    T    i   n    i    t    i   a    l    ]    /    [    T    (    0 ,

    t    )  –

    T    i   n    i Min-K 0.10 in

z

A Sharp Nose Tip / Leading Edge Has High Aerodynamic Heating 

A Sharp Nose Tip / Leading Edge Has High Aerodynamic Heating 

0.4

0.5

0.6

r   a   n   s    f   e   r    C   o   e    f    f    f   o   r

0    k    f    t ,    B    T    U    /    f    t    2    /   s    /    R

hr = NNUr kr  / dNoseTip

NNUr  = 1.321 RedNoseTip0.5 Pr 0.4

Example for Rocket Baseline Nose Tip:

 Assume M = 2, 20k f t alt , stagnation ( Tr  = 805R ) for a sharp nose tip ( e.g., 1% blunt )

dNoseTip / dRef  = 0.01 ⇒ dNoseTip = 0.01 ( 8in ) = 0.08 in = 0.00557 ft

R V d / 3 39 104

Page 156: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 156/421

2/24/2008 ELF  156 

0

0.1

0.2

0.3

0 1 2 3 4 5 6

M, Mach Number 

    h   r ,    S    t   a   g   n   a    t    i   o   n    H   e   a

    t    T   

    R   o   c    k   e    t    B   a   s   e    l    i   n   e   a    t    h   =    2    0

1% Bluntness 2% Bluntness

5% Bluntness 10% Bluntness

Note: 1-D conduction heat transfer; Laminar boundary layer; Stagnation heating; Radiation neglected; hr  = Convectionheat transfer coefficient fo r stagnation recovery, BTU / s / ft2 / R; NNUr 

= Nusselt number for stagnation recovery; kr  = Ai r thermal conductivi ty at s tagnat ion recovery ( total ) temperature, BTU / s / ft / R; dNoseTip = Nose tip diameter, ft;RedNoseTip = Reynolds number based on nose tip diameter, Pr  = Prandtl number 

RedNoseTip = ρ0 V0 dNoseTip / μr  = 3.39 x 104

NNUr = 223

hr = 0.1745 BTU / ft2 / s / R

Outer surface temperature after 10 s heatingin sustain flight ( M = const, Tr  = const ):

[ T ( 0, t ) - Tinitial ] / [ Tr  – Tinitial ] = 1 – eh2αt / k2

erfc { h ( α t )1/2 / k }

[ T ( 0, 10 ) - 460 ] / [ 805 – 460 ] = 1 – e [( 0.1745 )2

( 1.499 x 10-5 ) ( 10 ) / ( 5.96 x 10-4 )2 ] erfc { ( 0.1745 ) [1.499 x 10-5 ( 10 )]1/2 / ( 5.96 x 10-4 )]} = 0.845

T ( 0, 10 ) = 460 + 345 ( 0.845 ) = 752 R

Reference: Allen, J. and Eggers, A. J., “A Study of the Motion and Aerodynamic Heating of BallisticMissiles Entering the Earth’s Atmosphere at High Supersonic Speeds”, NACA Report 1381, April 1953.

Tactical Missile Radiation Heat Loss Is Usually Small Compared to Convective Heat Input 

Tactical Missile Radiation Heat Loss Is Usually Small Compared to Convective Heat Input 

10

100QRad = 4.76 x 10

-13

ε T4

QRad in BTU / ft2 / s, T in R

Example: Ramjet Baseline

 Assume:

•Titanium skin wi th emissivity =

Page 157: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 157/421

2/24/2008  ELF 157 

0.01

0.1

1

10

0 1 2 3 4 5 6

Cruise Mach Numb er 

Radiation Heat

Flux at

Equilibrium

Temperature,

BTU / ft2 / s

Emissivity = 0.1 Emissivity = 1

•Titanium skin wi th emissivity ε =

0.3•Long duration ( equilib rium )heating at Mach 4

•h = 80k ft , T0 = 398 R

•Turbulent boundary layer ( r =0.9 ) ⇒ T = Tr  = T0 ( 1 + 0.2 r M2 ) =

1513 R

Calculate:

QRad = 4.76 x 10-13 ( 0.3 ) ( 1513 )4

= 0.748 BTU / ft2 / s

Design Concerns for Localized Aerodynamic Heating and Thermal Stress 

Design Concerns for Localized Aerodynamic Heating and Thermal Stress 

Body JointsH t i il h ll

Flare / Wedge Corner FlowShock wave – boundary layer 

interaction

Page 158: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 158/421

2/24/2008  ELF 158 

Hot missile shellCold frames or bulkheadsCauses premature buckling

IR Domes / RF RadomesLarge temp gradients due to low thermal conduct ionThermal st ress at attachmentLow tensile strengthDome fails in tension

Leading Edges

Hot stagnation temperature on leading edgeSmall radius prevents use of external insulationCold heat sink material as chord increases in thickness

leads to leading edge warpShock wave interaction with adjacent body structure

Separated FlowHigh heating at reattachment

Note: σTS

= Thermal stress from restraint in compression or tension = α E ΔT

α = coefficient of thermal expansion, E = modulus of elasticity, ΔT = T2 – T1 = temperature difference.

Example: Thermal Stress for Rocket Baseline Pyroceram Dome, α = 3 x 10-6, E = 13.3 x 106 psi

 Assume M = 2, h = 20k f t alt , t = 10 s. Based on prior figure, ΔT = TOuterWall – TInnerWall = 102 R

Then σTS = 3 x 10-6 ( 13.3 x 106 ) ( 102 ) = 4,070 psi

Examples of Aerodynamic Hot Spots Examples of Aerodynamic Hot Spots 

Nose Tip

Page 159: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 159/421

2/24/2008  ELF 159 

Leading Edge

Flare

Tactical Missile Body Structure Weight Is about 22% of the Launch Weight 

Tactical Missile Body Structure Weight Is about 22% of the Launch Weight 

1000

W   e    i   g    h    t ,    l    b

Hellf ire ( 0.22 )

Sidewinder ( 0.23 )

Sparrow ( 0 18 )

WBS

/ WL≈ 0.22

Page 160: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 160/421

2/24/2008  ELF  160 

10

100

100 1000 10000

WL, Launch Weight, lb

    W    B    S ,    B

   o    d   y    S    t   r   u   c    t   u   r   e

    W Sparrow ( 0.18 )

Phoenix ( 0.19 )

Harpoon ( 0.29 )

SM 2 ( 0.20 )

SRAM ( 0.21 )

 ASALM ( 0.13 )

SETE ( 0.267 )

Tomahawk ( 0.24 )

TALOS ( 0.28 )

Example for 500 lb missile

WL = 500 lb

WBS = 0.22 ( 500 ) = 110 lb

Note: WBS includes all load carry ing body structure. If motor case, engine, or warhead case carry externalloads then they are included in WBS. WBS does not include tail, wing, or other surface weight.

Body Structure Thickness Is Based on Considering Many Design Conditions Body Structure Thickness Is Based on Considering Many Design Conditions 

Structure Design Conditions That May Drive Air frame Thickness

Manufacturing

Transportation

Carriage

Launch

Page 161: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 161/421

2/24/2008  ELF  161 

Fly-out Maneuvering

Contributors to Required Thickness for Cylindrical Body Structure

Minimum Gage for Manufacturing: t = 0.7 d [( pext / E ) l / d ]0.4. t ≈ 0.06 in i f pext ≈ 10 psi

Localized Buck ling in Bending: t = 2.9 r σ / E

Localized Buckling in Ax ial Compression: t = 4.0 r σ / E

Thrust Force: t = T / ( 2 π σ r )

Bending Moment: t = M / ( π σ r 2 )

Internal Pressure: t = p r / σ

High Risk ( 1 ), Moderate Risk ( 2 ), and Low Risk ( 3 ) Estimates of Required Thickness1. t = FOS x Max ( tMinGage , tBuckling,Bending , tBuckling,AxialCompression , t AxialLoad , tBending , tInternalPressure )

2. t = FOS x ( t2MinGage + t2

Buckling,Bending + t2Buckling,AxialCompression + t2

 Ax ialLoad + t2Bending + t2

InternalPressure )1/2

3. t = FOS x ( tMinGage + tBuckling,Bending + tBuckling,AxialCompression + t AxialLoad + tBending + tInternalPressure )

Localized Buckling May Be A Concern fo Thin Wall Structure 

Localized Buckling May Be A Concern fo Thin Wall Structure 

0.1

    S    t   r   e   s   s

Bending

 Axial Compression

σBuckling,Bending

/ E ≈ 0.35 ( t / r )

σBuckling,AaxialCcompression / E ≈ 0.25 ( t / r )

Note: Thin wall cylinder with local buckling

σBuckling / E = Nondimensional buckling stress

Buckling stress in bending

r t

Page 162: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 162/421

2/24/2008  ELF  162 

0.0001

0.001

0.01

0.001 0.01 0.1

t / r, thickness / radius

    N   o   n    d    i   m   e

   n   s    i   o   n   a    l     B   u   c    k    l    i   n   g

σBucklingBending= Buckling stress in bending

σBucklingAxialCompression = Buckling st ress in axialcompression

E = Young’s modulus of elasticity

t = Air frame thickness

r = Air frame radiusMin thickness for fab and handling ≈ 0.06 in

Example for Rocket Baseline in Bending:

4130 steel motor case, E = 29.5 x 106 psi

σyield = 170,000 psi

t = 0.074 in, r = 4 in

t / r = 0.0185

σBuckling,Bending / E ≈ 0.35 ( 0.0185 ) = 0.006475σbuckling,Bending ≈ 191,000 psiσbuckling,Bending ~ σyield

Note: Actual buckling stress can vary +/- 50%, depending upon typicalimperfections in geometry and the loading.

Process for Captive and Free Flight Loads Calculation 

Process for Captive and Free Flight Loads Calculation 

Free Flight

Maneuver Per Design Requirements

Captive Flight

Max Aircraft Maneuver Per MIL-A-8591

Carriage Load

Page 163: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 163/421

2/24/2008  ELF  163 

Weight loadof bulkhead

section

 Ai r LoadObtainedBy WindTunnel

 Ai r Load

Weight loadof bulkhead

section

 Ai r Load

Note: MIL-A-8591 Procedure A assumes max air loads combine with max g forces regardless of angle of attack.

Example of αmax Calculated by MIL-A-8591 UsingProcedure A fo r F-18 Aircraft Carriage:

αmax = 1.5 nz,max Wmax / ( CLα q SRef  )aircraft

αmax = 1.5 ( 5 ) ( 49200 ) / [ 0.05 ( 1481 ) ( 400 )] =12.5 deg

Maximum Bending Moment Depends Upon Load Distribution 

Maximum Bending Moment Depends Upon Load Distribution 

Example for Rocket Baseline:

c = 4, ejection load

l = 144 in

N = 10,000 lb ( 20 g )

⇒ MB = 360,000 in-lb

Max Bending

MB = N l / c

C = 8 for uniform loading

C = 7.8 for linear loading

Total Coefficient C Length l

w = load per unit length

0 l = length

Page 164: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 164/421

2/24/2008  ELF  164 

Moment MB

C 7.8 for li near loading

C = 6 for linear loading to center 

C = 4 for load at center ( e.g., ejection load )

6

440,00030,000

20,000

4 1 3

2 5

100

200

1,000,000

2,000,000

5,0004,0003,000

2,000

1,000

500

400300

200

100

500,000400,000300,000200,000

100,000

LoadN

g

8 7.8100,000

50,000

10,000

50,00040,00030,00020,000

10,000

5,0004,0003,0002,000

1,000

500400300200

100

w

0 l

w

0 l

l0

N = Normal Force

l / 2

10

C = 1 for load at end ( e.g., contro l force )

N = Normal Force

l0

l

1

Bending Moment May Drive Body Structure Weight 

Bending Moment May Drive Body Structure Weight 

 A = 2 π r tIz = IY = π r 3 t

tt

MB

Page 165: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 165/421

2/24/2008  ELF  165 

Example for Rocket Baseline:• Body has circular cross section• 2219-T81 aluminum skin ( σult = 65,000 psi )• r = 4 in• Ejection load = 10,000 lb ( 20 g )• M

B= 360,000 in ⋅ lb

• FOS = 1.5• t = 360,000 ( 1.5 ) / [ π ( 4 )2 ( 65,000 )] = 0.16 in

t = MB ( FOS ) / [ π r 2 σMax ] Note / Assumptions:

Thin cylinder 

Circular cross section

Solid skin

Longitudinal strength

 Axial load stress and thermalstress assumed small comparedto bending moment st ress

σ = MB r / IZ = MB r / (π r 3 t )

= MB / (π r 2 t )

Tactical Missile Propellant Weight Is about 72%of Rocket Motor Weight 

Tactical Missile Propellant Weight Is about 72%of Rocket Motor Weight 

10000

g    h    t ,    l Hellf ire ( 0.69 )

Sidewinder ( 0.61 )

WP / WM ≈ 0.72

Page 166: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 166/421

2/24/2008  ELF  166 

10

100

1000

10 100 1000 10000

WM, Total Motor Weight, lb

    W    P ,

    P   r   o   p   e    l    l   a   n    t    W   e    i

   

Sparrow ( 0.64 )Phoenix ( 0.83 )

 ASALM ( 0.86 )

SM-2 ( 0.76 )

SRAM ( 0.71 )TALOS ( 0.66 )

Example for Rocket BaselineWM = 209 lb

WP = 0.72 ( 209 ) = 150 lb

Note: WM includes propellant, motor case, nozzle, and insulation.

Increased propellant fraction if:

High volumetric loading

Composite case

Low chamber pressure

Low flight loads

Short burn time

Motor Case Weight Is Usually Driven By Stress from Internal Pressure 

Motor Case Weight Is Usually Driven By Stress from Internal Pressure 

 Assume motor case is axisymmetric, wi th a front ellipsoid domeand an aft cylinder body

Motor CaseCylinder  σt t = - 0∫

π/2p r sinθ dθ

Page 167: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 167/421

2/24/2008  ELF  167 

With metals – the material also reacts body bending

In composite motor designs, extra ( longitudinal ) fibers must usually beadded to accommodate body bending

HoopStress

Motor Dome

EllipsoidLongitudinalStress

p p

( σt )Longitudinal Stress

= [ 2 + ( a / b )

2

] p ( a b )

1/2

/ ( 6 t )

If a = b ( hemi dome of radius r ),then ( σt )Longitudinal Stress = p r / ( 2 t )

( σt )Hoop Stress = p r / t

Case Dome Nozzle

Case Cylinder 

2 a

b

A Composite Motor Case Is Usually Lighter Weight 

A Composite Motor Case Is Usually Lighter Weight 

Calculate Maximum Effective Operating Pressure ( Burst Pressure )

pburst = pBoost, Room Temp x eπk Δ T x ( Design Margin for Ignition Spikes, Welds, Other Design Uncertainty )

 Assume Rocket Motor Baseline: diameter = 8 in., length = 55 in, ell ipsoid dome a / b = 2, pBoost,RoomTemp =1769 psi, πk = ( Δp / ΔT ) / pc = 0.14% / °F

 Assume Hot day T = 160° F ⇒ eπk ΔT = e0.0014 ( 160 - 70 ) = 1.134. Uncertainty factor is 1.134, 1σ

Page 168: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 168/421

2/24/2008  ELF  168 

 Assume a 3σ uncertainty design margin is provided by, pburst ≈ 1769 x ( 1.134 )3 = 2,582 psi

 Assume Ultimate Factor of Safety FOS = 1.5

Rocket Baseline Steel Case ( σt )ult = 190,000 psi

tHoop

= ( FOS ) x pburst x r / σt = 1.5 x 2582 x 4.0 / 190,000 = 0.082 in

tDome = ( FOS ) x pburst x ( a b )1/2 x [ 2 + ( a / b )2 ] / ( 6 σt ) = 1.5 x 2582 x [ 4 x 2 ]1/2 x [ 2 + ( 2 )2 ] / [ 6 x 190,000 ]= 0.058 in

Weight = WCylinder + WDome = ρ π d tHoop l + ρ ( 2 π a b ) tDome = 30.8 + 0.8 = 31.6 lb for steel case

Try Graphite Fiber at σt = 450,000 psi Ultimate, Assume 60% Fiber / 40% Epoxy Composite

tHoop = 1.5 x 2582 x 4.0 / [ 450,000 ( 0.60 )] = 0.057 in radial f ibers for internal pressure load

tDome = 0.041 in, for internal pressure load

Weight = 11.1 lb for composite case ( w/o insulation, attachment, aft dome, and body bending f iber )

Must also add about 0.015 in of either longitudinal fibers or helical wind to counteract body bending load

A Low Aspect Ratio Delta Wing Allows Lighter Weight Structure 

A Low Aspect Ratio Delta Wing Allows Lighter Weight Structure 

2

3

WSurface σmax1/2 / [ ρ S Nmax

1/2 ] = [ A ( 1 + 2 λ )]1/2

WSurface = ρ S tmac

troot = [ FOS Nmax A ( 1 + 2 λ ) / σmax,]1/2

 Assumption: Uni form loading

Note:

Surface is 2 panels ( Cruci form wing has 4 panels )

WSurface = Surface weight sized by bending moment

ρ = Density

σmax = Maximum allowable ( ultimate ) stress

tmac = Thickness of mean aero chord cmac  -    d    i   m   e   n   s    i   o   n   a    l    W   e    i   g    h    t

Page 169: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 169/421

2/24/2008  ELF  169 

0

1

0 1 2 3

A, Aspect Ratio

 

Taper Ratio = 0 Taper ratio = 0.5 Taper Ratio = 1

troot = Thickness of root chord c root

Nmax = Maximum load

 A = Aspect rat io

λ = Taper ratio

Example for Rocket Baseline Wing ( 2219-T81

 Aluminum ): A = 2.82, λ = 0.175, cr  = 19.4 in, σmax =σul t = 65k psi

 Assume M = 2, h = 20k f t, α + δ = 22 deg

From prior example, Nmax = 7525 lb

Calculate troot = [ 1.5 ( 7525 ) ( 2.82 ) [ 1 + 2 ( 0.175 ) /65000 ]1/2 = 0.813 in

troot / croot = 0.813 / 19.4 = 0.0419 = tmac / cmac

tmac = 0.0419 ( 13.3 ) = 0.557 in

Wwing σmax1/2 / [ ρ S Nmax

1/2 ] = [ A ( 1 + 2 λ )]1/2.= 1.95

Wwing = 20.6 lb for 1 wing ( 2 panels )

    W    S   u   r    f   a   c   eσ   m   a   x

    1    /    2

    /    (ρ

    S    N   m   a   x

    1    /    2    ) ,    N   o   n

Seeker Dome

Material

Density( g / cm3 )

DielectricConstant

MWIR /LWIR

Bandpass

TransverseStrength( 103 psi )

ThermalExpansion( 10-6 / ο F )

Erosion,Knoop ( kg

/ mm2 )

Max Short -Duration

Temp ( ο F )

RF-IR Seeker 

Zinc Sulfide( ZnS )

4.05 8.4 18 4 350 700

Zinc Selenide 5.16 9.0 8 4 150 600

Dome Material Is Driven by the Type of Seeker and Flight Environment 

Dome Material Is Driven by the Type of Seeker and Flight Environment 

Page 170: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 170/421

2/24/2008  ELF  170 

( ZnSe)Sapphire /Spinel

3.68 8.5 28 3 1650 1800

Quartz / FusedSilica ( SiO2)

2.20 3.7 8 0.3 600 2000

Silicon Nitride( Si3N4)

3.18 6.1 90 2 2200 2700

Diamond ( C ) 3.52 5.6 400 1 8800 3500RF Seeker 

Pyroceram 2.55 5.8 25 3 700 2200Polyimide 1.54 3.2 17 40 70 400IR Seeker 

Mag. Fluoride( MgF2)

3.18 5.5 7 6 420 1000

 Alon( Al23O27N5)

3.67 9.3 44 3 1900 1800

Germanium( Ge )

5.33 16.2 15 4 780 200

Superior Above Average Average Below Average - Poor 

-

--

- --

--

Page 171: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 171/421

Missile Electrical Power Supply Alternatives Missile Electrical Power Supply Alternatives 

Power SupplyMeasure of Merit

C t

Storage Life

Thermal BatteryLithium BatteryGenerator 

W = WE E + WP P

Page 172: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 172/421

2/24/2008  ELF  172 

Voltage Stabil ity

0.31.51.4WP, Weight / Power ( kg / kW )

0.01250.00120.0007WE, Weight /Energy

( kg / kW-s )

Cost

Superior Above Average Average Below Average

Example for Thermal battery: If E = 900 kW–s, P = 3 kW ⇒ W = WEE + WPP = 0.0125 ( 900 ) + 0.3 ( 3 ) = 12.2 kg

Note: Generator provides highest energy with l ight weight for long time of fl ight ( e.g., cruise missile ).

Lithium battery provides nearly constant voltage suitable for electronics. Relatively high energy with light weight.

Thermal battery provides highest power with light weight ( may be required for actuators ).

Electromechanical Actuators Are Light Weight and Reliable 

Electromechanical Actuators Are Light Weight and Reliable 

HydraulicCold Gas PneumaticEMMeasure of Merit

Up to 1000Up to 600Up to 800Rate ( deg / s )

0.00340.00500.0025WT, Weight / Stall Torque ( lb /in-lb )

W = WT TS

Page 173: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 173/421

2/24/2008  ELF  173 

Superior Above Average Average Below Average

Reliability

Cost

Up to 60Up to 20Up to 40Bandwidth ( Hz )

Note:

• Actuation system weight based on four actuators.

•Cold gas pneumatic actuation weight includes actuators, gas bot tle,valves, regulator, and supply lines.

•Hydraulic actuation weight includes actuators, gas generator or gasbottle, hydraulic reservoir, valves, and supply lines.

•Stall torque ≈ 1.5 maximum hinge moment of s ingle panel.

Example weight for rocket baseline hydraulic actuation at Mach 2, 20k ft alt , α = 9 deg, with max control deflection of wing ( δ= 13 deg ) ⇒ Hinge moment of one panel = 11,500 in-lb. TS = 1.5 ( 11500 ) = 17,250 in-lb ⇒ W = WTTS = 0.0034 ( 17250 ) = 59 lb

Schematic of Cold Gas Pneumatic Actuation

Examples of Electromechanical Actuator Packaging 

Examples of Electromechanical Actuator Packaging 

Canard ( Stinger ) ……………

Tail ( AMRAAM )

Page 174: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 174/421

2/24/2008  ELF  174 

Tail ( AMRAAM ) …………………………………………………………………

Jet Vane / Tail ( Javelin ) ……

Movable Nozzle ( THAAD ) ……………………………………………………………

Summary of Weight Summary of Weight 

Conceptual Design Weight Prediction Methods and WeightConsiderations Missile system weight, cg, moment of inertia

Factors of safety

 Aerodynamic heating

St t

Page 175: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 175/421

2/24/2008  ELF  175 

Structure

Dome

Propulsion

Insulation

Power supply

 Actuator 

Manufacturing Processes for Low Parts Count, Low Cost

Precision castings Vacuum assisted RTM

Pultrusion / Extrusion

Filament winding

Summary of Weight ( cont ) Summary of Weight ( cont ) 

Design Considerations

 Airframe materials

Insulation materials

Seeker dome materials

Thermal stress

Aerodynamic heating

Page 176: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 176/421

2/24/2008  ELF  176 

 Aerodynamic heating

Technologies

MEMS

Composites

Titanium alloys

High density insulation

High energy and power density power supply

High torque density actuators

Discussion / Questions?

Classroom Exercise ( Appendix A )

Weight Problems Weight Problems 

1. Propulsion system and structure weight are driven by f_____ o_ s_____

requirements.

2. For a ballistic range greater than about 200 nautical miles, a t__ s____ missileis lighter weight.

3. Tactical missile weight is proportional to v_____.

4 Subsystem d for tactical missiles is about 0 05 lb / in3

Page 177: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 177/421

2/24/2008  ELF  177 

4. Subsystem d______ for tactical missiles is about 0.05 lb / in3

5. Modeling weight, balance, and moment-of-inertia is based on a build-up of s_________.

6. Missile structure factor of safety for free flight is usually about 1.25 for ultimate loads and about 1.10 for y____ loads.

7. Manufacturing processes that can allow low parts count include vacuumassisted resin transfer molding of composites and c______ of metals.

8.Low cost airframe materials are usually based on aluminum and steel whi lelight weight airframe materials are usually based c________ materials.

9. Graphite f iber has high strength and high m______ o_ e_________.

Weight Problems ( cont ) Weight Problems ( cont ) 

10. The recovery factors of stagnation, turbulent boundary layer, and laminar 

boundary layer are 1.0, 0.9, and ___ respectively.

11. The most popular types of insulation for temperatures greater than 4,000 Rare charring insulators based on p_______ composites.

12. Tactical missiles experience transient heating, and with increasing time

the temperature approaches the r temperature

Page 178: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 178/421

2/24/2008  ELF  178 

the temperature approaches the r_______ temperature.

13. The inner wall temperature is nearly the same as the surface temperaturefor a t________ t___ structure.

14.  A thermally thick surface is a good i________.

15.  A low conductivity structure is susceptible to thermal s_____.

16. The minimum gauge thickness is often set by the m____________ process.

17.  A very thin wall structure is susceptible to localized b_______.

18. Ejection loads and flight control loads often result in large b______moment.

19.  An approach to increase the tactical missile propellant / motor weightfraction over the typical value of 72% would be c________ motor case.

Weight Problems ( cont ) Weight Problems ( cont ) 

20. The required rocket motor case thickness is often driven by thecombustion chamber p_______.

21.  A low aspect ratio delta wing has reduced w_____.

22. For low speed missi les, a popular infrared dome material is z___ s______.

23. A thermal battery provides high p

Page 179: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 179/421

2/24/2008  ELF  179 

23.  A thermal battery provides high p____.24. The most popular type of actuator for tactical missiles is an

e________________ actuator.

Outline Outline 

Introduction / Key Drivers in the Design Process

 Aerodynamic Considerations in Tactical Missile Design

Propulsion Considerations in Tactical Missile Design

Weight Considerations in Tactical Missile Design

Flight Performance Considerations in Tactical Missile Design

Page 180: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 180/421

2/24/2008  ELF  180 

Flight Performance Considerations in Tactical Missile Design

Measures of Merit and Launch Platform Integration

Sizing Examples

Development Process

Summary and Lessons Learned

References and Communication

 Appendices ( Homework Problems / Classroom Exercises,Example of Request for Proposal, Nomenclature, Acronyms,Conversion Factors, Syllabus )

Missile Concept Synthesis Requires Evaluation of Alternatives and Iteration 

Missile Concept Synthesis Requires Evaluation of Alternatives and Iteration 

Establish Baseline Al t Mission

 Al t Baseline

Define Mission Requirements

 Aerodynamics

Propulsion

Page 181: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 181/421

2/24/2008  ELF  181 

Yes

MeetPerformance?

Measures of Merit and ConstraintsNo

No

Yes

Resize / Alt Conf ig / Subsystems / Tech

opu s o

Weight

Trajectory

Flight Envelope Should Have Large Max Range,Small Min Range, and Large Off Boresight 

Off Boresight Flyout Envelope / Range

•Max•Min

Page 182: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 182/421

2/24/2008  ELF  182 

•Min

Forward Flyout Envelope / Range•Max•Min

Examples of Max / Min Range Limitations:

Fire Control System Range and Off Boresight

Seeker Range, Gimbal Angle, and Tracking Rate

Maneuver CapabilityTime of Flight

Closing Velocity

Conceptual Design Modeling Versus Preliminary Design Modeling 

Conceptual Design Modeling Versus Preliminary Design Modeling 

Conceptual Design Modeling

1 DOF [ Axial force ( CDO), thrust, weight ]

2 DOF [ Normal force ( CN ), axial force, thrust, weight ]

3 DOF point mass [ 3 aero forces ( normal, axial, side ),

CDO

CN

CN

C A

Page 183: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 183/421

2/24/2008  ELF  183 

3 O po ass [ 3 ae o o ces ( o a , a a , s de ),thrust, weight ]

3 DOF pitching [ 2 aero forces ( normal, axial ), 1 aero

moment ( pitching ), thrust, weight ]4 DOF [ 2 aero forces ( normal, axial ), 2 aero moments( pitching, roll ing ), thrust, weight ]

Preliminary Design Modeling

6 DOF [ 3 aero forces ( normal, axial, side ), 3 aeromoments ( pitching, rolling, yawing ), thrust, weight ]

CN Cm

C A

C A

C A

C A

Cl

ClCN Cm

CN Cm

CnCY

CY

Page 184: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 184/421

-DOF Simplified Equations of Motion Show Drivers for Configuration Sizing 

-DOF Simplified Equations of Motion Show Drivers for Configuration Sizing 

+ Normal Force

α << 1 rad

γ+ MomentV

+ Thrust

Page 185: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 185/421

2/24/2008  ELF  185 

Configuration Sizing Implication 

Ιy θ.. ≈ Ιy α.. ≈ q SRef  d Cmα

α + q SRef  d Cmδδ High Control Effectiveness ⇒ Cmδ

>Cmα

, Iy small ( W small ), q large

( W / gc ) V γ. ≈ q SRef  CNαα + q SRef  CNδ

δ - W cos γ Large / Fast Heading Change ⇒ CN

large, W small, q large

( W / gc ) V. ≈ T - C A SRef  q - CNα α2 SRef  q - W sin γ High Speed / Long Range ⇒ Total

Impulse large, C A small, q small

δW

+ Axial Force

Note: Based on aerodynamic cont rol

1.00E+07

1.00E+08

u    i   s   e

    R   a   n   g   e ,

    f    t

For Long Range Cruise, Maximize V sp , L / D,and Weight Fraction of Fuel / Propellant 

For Long Range Cruise, Maximize V sp , L / D,and Weight Fraction of Fuel / Propellant 

R = ( V Isp ) ( L / D ) ln [ WBC / ( WBC - WP )] , Breguet Range Equation

l Rocketw i t h  A x i

 s y m m e t r i c A i r f r a m e

 T y p i c a l  R a m j e t  w

 i t h A x i s y m m e t r i c

 A i r f r a m e

 T y p i c a l  S u b s o n i

 c  T u r b o j e t  w i t h 

 W i n g

Page 186: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 186/421

2/24/2008  ELF  186 

1.00E+05

1.00E+06

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

WP / WBC, Propellant or Fuel Weigh t / Weigh t at Begin of Cruise

    R ,

    C   r   u

( V ISP )( L / D ) = 2,000,000 ft ( V ISP )( L / D ) = 10,000,000 ft

( V ISP )( L / D ) = 25,000,000 ft

Example: Ramjet Baseline at Mach 3 / 60k ft altR = 2901 ( 1040 ) ( 3.15 ) ln [ 1739 / ( 1739 - 476 )]= ( 9,503,676 ) ln [ 1 / ( 1 - 0.2737 )] = 3,039,469 ft= 500 nm

Note: R = cruise range, V = cruise veloci ty, ISP = specific impulse, L = lift, D = drag,WBC = weight at begin of cruise, WP = weight of propellant or fuel

 T y p i c a l  R o c k e t  w

Efficient Steady Flight Is Enhanced by High L / D and Light Weight 

Efficient Steady Flight Is Enhanced by High L / D and Light Weight 

Steady Level Flight Steady Climb Steady Descent ( Glide )

T = DL = W

L

D T

W

γC

 T  – D

L

DT

W

V∞

γC VC

D  – T 

L

D

TW

γD

V

Page 187: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 187/421

2/24/2008  ELF  187 

SIN γD = ( D – T ) / W = VD / V∞

VD = ( D – T ) V∞/ WRD = Δh / tan γD = Δh ( L / D )

WγDVD

• Small Angle of At tack• Equilibrium Flight• VC = Velocity of Climb• VD = Velocity of Descent• γC = Flight Path Angle During Climb

• γD = Flight Path Angle During Descent• V∞ = Total Velocity• Δh = Incremental Altitude• RC = Horizontal Range in Steady Climb• RD = Horizontal Range in Steady Dive ( Glide )

Note:

Reference: Chin, S.S., “ Missile Configuration Design,”McGraw Hil l Book Company, New York, 1961

V∞T = W / ( L / D ) SIN γc = ( T – D ) / W = Vc / V∞

Vc = ( T – D ) V∞ / W

RC = Δh / tan γC = Δh ( L / D )

Flight Trajectory Lofting / Shaping Provides Extended Range 

Flight Trajectory Lofting / Shaping Provides Extended Range 

 Altitude

 Apogee or Cruise

Glide

Climb

Page 188: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 188/421

2/24/2008  ELF  188 

RangeRMAX

Rapid Pitch Up

Line-Of-Sight Trajectory

RMAX

Lofted Trajectory Design Guidelines for Horizontal Launch: – High thrust-to-weight ≈ 10 for safe separation – Rapid pi tch up minimizes time / propellant to reach efficient altitude – Climb at α ≈ 0 deg with thrust-to-weight T / W ≈ 2 and q ≈ 700 psf to minimize drag /

propellant –  Apogee at q ≈ 700 psf, fol lowed by either ( L / D )MAX cruise or ( L / D )MAX glide

Small Turn Radius Using Aero Control Requires High Angle of Attack and Low Altitude Flight 

Small Turn Radius Using Aero Control Requires High Angle of Attack and Low Altitude Flight 

100000

1000000

o   u   s    T

   u   r   n    R   a    d    i   u   s ,    f    t

RT = V / γ. ≈ 2 W / ( gc CN SRef ρ )

 Assumption: Hor izontal Turn

Note for Example Figure:W = Weight = 2,000 lba / b = 1 ( circu lar cross section ), No wingsCN = sin 2 α cos ( α / 2 ) + 2 ( l / d ) sin2 αl / d = Length / Diameter = 10

SRef  = 2 ft2

C = 0 2

Page 189: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 189/421

2/24/2008  ELF  189 

1000

10000

0 5 10 15 20

Delta Alph a, Deg

    R    T ,    E   x   a   m   p    l   e    I   n   s    t   a   n    t   a   n   e   o

h = sea level h = 20k ft h = 40k ft

h = 60k ft h = 80k ft

CDO= 0.2

( L / D )Max = 2.5q( L / D )Max

≈ 700 psf α( L / D )Max

= 15 degT( L / D )Max

= 740 lb

Example:

Δ α = 10 deg

CN = 0.94

h = 40k ft ( ρ = 0.000585 slug / ft3 )

RT = 2 ( 2,000 ) / [( 32.2 ) ( 0.94 ) ( 2 ) (0.000585 )] = 112,000 ft

Note: Require ( RT )Missile ≤ ( RT )Target, for small miss distance

High Turn Rate Using Aero Control Requires High Angle of Attack and High Velocity 

High Turn Rate Using Aero Control Requires High Angle of Attack and High Velocity 

10

15

20

 ,    T   u   r   n    R   a    t   e ,    d   e   g    /   s

γ.= gc CN ρ V SRef  / ( 2 W ), rad / s

 Assumption: Hor izontal Turn

Example for Lif ting Body at Alti tude h = 20,000 ft: Assume:• W = Weight = 2,000 lb• a / b = 1 ( circu lar cross section )• No wings• Negligib le tail lift• Neutral static stabilityC = sin 2 cos ( / 2 ) + 2 ( l / d ) sin2

n     =     1     0     0       g    

Page 190: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 190/421

2/24/2008  ELF  190 

0

5

10

0 1000 2000 3000

Veloc ity, ft / s

    E   x   a   m   p    l   e    G   a   m   m   a    D   o    t

 Alpha = 15 deg Alpha = 30 deg

 Alpha = 90 deg

CN = sin 2 α cos ( α / 2 ) + 2 ( l / d ) sin2 α• SRef  = 2 ft2

• l / d = Length / Diameter = 10• α = 15 deg• V = 2000 ft / s

Then:• N = Normal Force = CN q SRef 

CN = sin [ 2 ( 15 )] cos ( 15 / 2 ) + 2 ( 10 ) sin2 ( 15 ) =0.50 + 1.34 = 1.835

q = Dynamic Pressure = 0.5 ρ V2 = 0.5 ( 0.001267 ) (2000 )2 = 2534 psf 

N = 1.835 ( 2534 ) ( 2 ) = 9,300 lbN / W = 9300 / 2000 = 4.65 gγ.

= 32.2 ( 1.835 ) ( 0..001267 ) ( 2000 ) ( 2 ) / [ 2 ( 2000 )]= 0.0749 rad / s = 4.29 deg / s

For Long Range Coast, Maximize Initial Velocity and Altitude and Minimize Drag Coefficient 

For Long Range Coast, Maximize Initial Velocity and Altitude and Minimize Drag Coefficient 

0.6

0.8

1

V / Vi = { 1 – [( gc sin γ ) / Vi ] t } / { 1 + {[ gc ρ AVG SRef  ( CD0) AVG Vi ] / ( 2 W )} t }

{[ gc ρ AVG SRef  ( CD0 ) AVG ] / ( 2 W )} R = ln { 1 – [ gc2ρ AVG SRef  ( CD0 ) AVG / ( 2 W )] [ sin γ ] t

2

+ {[ gc ρ AVG SRef  ( CD0) AVG Vi ] / ( 2 W )} t }

Note: Based on 1 DOF coast

dV / dt = - gc CD0SRef  q / W – gc sin γ

 Assumptions:

• γ = constant

V / Vi @ γ = 0 deg

Page 191: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 191/421

2/24/2008  ELF  191 

0

0.2

0.4

0 0.5 1 1.5 2

Example for Rocket Baseline:

•W = WBO = 367 lb, SRef  = 0.349 ft2, Vi = 2,151 ft / s , γ = 0 deg, ( CD0) AVG = 0.9, h = 20,000 ft ( ρ = 0.00127 slug / f t3 ), t = 10 s

•[( gc ρ SRef  ( CD0) AVG Vi ) / ( 2 W )] t = {[ 32.2 ( 0.00127 ) ( 0.349 ) ( 0.9 ) ( 2151 )] / [ 2 ( 367 ) ]} 10 = 0.376

•V / Vi = 0.727 ⇒ V = 0.727 x 2151 = 1564 ft / s, { [( gc ρ SRef  ( CD 0) AVG )] / ( 2 W )} R = 0.319 ⇒ Rcoast = 18,300 ft or 3.0 nm

[( g c ρ SRef  CD0Vi ) / ( 2W )] t , Non-dimensional Coast Time

• α ≈ 0 deg

• D > W sin γ

V = velocity during coast

Vi = initial velocity ( begin coast )

R = coast range

Vx = V cos γ, Vy = V sin γ

Rx = R cos γ, Ry = R sin γ

{[ g c ρ AVG SRef  (CD0) AVG ] / ( 2 W )} R

@ γ = 0 deg

For Ballistic Range, Maximize Initial Velocity,Optimize Launch Angle, and Minimize Drag For Ballistic Range, Maximize Initial Velocity,Optimize Launch Angle, and Minimize Drag 

0 4

0.6

0.8

1

1.2

Vx / Vi = cos γi / { 1 + {[ gc ρ AVG SRef  ( CD0) AVG Vi ] / ( 2 W )} t }

( Vy + gc t ) / Vi = sin γi / { 1 + {[ gc ρ AVG SRef  ( CD

0 ) AVG Vi ] / ( 2 W )} t }

{[ gc ρ AVG SRef  (CD0) AVG ] / ( 2 W cos γi )} Rx

= ln { 1 + [ gc ( ρ ) AVG SRef  ( CD0) AVG Vi ] / ( 2 W )} t }

{[ gc ρ AVG SRef  (CD0) AVG ] / ( 2 W sin γi )} ( h – h i + gc t2 / 2 )

= ln { 1 + {[ gc ρ AVG SRef  ( CD0 ) AVG Vi ] / ( 2 W ) t }

Page 192: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 192/421

2/24/2008  ELF  192 

0

0.2

0.4

0 0.5 1 1.5 2

Example for Rocket Baseline:

•W = 367 lb, SRef  = 0.349 ft2, Vi = VBO = 2,151 ft / s, γi = 0 deg, ( CD0) AVG = 0.9, h i = 20,000 ft, ρ AVG = 0.00182 slug / ft3, t = 35 s

•[ gc ρ SRef  ( CD0) AVG Vi / ( 2 W )] t = { 32.2 ( 0.00182 ) ( 0.349 ) ( 0.9 ) ( 2151 ) / [ 2 ( 367 ) ]} 35 = 1.821

•Vx / Vi = 0.354 ⇒ Vx = 762 ft / s, ( Vy + 32.2 t ) / Vi = 0.354 ⇒ Vy = - 1127 ft / s, {[ gc ρ SRef  ( CD 0)] / ( 2 W cos γi )} Rx = 1.037 ⇒

Rx = 42,900 ft o r 7.06 nm, {[ g c ρ AVG SRef  ( CD 0) AVG ] / ( 2 W sin γi )} ( h – h i + 16.1 t2 ) = 1.037 ⇒ h = 0 ft

{[ gc ρ AVG SRef  ( CD0) AVG Vi ] / ( 2 W )} t, Non-dimensional Time

 Assumptions: Thrust = 0, α = 0 deg, D > W sin γ, flat earth

Nomenclature: V= velocity dur ing ballistic f light, Vi = initialvelocity, Rx = horizontal range, h = altitude, hi = initial altitude,V

x

= horizontal velocity, Vy

= vertical velocity

High Propellant Weight, High Thrust, and Low Drag Provide High Burnout Velocity 

High Propellant Weight, High Thrust, and Low Drag Provide High Burnout Velocity 

0.3

0.4

0.5

0.6

0.7

S    P    ) ,

    N   o   n    d    i   m   e   n   s    i   o   n   a    l 

m   e   n    t   a

    l     V   e    l   o   c    i    t   y

ΔV / ( gc ISP ) = - [ 1 – ( D AVG / T ) – ( W AVG sin γ / T )] ln ( 1 - Wp / Wi )

Example for Rocket Baseline:

 Assume γ = 0 deg

 Assume Mi = 0.8, h = 20k ft

Wi = WL = 500 lb

For boost, WP = 84.8 lb

WP / WL = 0.1696

Page 193: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 193/421

2/24/2008  ELF  193 

0

0.1

0.2

0 0.1 0.2 0.3 0.4 0.5

Wp / Wi, Propellant Fraction

    D

   e    l    t   a    V    /    (   g    I    

    I   n   c   r   e   m

DAVG / T = 0 DAVG / T = 0.5 DAVG / T = 1.0

ISP = 250 s

TB = 5750 lb

 Assume D = D AVG = 635 lb

D AVG / T = 0.110ΔV / [( 32.2 ) ( 250 )] = - ( 1 - 0.110 )ln ( 1 - 0.1696 ) = 0.1654

ΔV = ( 0.1654 ) ( 32.2 ) ( 250 ) =1331 ft / s

Note: 1 DOF Equation of Motion with α ≈ 0 deg, γ = constant, Wi = initial weight, W AVG = average weight, WP =propellant weight, ISP = specific impulse, T = thrust, Mi = init ial Mach number, h = altitude, D AVG = average drag,ΔV = incremental veloc ity , gc = gravitation constant, Vx = V cos γ, Vy = V sin γ, Rx = R cos γ, Ry = R sin γ

Note: R = ( Vi + ΔV / 2 ) tB, where R = boost range, Vi = initial velocity, tB = boost time

High Missile Velocity and Lead Are Required to Intercept High Speed Crossing Targets 

High Missile Velocity and Lead Are Required to Intercept High Speed Crossing Targets 

4

3 Note:Proportional Guidance

VM = Missi le Veloci tyVT = Target Veloci tyA = Target Aspect

VM VTL A

VM sin L = VT sin A, Proportional Guidance Trajectory

Page 194: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 194/421

2/24/2008  ELF  194 

VM / VT 2

00 10 20 30 40 50

L, Lead Angle, Deg

1

 A = 90°

 A = 45°

 A Target AspectL = Missi le Lead Angle

≈Seeker Gimbal

Example: 

L = 30 deg

 A = 45 degVM / VT = sin ( 45° ) / sin ( 30° ) =

1.42

Missile Concept Synthesis Requires Evaluation of Alternatives and Iteration 

Missile Concept Synthesis Requires Evaluation of Alternatives and Iteration 

Establish Baseline Al t Mission

 Al t Baseline

Define Mission Requirements

 Aerodynamics

Propulsion

Page 195: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 195/421

2/24/2008  ELF  195 

Yes

MeetPerformance?

Measures of Merit and ConstraintsNo

No

Yes

Resize / Alt Conf ig / Subsystems / TechWeight

Trajectory

Summary of Flight Performance Summary of Flight Performance 

Flight Performance Activi ty in Missile Design

Compute range, velocity, time-to-target, off boresight Compare with requirements

Discussed in This Chapter 

Equations of motion Flight performance drivers

Page 196: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 196/421

2/24/2008  ELF  196 

Propulsion alternatives range comparison

Steady level flight required thrust

Steady climb and steady dive range prediction Cruise prediction

Boost prediction

Coast prediction

Ballistic flight prediction

Turn radius and turn rate predict ion

Target lead for proport ional homing guidance

Summary of Flight Performance ( cont ) Summary of Flight Performance ( cont ) 

Flight Performance Strongly Impacted by  Aerodynamics

Propulsion

Weight

Discussion / Questions?

Page 197: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 197/421

2/24/2008  ELF  197 

Classroom Exercise ( Appendix A )

Flight Performance Problems Flight Performance Problems 

1. Flight trajectory calculation requires input from aero, propulsion, and w_____.

2. Missi le flight envelope can be characterized by the maximum effective range,minimum effective range, and o__ b________.

3. Limitations to the missile effective range include the fire control system,seeker, time of flight, closing velocity, and m_______ capabili ty.

4. 1 DOF simulation requires modeling only the thrust, weight, and a____ f____.5 A 3 DOF simulation that models 3 aero forces is called p m simulation

Page 198: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 198/421

2/24/2008  ELF  198 

5.  A 3 DOF simulation that models 3 aero forces is called p____ m___ simulation.

6.  A simulation that includes 3 aero forces ( normal, axial, side ), 3 aero moments( pitch, roll, yaw ), thrust, and weight is called a _ DOF simulation.

7. The pitch angular acceleration θ.. is approximately equal to the second timederivative of the a____ o_ a_____.

8. Cruise range is a function of velocity, specific impulse, L / D, and f___ fraction.

9. If thrust is equal to drag and lift is equal to weight, the missi le is in s_____l____ flight .

10. Turn rate is a function of normal force, weight, and v_______.

Flight Performance Problems ( cont ) Flight Performance Problems ( cont ) 

11. Coast range is a function of initial velocity, weight, drag, and the t___ of flight.

12. Incremental velocity due to boost is a function of ISP, drag, and p_________weight fraction.

13. To intercept a high speed crossing target requires a high speed missile with ahigh g_____ angle seeker.

14.  An analytical model of a rocket in co-altitude, non-maneuvering flight can bedeveloped by patching together the flight phases of boost and c

Page 199: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 199/421

2/24/2008  ELF  199 

developed by patching together the flight phases of boost and c____.

15.  An analytical model of a rocket in a short range, off-boresight intercept can bedeveloped by patching the flight phases of boost and t___.

16.  An analytical model of a guided bomb in non-maneuvering flight can bedeveloped from the flight phase of a steady d___.

17.  An analytical model of an unguided weapon can be developed from theb________ flight phase.

18.  An analytical model of a ramjet in co-altitude, non-maneuvering flight can bedeveloped by patching the flight phases of boost and c_____.

Outline Outline 

Introduction / Key Drivers in the Design Process

 Aerodynamic Considerations in Tactical Missile Design

Propulsion Considerations in Tactical Missile Design

Weight Considerations in Tactical Missile Design

Flight Performance Considerations in Tactical Missile Design

M f M it d L h Pl tf I t ti

Page 200: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 200/421

2/24/2008  ELF  200 

Measures of Merit and Launch Platform Integration

Sizing Examples

Development Process

Summary and Lessons Learned

References and Communication

 Appendices ( Homework Problems / Classroom Exercises,Example of Request for Proposal, Nomenclature, Acronyms,Conversion Factors, Syllabus )

Missile Concept Synthesis Requires Evaluation of Alternatives and Iteration 

Missile Concept Synthesis Requires Evaluation of Alternatives and Iteration 

Establish Baseline Al t Mission

 Al t Baseline

Define Mission Requirements

 Aerodynamics

Propulsion

Page 201: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 201/421

2/24/2008  ELF  201 

Yes

MeetPerformance?

No

No

Yes

Resize / Alt Conf ig / Subsystems / TechWeight

Trajectory

Measures of Merit and Constraints

Measures of Merit and Launch Platform Integration Should Be Harmonized 

Measures of Merit and Launch Platform Integration Should Be Harmonized 

Robustness

LethalityCost

Launch Platform

Integration /

Firepower 

Page 202: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 202/421

2/24/2008  ELF  202 

Miss Distance

Carriage and

LaunchObservables

Other 

SurvivabilityConsiderations

Reliability

Balanced Design

Tactical Missiles Must Be Robust Tactical Missiles Must Be Robust 

RobustnessTactical Missiles Must Have Robust Capability to

Handle Adverse Weather 

Clutter 

Local Climate

Robustness

Lethal i ty

Miss Distance

Carriage andLaunch

Observables

Other  

Survivability

Cons iderati ons

Reliability

Cost

Launch P latform

Integrati on /Fi repower 

Page 203: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 203/421

2/24/2008  ELF  203 

Flight Environment Variation

UncertaintyCountermeasures

EMI / EMP

This Section Provides Examples of Requirements for Robustness

Adverse Weather and Cloud Cover Are Pervasive Adverse Weather and Cloud Cover Are Pervasive 

0.6

0.8

1.0

Cloud Cover Over Ocean

CloudCover 

 Annual Average

Fraction of Cloud Cover North Atlantic

Descending Ai r 

Rising Ai r Rising Ai r  

Descending

South Pole

Region

NOAA satelli te imageof earth cloud cover 

North PoleRegion

Page 204: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 204/421

2/24/2008  ELF  204 

0.0

0.2

0.4

85°N 65°N 45°N 25°N 5°N 0° 5°S 25°S 45°S 65°S 85°S

Over Land

Note: Annual Average Cloud Cover Global Average = 61%Global Average Over Land = 52%Global Average Over Ocean = 65%

Latitude Zone

Deserts ( Sahara,Gobi, Mojave )

 Argentina, Southern Af rica and Austral ia

Descending Ai r 

Reference: Schneider, Stephen H. Encyclopedia of Climate and Weather . Oxford University Press, 1996.

Radar Seekers Are Robust in Adverse Weather Radar Seekers Are Robust in Adverse Weather 

Note:EO attenuation throughcloud at 0.1 g / m3 and 100m visibilityEO attenuation throughrain at 4 mm / hHumidi ty at 7.5 g / m3

Millimeter wave andmicrowave attenuationthrough cloud at 0.1gm / m3 or rain at 4 mm / h

1000

100

10

A   T   I   O   N   (   d

   B   /   k  m   )

H2O

O2, H2O

H2O

O2

O2

CO2

CO2

H2O, CO2

H2O

Page 205: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 205/421

2/24/2008  ELF  205 

3 cm 3 mm 0.3 mm 30 µm 3.0 µm

Increasing Wavelength

Increasing Frequency

Source: Klein, L.A., Millimeter-Wave and Infrared Multisensor Design and Signal Processing, Artech House, Boston, 1997

0.3 µm

gm / m3 or rain at 4 mm / h1

0.1

0.01

   A   T   T   E   N   U   A

100 1 THz 10 100 1000

INFRAREDSUBMILLIMETER

10 GHz

MILLIMETER VISIBLE

H2O

2

H2O20° C1 ATM

EO sensors are ineffectivethrough cloud cover 

Radar sensors have good tosuperior performancethrough c loud cover and rain

RADAR

X Ku K Ka Q V W Very Long Long Mid Short

O3

Radar Seekers Are Desirable for Robust Operation within the Troposphere Cloud Cover Radar Seekers Are Desirable for Robust Operation within the Troposphere Cloud Cover 

40

30

h,Altitude

Cirrus ( 16 – 32k ft )

Cumulonimbus ( 2 – 36k ft )

Page 206: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 206/421

2/24/2008  ELF  206 

20

10

0

 Altitude,103 ft

Note:•IR seeker may be able to operate “Under the Weather” at elevations less than 2,000 ft using GPS / INS midcourse guidance•IR attenuation through cloud cover greater than 100 dB per km. Cloud droplet size ( 0.1 to 50 μm ) causes resonance.•mmW has ~ 2 dB / km attenuation through rain. Typical rain drop size ( ∼ 4 mm ) is comparable to mmW wavelength.

Fog

 Altocumulus ( 9 – 19k ft )

Cumulus ( 2 – 9k ft )Stratus ( 1 – 7k ft )

 Al tostratus ( 8 – 18k ft )

Sensor Adverse 

Weather 

Impact 

ATR / ATA

in Clutter 

Range Moving 

Target 

Volume 

Search 

Time 

Hypersonic 

Dome 

Compat.

Diameter 

Required 

Weight and 

Cost 

Maturity 

•  SAR

•   Acti veImagingmmW

•  Passive

ImagingmmW•   Acti ve

Imaging IR- -

-

-

-

Precision Strike Missile Target Sensors Are Complemented by GPS / INS / Data Link Sensors 

-

-

- -

Page 207: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 207/421

2/24/2008  ELF  207 

Note: Superior Good Below Average Poor  

(LADAR)•   Active Non-

image IR(LADAR)

•   Active Non-image mmW

•  PassiveImaging IR

•   Acoust ic

•  GPS / INS /

Data Link

-

-

-

--

--

-

-

Imaging Sensors Enhance Target Acquisition / Discrimination 

Imaging Sensors Enhance Target Acquisition / Discrimination 

Imaging LADAR Imaging Infrared SAR

Page 208: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 208/421

2/24/2008  ELF  208 

Passive Imaging mmW Video of Imaging Infrared Video of SAR Physics

Page 209: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 209/421

Example of Mid Wave –Long Wave IR Seeker Comparison ( cont ) 

Example of Mid Wave –Long Wave IR Seeker Comparison ( cont ) 

Next, Calculate LWIR Seeker Detection Range

RD = { ( IT )Δλ ηa Ao { D* / [( Δf p )1/2

( Ad )1/2

]} ( S / N )D-1

}1/2

, m ( IT )Δλ = ε Lλ ( λ2 - λ1 ) AT, W sr -1

Lλ = 3.74 x 104 / { λ5 { e[ 1.44 x 104 / ( λ TT )] – 1 }} , W cm -2 sr -2 μm-1

 Assume λ = 10 μm, λ2 = 13 μm, λ1 = 7 μm, then

Lλ = 0.00310 W cm-2 sr -2 μm-1, ( IT )Δλ = 26.7 W sr -1

 Assume Hg0.80Cd0.20Te detector at λ = 10 μm and 77 K ⇒ D* = 5 x 1010 cm1/2 Hz1/2 W-1

RD = { ( 26.7 ) ( 1 ) ( 0.01267 ) {( 5 x 1010 ) / [( 50 )1/2 ( 1.049 )1/2 ]} ( 5 )-1 }1/2 = 21,600 m

MWIR Seeker Versus LWIR Seeker Selection Depends Upon Target Temperature

Page 210: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 210/421

2/24/2008  ELF  210 

MWIR Seeker Versus LWIR Seeker Selection Depends Upon Target Temperature

0

5

10

15

0 500 1000 1500 2000

TT, Target Temperature, K

    W   a   v   e    l   e   n   g    t    h    f   o   r    M   a   x    S   p   e   c    t   r   a    l

    R   a    d    i   a   n   c   e ,

    M    i   c   r   o   n   s

Subsonic Airframe

Mach 4 Air frame

Jet Engine

Rocket Plume

Flare

( λ )( Lλ )max= 2898 / TT, Wein’s Displacement Law, TT in K

M   W   I   R   

L    W     I     R    

Example: TT = 300 K

( λ )( Lλ )max= 2898 / TT

= 2898 / 300 = 10.0 μm

GPS / INS Provides Robust Seeker Lock-on in Adverse Weather and Clutter 

GPS / INS Provides Robust Seeker Loc -on in Adverse Weather and Clutter •

    4    8    0    P    i   x   e    l   s

640 Pixels ( 300 m )

Target Image

175 m

Seeker Lock-on @ 850 m to go ( 1 pixel = 0.47 m )

3 m GPS / INS error ⇒ nMreq= 0.15 g, σ < 0.1 m

Seeker Lock-on @ 500 m to go ( 1 pixel = 0.27 m )

3 m GPS / INS error ⇒ nMreq= 0.44 g, σ < 0.1 m

Page 211: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 211/421

2/24/2008  ELF  211 

44 m88 m

Note: = Target Aim Point and Seeker Tracking Gate, GPS / INS Accuracy = 3 m, Seeker 640 x 480 Image, Seeker FOV = 20 deg, Proportional Guidance Navigation Ratio = 4, Velocity = 300 m / s, G&C Time Constant = 0.2 s.

Seeker Lock-on @ 250 m to go ( 1 pixel = 0.14 m )

3 m GPS / INS error ⇒ nMreq= 1.76 g, σ = 0.9 m

Seeker Lock-on @ 125 m to go ( 1 pixel = 0.07 m )

3 m GPS / INS error ⇒ nMreq= 7.04 g, σ = 2.2 m

Data Link Update at Seeker Lock-on Reduces Moving Target Error 

Data Link Update at Seeker Lock-on Reduces Moving Target Error 

100

1000

S   e   e    k   e   r    L

   o   c    k  -   o   n ,

VT = 1 m / s

VT = 10 m / s

VT 100 /

TESeekerLock-on

= [ TLE2 + ( VT

tLatency

)2 ]1/2

Page 212: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 212/421

2/24/2008  ELF  212 

10

0.1 1 10 100 1000

Target Latency at Seeker Lock-on, s

    T   a   r   g   e    t    E

   r   r   o   r   a    t    S VT = 100 m / s

VT = 1000 m / s

Note: tSeekerLock-on = Seeker Lock-on time, tUdate = Data Link Update Time, VT = Target Veloci ty, TLE = Target LocationError at Update = 10 m

Example:TLE = 10 mtSeekerLock-on = 100 stUdate = 90 sVT = 10 m / stLatency = tSeeker - tUdate = 100 – 90 = 10 s

TESeekerLock-on = [ TLE2

+ ( VT tLatency )2

]1/2

= { 102 + [ 10 ( 10 )]2 ]1/2

= 100.5 m

Optimum Cruise Is a Function of Mach Number,Altitude, and Planform Geometry 

Optimum Cruise Is a Function of Mach Number,Altitude, and Planform Geometry 

40

60

80

100

120

h ,

    A    l    t    i    t   u    d

   e ,

    k    f    t

q = 200 psf 

q = 500 psf 

q = 1,000 psf 

q = 2,000 psf 

q = 5,000 psf 

Ramjet

Scramjet

Page 213: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 213/421

2/24/2008  ELF  213 

0

20

40

0 1 2 3 4 5 6 7

M, Mach number 

    hq = 10,000 psf 

q = 20,000 psf 

Note:• U.S. 1976 Standard Atmosphere• For Efficient Cruise, ( L / D )Max for Cruising L ift ing Body Typically Occurs for 500 < q < 1,000 psf • ( L / D )Max for Cruise Miss ile with Low Aspect Ratio Wing Typically Occurs for 200 < q < 500 psf • q ≈ 200 psf lower limit for aero control

Note: q = 1 / 2 ( ρ V2 )Wingless Subsonic Turbojet

Subsonic Turbojet with Low Aspect Ratio Wing

Missile Guidance and Control Must Be Robust for Changing Events and Flight Environment Missile Guidance and Control Must Be Robust for Changing Events and Flight Environment 

Booster ShutdownTransient at High Mach

Engine Start Transient Pitch-Over atHigh Alpha

Example High Performance Missi le Has• Low-to-High Dynamic Pressure

• Negative-to-Posi tive Static Margin• Thrust / Weight / cg Transients• High Temperature• High Thermal Load• High Vibration• High Acoustics

Level Out

Cruise

Page 214: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 214/421

2/24/2008  ELF  214 

Engine Shutdown

Transient

 Air Launch at LowMach ( high α ) /

DeployCompressedCarriage Surfaces

Booster Ignition

Pitch-Up at High Alpha

Climb Terminal at HighDynamic Pressure

Dive

Precision Impactat α ≈ 0 Deg

Vertical Launch in Cross Wind ( high α )/ Deploy Compressed Carriage Surfaces

Pitch-Over at High Alpha

Design Robustness Requires Consideration of Flight Altitude 

Design Robustness Requires Consideration of Flight Altitude 

1

0 20 40 60 80 100

    A    l    t    i    t   u    d   e    /

    S   e   a    L   e   v   e    l

Temperature Ratio

Troposphere Stratosphere

Troposphere ( h < 36,089 ft )

T / TSL

= 1 – 6.875 x 10-6 h, h in ft

p / pSL = ( T / TSL )5.2561

ρ / ρSL = ( T / TSL )4.2561

Stratosphere ( h > 36089 ft )

T = constant = 390 R

p / pSL = 0.2234 e - ( h – 36089 ) / 20807

ρ / ρSL = 0.2971 e - ( h – 36089 ) / 20807

Page 215: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 215/421

2/24/2008  ELF  215 

0.01

0.1

h, Geometr ic Altitude, kf t

    C    h   a   r   a   c    t   e   r

    i   s    t    i   c   a    t

    C    h   a   r   a   c    t   e   r    i   s    t    i   c   a    t

p

Pressu re Ratio

Density Ratio

Speed o f Sound Ratio

Note: TSL = Temperature at sea level, pSL = pressure at sea level, ρSL = density at sea level, cSL = speedof sound at sea level, h = altitude in ft .

U.S. Standard Atmosphere, 1976 – TSL = 519 R – pSL = 2116 lb / ft2

 – ρSL

= 0.00238 slug / ft3

 – cSL = 1116 ft / s

0.5

1

1.5

   m    S    t   a   n    d   a   r    d    A    t   m   o   s   p    h   e   r   e Ratio: Cold-to-Standard

 AtmosphereRatio: Hot-to-Standard Atmosphere

Ratio: Polar-to-Standard Atmosphere

Ratio: Tropic-to-Standard Atmosphere

( + 30 % )

( - 23% )

Design Robustness Requires Consideration of Cold and Hot Atmospheres 

Design Robustness Requires Consideration of Cold and Hot Atmospheres 

Page 216: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 216/421

2/24/2008  ELF  216 

0

0 5

Temp Density Speed of  

Sound

    V   a   r    i   a    t    i   o   n    f   r   o

Note:

• Based on properties at sea level

•U. S. 1976 Standard Atmosphere: Temperature = 519 R, Density = 0.002377 slug / ft3, Speed of sound = 1116 ft / s

Design Robustness Is Required to Handle Uncertainty Design Robustness Is Required to Handle Uncertainty 

0.5

1

    N   o   r   m   a    l    i   z   e    d    P    D    F

Narrow Uncertainty ( e.g.,

SDD Flight Perfo rmance )

Broad Uncertain ty ( e.g.,Conceptual Design FlightPerformance )

Skewed Uncertainty ( e.g.,Cost, Weigh t, MissDistance )

Bimodal Uncertain ty ( e.g.,

Page 217: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 217/421

2/24/2008  ELF  217 

0

-20 -10 0 10 20

Typical % Error from Forecast Value

    E   x   a   m   p    l   e Multi -mode Seeker Target

Location )

Uniform Bias Uncertainty( e.g., Seeker Aim PointBias )

Note for normal distribution: PDF = { 1 / [ σ ( 2 π )1/2 ]} e {[( x - μ ) / σ ]2 / 2 }

Counter-Countermeasures by Missile Enhance Design Robustness Counter-Countermeasures by Missile Enhance Design Robustness 

Examples of CM ( Threat )

EOCM directed laser 

flare

smoke

RFCM active radar 

 jammer 

Examples of CCM ( Missile )

Imaging Seeker  Multi-spectral / Multi-

mode Seeker 

Temporal Processing

Hardened GPS / INS standoff acquisition

Integrated GPS / INS

Page 218: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 218/421

2/24/2008  ELF  218 

chaff 

Decoy

Low Observables

Speed

 Altitude

Maneuverability

Lethal Defense

directional antenna

pseudolite / differential

GPS

 ATR / ATA

Speed

 Altitude

Maneuverability Low Observables

Saturation

IIR ( I2R AGM-130 ) ………………………………………………

Two Color IIR ( Python 5 )

 Acoustic - IIR ( BAT ) …………………………………………..

Examples of Countermeasure-Resistant Seekers Examples of Countermeasure-Resistant Seekers 

Page 219: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 219/421

2/24/2008  ELF  219 

IIR – LADAR ( LOCAAS ) ………………………………………

 ARH – mmW ( AARGM )

 ARH - IIR ( Armiger ) …………………………………………….

TBM / TELs

OilRefineries

Naval

 Armor 

Transportation ChokePoints ( Bridges,Railroad Yards, TruckParks )

Counter Air  Aircraft

C3II

 Artillery

 Air Defense ( SAMs,

 AAA )

A Target Set Varies in Size and Hardness 

Lethality

Robustness

Lethal i ty

Miss Dis tance

Carriage and

LaunchObservables

Other  

SurvivabilityCons iderati ons

Reliability

Cost

Launch P latform

Integrati on /

Fi repower 

Example of Precision Strike Target Set

Page 220: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 220/421

2/24/2008  ELF  220 

Parks )

Examples of Targets where Size and Hardness Drive Warhead Design/ Technology

•Small Size, Hard Target: Tank ⇒ Small Shaped Charge, EFP, or KE

Warhead

•Deeply Buried Hard Target: Bunker ⇒ KE / Blast Frag Warhead

•Large Size Target: Bui lding ⇒ Large Blast Frag WarheadVideo Example of Precis ion Str ike Targets

76% of Baghdad Targets Struck First Night of Desert Storm Were C 3 Time Critical Targets 76% of Baghdad Targets Struck First Night of Desert Storm Were C 3 Time Critical Targets Targets: 1. Directorate of Military Intelligence; 2, 5, 8,13, 34. Telephone switching stations; 3. Ministry of 

Defense national computer complex; 4. Electrical transfer station; 6. Ministry of Defense headquarters; 7. Ashudad

highway bridge; 9. Railroad yard; 10. Muthenaairfield ( military

section ); 11. Air Force headquarters; 12. Iraqi Intelligence

Service; 14. Secret Police complex; 15. Army storage depot;

16. Republ ican Guard headquarters; 17. New presidentialpalace; 18. Electrical power station; 19. SRBM assembly

factory ( Scud ); 20. Baath Party headquarters; 21.Government conference center; 22 Ministry of Industry and

1

2

3

4

56

7

8

23

2425

2631

32

Page 221: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 221/421

2/24/2008  ELF  221 

Government conference center; 22. Ministry of Industry and

Military Production; 23. Ministry of Propaganda; 24. TV

transmitter; 25, 31. Communications relay stations; 26.Jumhuriya highway bridge; 27. Government Control Center 

South; 28. Karadahighway bridge ( 14th July Bridge ); 29.

Presidential palace command center; 30. Presidential

palace command bunker; 32. Secret Police headquarters;

33. Iraqi Intelligence Service regional headquarters; 35.National Air Defense Operations Center; 36. Ad Dawrahoil

refinery; 37. Electrical power p lant

Source: AIR FORCE Magazine, 1 Apr il 1998

891011

12

13 1415 16

17

1819

20

2122

2426

27

28

2930

3233

3435

36

37

 Anti-Fixed Surface Target Missiles ( large size, wings, subsonic, blast frag warhead )

 AGM-154 Storm Shadow / Scalp KEPD-350 BGM-109 AGM-142

 Anti-Radar Site Missiles ( ARH seeker, high speed or duration, blast frag warhead )

 AGM-88 AS-11 / Kh-58 ARMAT Armiger ALARM

 Anti-Ship Missiles ( large size, KE / blast frag warhead, and high speed or low altitude )

Type of Target Drives Precision Strike Missile Size, Speed, Cost, Seeker, and Warhead 

Type of Target Drives Precision Strike Missile Size, Speed, Cost, Seeker, and Warhead 

Page 222: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 222/421

2/24/2008  ELF  222 

MM40 AS-34 Kormoran AS-17 / Kh-31 BrahMos SS-N-22 / 3M80

 Anti-Armor Missiles ( small size, hit-to-kill, low cost, shape charge, EFP, or KE warhead )

Hellfire LOCAAS MGM140 AGM-65 LOSAT

 Anti-Buried Target Missiles ( large size, high fineness, KE / blast frag warhead )

CALCM GBU-28 GBU-31 Storm Shadow MGM-140Permission of Missile Index.

Examples of Light Weight Air Launched Multi- Purpose Precision Strike Weapons Examples of Light Weight Air Launched Multi- Purpose Precision Strike Weapons Weapon  Fixed

SurfaceTargets(1)

Moving 

Targets (2) Time 

Critical 

Targets (3) 

Buried 

Targets (4) Adverse 

Weather (5) Firepower (6) 

Example New Missile

 AGM-65

Small Diameter Bomb

 AGM-88

 –

 –  –

 –  – –

Page 223: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 223/421

2/24/2008  ELF  223 

Hellfire / Brimstone /Longbow

LOCAAS  –

 –

Note:

Superior 

Good

 Average

Poor  –

(1) – Multi-mode warhead desired. GPS / INS provides precision ( 3 m ) accuracy.

(2) - Seeker or high bandwidth data link required for terminal homing.

(3) - High speed with duration required⇒ High payoff of high speed / loiter and powered submunition.

(4) - KE penetration warhead required⇒ High impact speed, low drag, high density, long length.

(5) - GPS / INS, SAR seeker, imaging mmW seeker, and data link have high payoff.

(6) - Light weight required. Light weight also provides low cost

Blast Is Effective at Small Miss Distance Blast Is Effective at Small Miss Distance 

100

1000

e   s   s   u   r   e    R   a    t    i   o    t   o    U   n    d    i   s    t   u   r    b   e    d    P   r   e   s   s   u   r

Δ p / p0 = 37.95 / ( z p01/3 ) + 154.9 / ( z p0

1/3 )2 + 203.4 / ( z p01/3 )3 + 403.9 / ( z p0

1/3 )4

z = r / c1/3

Note:

Based on bare sphere of pentolite ( Ec1/2 = 8,500 ft / s )

Δp = overpressure at distance r from explosion

p0 = undisturbed atmospheric pressure, psi

z = scaling parameter = r / c1/3

r = distance from center of explosion, ft

c = explosive weight , lb

Page 224: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 224/421

2/24/2008  ELF  224 

1

10

0 2 4 6 8 10

z ( p0 )1/3

    D   e    l    t   a   p    /   p    0 ,    O

   v   e   r   p   r   e

Reference: US Army Ordnance Pamphlet ORDP-2—290-Warheads, 1980

Example for Rocket Baseline Warhead:

c = 38.8 lbh = 20k feet, p0 = 6.8 psi

r = 10 ft

z = 10 / ( 38.8 )1/3 = 2.95

z p01/3 = 5.58

Δp / p0 = 13.36

Δp = 90 psi

Guidance Accuracy Enhances Lethality Guidance Accuracy Enhances Lethality 

Rocket Baseline Warhead Against Typical Aircraft TargetPK > 0.5 if σ < 5 ft ( Δ p > 330 psi,fragments impact energy > 130kft-lb / ft2 )

PK > 0.1 if σ < 25 ft ( Δp > 24 psi,

fragments impact energy > 5k ft-lb / ft2 )

Page 225: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 225/421

2/24/2008  ELF  225 

Note: Rocket Baseline 77.7 lb warheadC / M = 1, spherical blast, h = 20k f t.

Video of AIM-9X Flight Test Missile Impact on Target( No Warhead )

Warhead Blast and Fragments Are Effective at Small Miss Distance Warhead Blast and Fragments Are Effective at Small Miss Distance 

Hellf ire 24 lb shaped charge warheadfragments are from natural fragmenting case

2.4 mwitness

plate

Roland 9 kg explosively formed warheadmulti -projectiles are from preformed case

Page 226: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 226/421

2/24/2008  ELF  226 

Video of Guided MLRS 180 lb b last f ragmentation warhead

Maximum Total Fragment Kinetic Energy Requires High Charge-to-Metal Ratio Maximum Total Fragment Kinetic Energy Requires High Charge-to-Metal Ratio 

0.2

0.3

0.4

o   n  -    d    i   m   e   n   s    i   o   n

   a    l    K    i   n   e    t    i   c    E   n   e   r   g   y

KE = ( 1 / 2 ) Mm Vf 2 = Ec Mc / ( 1 + 0.5 Mc / Mm )

Note:Based on Gurney EquationCylindr ical WarheadKE = Total Kinetic EnergyMm = Total Mass Metal FragmentsVf  = Fragment Velocity

Ec = Energy Per Unit Mass ChargeMc = Mass of ChargeMwh = Mass of Warhead = Mm + Mc

 L o w  K E 

 H i g h  K E

Example:

Page 227: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 227/421

2/24/2008  ELF  227 

0

0.1

0 0.5 1 1.5 2 2.5 3Mc / Mm, Charge-to-Metal Ratio

    (    K    E    /    M   w    h    )    /    E   c ,    N   o

Reference: Carleone, Joseph (Editor), Tactical Missile Warheads (Progress in Astronautics and Aeronautics, Vol 155), AIAA, 1993.

Example:

Rocket Baseline Warhead

Mc = 1.207 slug

Mm = 1.207 slug

Mc / Mm = 1

Ec Mc = 52,300,000 ( 1.207 ) =63,100,000 ft -lb

KE = 63100000 / [1 + 0.5 ( 1 )]= 42,100,000 ft-lb

Multiple Impacts Are Effective Against Threat Vulnerable Area Subsystems Multiple Impacts Are Effective Against Threat Vulnerable Area Subsystems 

0.4

0.5

0.6

0.7

0.8

0.9

1

r   o    b   a    b    i    l    i    t   y   o    f    K    i    l

 Av / Atp = 0.1

 Av / Atp = 0.5

 Av / Atp = 0.9

PK = 1 - ( 1 - Av / Atp)nhits

Note:•  Av = Target vulnerable area•  Atp

= Target presented area

Page 228: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 228/421

2/24/2008  ELF  228 

0

0.1

0.2

0.3

0 5 10 15 20 25 30

nhits, Number of Impacts on Target

    P

    k ,

    P    p

Example:If Av / Ap = 0.1, nhits = 22 gives PK = 0.9

If Av / Ap = 0.9, nhits = 1 gives PK = 0.9

Small Miss Distance Improves Number of Warhead Fragment Hits Small Miss Distance Improves Number of Warhead Fragment Hits 

20

40

60

80

100

N   u   m    b   e   r   o    f    F

   r   a   g   m   e   n    t    H    i    t   s Wwh = 5 lb

Wwh = 50 lb

Wwh = 500 lb

Example for Rocket Baseline:

WWH = 77.7 lbMc / Mm = 1, Wm = 38.8 lb = 17,615 g

 Average fragment weight = 3.2 g

nfragments = 17615 / 3.2 = 5505

nhits = nfragments [ AP / ( 4 π σ2 )]

Page 229: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 229/421

2/24/2008  ELF  229 

00 20 40 60 80 100

Sigma, Miss Distance, ft

    N g

 AP = Target presented area = 20 ft2

σ = Miss distance = 25 ft

nhits = 5505 { 20 / [( 4 π ) ( 25 )2 ]} = 14

Kinetic energy per square foot. = KE/ ( 4 π σ2 ) = 42100000 / [ 4 π ( 25 )2 ] =5,360 ft-lb / ft2

Note:• Spherical blast with uni formly distributed fragments• nhits = n fragments [ AP / ( 4 π σ2 )]• Warhead charge / metal weight = 1•  Average fragment weight = 50 grains ( 3.2 g )•  AP = Target presented area = 20 ft2

High Fragment Velocity Requires High Charge-to- Metal Ratio High Fragment Velocity Requires High Charge-to- Metal Ratio 

4000

6000

8000

10000

   m   e   n    t    V   e    l   o   c

    i    t   y ,

    f    t    /   s

HMX Explosive

TNT Explosive

Note: Based on the Gurney equation for acylindrical warhead

HMX Explosive ( 2 EC )1/2 = 10,230 ft / s

TNT Explosive ( 2 EC )1/2 = 7,600 ft / sV = Fragment initial velocity ft / s

Vf = ( 2 Ec )1/2 [ ( Mc / Mm ) / ( 1 + 0.5 Mc / Mm )]1/2

Example:

Baseline Rocket Warhead

HMX E l i

Page 230: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 230/421

2/24/2008  ELF  230 

0

2000

0 1 2 3

Mc / Mm, Charge-to-Metal Ratio

    V    f ,    F   r   a   g Vf = Fragment initial velocity , ft / s

Ec = Energy per uni t mass of charge, ft2

/ s2

Mc = Mass of chargeMm = Total mass of all metal fragmentsMwh = Mass of warhead = Mm + Mc

HMX Explosive

MC / Mm = 1Vf  = 8,353 ft / s

P   e   r    f   o   r   a    t    i   o   n    b   y    F   r   a   g   m   e   n    t    (    i   n    )

50 Grains( 3.2 g )

150 Grains ( 9.7 g )

.5

.375

.25

Small Miss Distance Improves Fragment Penetration Small Miss Distance Improves Fragment Penetration 

Page 231: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 231/421

2/24/2008  ELF  231 

Note: Typical air-to-air missi le warhead

• Fragments init ial veloci ty 5,000 ft / s• Sea level• Average fragment weight 3.2 g• Fewer than 0.3% of the fragments weigh more than 9.7 g for nominal 3.2 g preformed warhead fragments• Small miss distance gives less reduction in f ragment velocity, enhancing penetration

2010 30 40 50 60 70 80 90 100 110 120

    S    t   e   e    l     P

.125

Miss Distance ( ft )

Hypersonic Hit-to-Kill Enhances Energy on Target for Missiles with Small Warheads 

Hypersonic Hit-to-Kill Enhances Energy on Target 

for Missiles with Small Warheads 

3

4

5

6

7

8

9

a    l     E   n   e   r   g   y   o   n

    T   a   r   g   e    t    /    W   a   r    h   e   a    d

    C    h   a   r   g   e    E   n   e   r   g   y

Weight o f missile /Weight o f charge = 20

Weight o f missile /Weight o f charge = 10

Weight o f

ET / EC = [( 1 / 2 ) ( WMissile / gc ) V2 + EC ( WC / gc )] / [ EC ( WC / gc )]

Example for Rocket Baseline:

WMissile = 367 lb

WC = 38.8 lb

WMissile / WC = 9.46

V = 2,000 ft / s

( 1 / 2 ) ( WMissile / gc ) V2 = 22.8 x 106 ft-lb )

EC ( WC / gc ) = 63.1 x 106 ft-lb

E / E = 1 36

Page 232: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 232/421

2/24/2008  ELF  232 

0

1

2

0 1000 2000 3000 4000 5000 6000

Missi le Clos ing Veloc ity, ft / s

    E    T    /    E    C ,

    T   o    t    Weight o f 

missile /

Weight o f charge = 5

Weight o f missile /Weight o f 

charge = 2

Note: Warhead explosive charge energy based on HMX, ( 2 EC )1/2 = 10,230 ft / s.

1 kg weight at Mach 3 clos ing velocity has kinetic energy of 391,000 J ⇒ equivalent chemical energy of 0.4 lb TNT.

ET / EC = 1.36

Kinetic Energy Warhead Density, Length, and Velocity Provide Enhanced Penetration Kinetic Energy Warhead Density, Length, and Velocity Provide Enhanced Penetration 

20

30

40

50

60

n   e    t   r   a    t    i   o   n    /    P   e   n   e    t   r   a    t   o   r    D    i   a   m   e    t   e   r    f   o   r

    S    t   e   e    l   o   n    C   o   n   c   r   e    t   e

Note:V > 1,000 ft / s

l / d > 2Non-deforming ( high strength, sharp nose )

penetrator l = Penetrator lengthd = Penetrator diameter V = Impact velocity

ρP= Penetrator densityρT= Target densi tyσT= Target ultimate stress

Example for 250 lb Steel Penetrator  l / d = 10

P / d = [( l / d ) – 1 ] ( ρP / ρT )1/2 + 3.67 ( ρP / ρT )2/3 [( ρT V2 ) / σT ]1/3

Page 233: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 233/421

2/24/2008  ELF  233 

0

10

20

0 1000 2000 3000 4000

V, Veloci ty, ft / s

    P    /    d ,

    T   a   r   g   e    t    P   e   n

l / d = 2 l / d = 5 l / d = 10

l / d = 10 l = 48 in ( 4 ft ) d = 4.8 in ( 0.4 ft ) Concrete target ρP = 0.283 lb / in3 ( 15.19 slug / f t3 ) ρT = 0.075 lb / in3 ( 4.02 slug / ft 3 ) V = 4,000 ft / s σT = 5,000 psi ( 720,000 psf )

P / d = [ 10 – 1 }( 15.19 / 4.02 )1/2 + 3.67 ( 15.19/ 4.02 )2/3 [ 4.02 ( 4000 )2 / 720000 ]1/3 = 57.3

P = ( 57.3 ) ( 0.4 ) = 22.9 ft

Source: Christman, D.R., et al, “Analysis of High-Velocity Projectile Penetration,” Journal of Applied Physics, Vol 37, 1966

Standard Missile 3 ( NTW ) PAC-3 THAAD

Examples of Kinetic-Kill Missiles Examples of Kinetic-Kill Missiles 

Page 234: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 234/421

2/24/2008  ELF  234 

LOSAT LOSAT Video

CEP Approximately Equal to 1σ  Miss Distance CEP Approximately Equal to 1σ  Miss Distance 

MedianTrajectory

Extreme MissileTrajectory

Missile Circu lar Error Probable ( 50%of shots within circle )

Missile 1σ Miss Distance ( 68%of shots within circle for anormal distribut ion of error )

Target

Presented Target Area

Miss DistanceRobustness

Lethality

Miss Distance

ObservablesSurvivability

Reliability

Cost

Launch Platform

Integration /Firepower 

Page 235: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 235/421

2/24/2008  ELF  235 

Extreme MissileTrajectory

Hypothetical PlaneThrough Target

For a normal distribution of error:

Probability < 1σ miss distance = 0.68

Probability < 2σ miss distance = 0.95

Probability < 3σ miss distance = 0.997

Source: Heaston, R.J. and Smoots, C.W., “ Introduction to Precision Guided Munit ions,” GACIAC HB-83-01, May 1983.

A Collision Intercept Has Constant Bearing for a Constant Velocity, Non-maneuvering Target A Collision Intercept Has Constant Bearing for a Constant Velocity, Non-maneuvering Target 

Example of Miss

( Line-of-Sight Angle Diverging )( Line-of-Sight Angle Rate L

.≠ 0 )

Example of Collision Intercept

( Line-of-Sight Angle Constant )( Line-of-Sight Angle Rate L

.= 0 )

Overshoot Miss

(  LO S   ) 1  >  (  LO S   ) 

0  ( LOS )1 = ( LOS )0t

t1

t2

t

t1

Page 236: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 236/421

2/24/2008  ELF  236 

Missile Target

Seeker Line-of-Sight

Missile Target

t0 t0

Seeker Line-of-Sight

Note: L = Missile Lead A = Target Aspect

 AL L

 A

A Maneuvering Target and Initial Heading Error 

Cause Miss 

A Maneuvering Target and Initial Heading Error 

Cause Miss Target

Missile

CollisionPoint

+ZγM0

L

Maneuvering : d2Z + dZ + N’ Z =  – N’ cos A 1 aT t2

 A

Page 237: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 237/421

2/24/2008  ELF  237 

Target: τ

dt2 dt to – t t

o – t cos L 2

aT t

Initial HeadingError 

: τ d2Zdt2

+ dZdt

+ N’ Zto – t

=  – VM γM0

Note: to - t = 0 at intercept, causing discontinuity in above equations.

N’ = Effective navigation ratio = N [ VM / ( VM - VT cos A )]N = Navigation ratio = ( dγ / dt ) / ( dL / dt )τ = Missile time constant, VM= Velocity of missile, γM0

= Initial fl ightpath angle error of missile, to = Total time of fl ight, aT = Accelerationof target, VT = Velocity of target

Reference: Jerger, J.J., Systems Preliminary Design Principles of Guided Missile Design , D. Van NostrandCompany, Inc., Princeton, New Jersey, 1960

Missile Time Constant Causes Miss Distance Missile Time Constant Causes Miss Distance 

τ is a measure of missile ability to respond totarget condition changes

τ equals elapsed time from input of targetreturn unti l missile hascompleted 63% or ( 1 – e-1 ) of correctivemaneuver ( t = τ )

τ also called “ rise time”

Contributions to time constant τ Control effectiveness ( τδ )

Control dynamics ( e.g., actuator rate ) ( τ . )

Input

Output

t i

Time

Timet i

63%

τ

Page 238: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 238/421

2/24/2008  ELF  238 

y ( g ) ( δ )

Dome error slope ( τDome ) Guidance and control filters ( τFilter )

Other G&C dynamics ( gyro dynamics,accelerometer, processor latency, etc )

Seeker errors ( resolution, latency, blind range,tracking, noise, glint, amplitude )

 Approach to estimate τ τ = τδ + τδ

. + τDome

 Acceleration Achieved Acceleration Commanded

= 1 – e- t / τ

Example for Rocket Baseline:

M = 2, h = 20k ft , coastτ = τδ + τδ

. + τDome

= 0.096 + 0.070 + 0.043 = 0.209 s

Time Constant τδ

for Control Effectiveness Is 

Driven by Static Margin 

Time Constant τδ

for Control Effectiveness Is 

Driven by Static Margin 

 Assumptions for τδ Control surface deflection limited

Near neutral stability

Equation of motion is

α

..

= [ ρ V2

S d Cmδ / ( 2 Iy ) ] δMax

Integrate to solve for αMax

αMax= [ ρ V2 S d Cmδ/ ( 8 Iy ) ] δMax τδ

2

τδ is given by

αMax, δMax

 – δMax

αMax

τδ / 2 τδ

Page 239: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 239/421

2/24/2008  ELF  239 

τδ = [ 8 Iy ( αMax / δMax ) / ( ρ V2

SRef  d Cmδ )]1/2

Contributors to small τδ

Low fineness ( small Iy / ( SRef  d ))

High dynamic pressure ( low altitude / highspeed )

Large Cmδ

Example for Rocket Baseline:

W = 367 lb, d = 0.667 ft, SRef  = 0.349 ft2, Iy = 94.0 slug-ft2,

M = 2, h = 20k ft ( ρ = 0.001267 slug / ft3 ),

αMax= 9.4 deg, δMax

= 12.6 deg, Cmδ = 51.6 per rad,

τδ = { 8 ( 94.0 ) ( 9.4 / 12.6 ) / [ 0.001267 ( 2074 )2 ( 0.349 )( 0.667 ) ( 51.6 ) ]}1/2 = 0.096 s

Time Constant τδ

.

for Flight Control System Is Driven by Actuator Rate Dynamics Time Constant τ

δ

.

for Flight Control System Is Driven by Actuator Rate Dynamics 

 Assumptions for τδ.

Control surface rate limited ( δ.

= δ.

Max ) Near neutral stability

Equation of motion for δ.= +/- δ

.

Max

α...

= [ ρ V2 S d Cmδ / ( 2 Iy ) ] δ.

Max

Equation of motion for “ perfect” responseδ.= ∞, δ = δMax

α..

= [ ρ V2 S d Cmδ / ( 2 Iy ) ] δMax

τδ. is d ifference between actual response

to and “ perfect” ( ) response

α Max, δ Max α Max α Max

- δ Max

δ.

1

Example for Rocket Baseline.

τδ.τδ

Page 240: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 240/421

2/24/2008  ELF  240 

to αMax and perfect ( τδ ) response

Then

τδ. = 2 δMax / δ

.

Max

Note:Response for control rate limitResponse for no control rate limit

• δ.

Max= 360 deg / s, δ

Max= 12.6 deg

• τδ. = 2 ( 12.6 / 360 ) = 0. 070 s

| R | = 0.05 ( lN / d – 0.5 ) [ 1 + 15 ( Δ f / f ) ] / ( d / λ )

τDome = N’ ( VC / VM ) | R | ( α / γ.

)

α / γ.= α ( W / gc ) VM / { q SRef  [ CNα

+ CNδ/ ( α / δ )]}

Substituting gives τDome = N’ W VC | R | / { gc q SRef  [ CNα+ CNδ

/ ( α / δ )]}

Time Constant τDome for Radome Is Driven by Dome Error Slope Time Constant 

τDome for Radome Is Driven by Dome Error Slope 

0.03

0.02    E   r   r   o   r    S    l   o   p   e ,

g

TangentOgiveDomeΔ f / f = 0.05

f / f = 0 02

Example for Rocket Baseline at M = 2, h = 20k ft, q =2725 psf 

 Assume VT = 1,000 ft / s, giving VC = 3,074 ft / s

 Assume N’ = 4, f = 10 GHz or λ = 1.18 in, Δ f / f = 0.02

Page 241: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 241/421

2/24/2008  ELF  241 

0.01

0    |    R    |

    @    d   /λ

  =    1

   0 ,

    R   a    d   o   m

   e

    D   e   g    /    D   e   g

0 1 2 3

lN / d, Nose Fineness

Faceted or WindowDome

Multi-lensDome

Δ f / f = 0.02

Δ f / f = 0Configuration data are lN / d = 2.4, d = 8 in, SRef  = 0.349ft 2, W = 367 lb, CNα= 40 per rad, CNδ

= 15.5 per rad, α / δ= 0.75

Compute | R | = 0.05 ( 2.4 – 0.5 ) [ 1 + 15 ( 0.02 )] / ( 8 /1.18 ) = 0.0182 deg / deg

τDome = 4 ( 367 ) ( 3074 ) ( 0.0182 ) / [ 32.2 ( 2725 ) ( 0.349 )

( 40 + 15.5 / 0.75 )] = 0.043 s

High Initial Acceleration Is Required to Eliminate a Heading Error High Initial Acceleration Is Required to Eliminate a Heading Error 

aM t0 / ( VM γM ) = N’ ( 1 – t / t0 ) N ’ – 2

aM t0 / ( VM γM ),Non-dimensional

 Acceleration

6

4

2.5

3

4

6

Note: Proportional Guidanceτ = 0t0 = Total Time to CorrectHeading Error aM = Acceleration of MissileVM = Velocity of Missile

γM = Init ial Heading Error of MissileN’ = Effective Navigation Ratio

Example: Exoatmospheric Head-on Intercept, N’ = 4

Midcourse lateral error at t = 0 ( seeker lock-on ) =200 m, 1 σ

Rlock-on = 20000 m ⇒ γM = 200 / 20000 = 0.0100 rad

VM = 5000 m / s , VT = 5000 ⇒ t0 = Rlock-on / ( VM + VT ) =20000 / ( 5000 + 5000 ) = 2.00 s

aM t0 / ( VM γM ) = 4

aM = 4 ( 5000 ) ( 0.0100 ) / 2.00 ) = 100 m / s2

nM = 100 / 9.81 = 10.2 g

Page 242: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 242/421

2/24/2008  ELF  242 

2

00 0.2 0.4 0.6 0.8

t / t0, Non-dimensional Time1.0

N’ = 2

M g

Missile Minimum Range May Be Driven By 4 to 8 Time Constants to Correct Initial Heading Error Missile Minimum Range May Be Driven By 4 to 8 Time Constants to Correct Initial Heading Error 

0.1

0.3

0.2

N’ = 3

N’ = 4

N’ = 6

Note: Proportional Guidance

( σHE )Max shown in figure is the envelope of adjoint solution( σHE )Max = Max miss distance ( 1 σ ) from heading error, ft

VM = Velocity of missile, ft / sγM = Init ial heading error , radt0 = Total time to correct heading error, sτ = Missile time constant, sN’ = Effective navigation ratio

Example: Ground Target, N’ = 4, = 0.2, GPS /

| ( σHE )Max / ( VM γM to ) |

σHE = VM γM t0 e-( t0 / τ ) j = 1∑N ’ – 1 { ( N’ - 2 )! [ - ( t0 / τ )] j / [( j – 1 )! ( N’ – j – 1 )! j! ]}

If N’ = 3, σHE = VM γM t0 e-( t0 / τ ) [ ( t0 / τ ) - ( t0 / τ )2 / 2 ]If N’ = 4, σHE = VM γM t0 e-( t0 / τ ) [( t0 / τ ) - ( t0 / τ )2 + ( t0 / τ )3 / 6 ]

If N’ = 5, σHE = VM γM t0 e-( t0/ τ ) [( t0 / τ ) – ( 3 / 2 ) ( t0 / τ )2 + ( t0 / τ )3 / 2 – ( t0 / τ )4 / 24 ]If N’ = 6, σHE = VM γM t0 e-( t0 / τ ) [( t0 / τ ) - 2 ( t0 / τ )2 + ( t0 / τ )3 - ( t0 / τ )4 / 6 + ( t0 / τ )5 / 120 ]

Page 243: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 243/421

2/24/2008  ELF  243 

0.1

0

0 2 4 6 8tO / τ 10References:

•Donatelli, G.A., et al, “ Methodology for Predict ing Miss Distance for Air Launched Missi les,” AIAA-82-0364, January 1982•Bennett, R.R., et al, “ Analyt ical Determination of Miss Distances for Linear Homing Navigation ,” Hughes Memo 260, March 1952

Example: Ground Target, N 4, τ 0.2, GPS /

INS error = 3 m, Rlock-on = 125 m, γM = 3 / 125 =0.024 rad, VM = 300 m / s, t0 = 125 / 300 = 0.42 s

t0 / τ = 0.42 / 0.2 = 2.1, (σHE )Max / ( VM γM to ) = 0.12

( σHE )Max = 0.12 ( 300 ) ( 0.024 ) ( 0.42 ) = 2.2 m

Required Maneuverability Is about 3x the Target Maneuverability for an Ideal ( τ = 0 ) Missile Required Maneuverability Is about 3x the Target Maneuverability for an Ideal ( τ = 0 ) Missile 

4

 Assumptions:τ = 0

VM > VT

6

3

4

N’ = 2.5

N’ = 2 ∞↑

Wheret = Elapsed Timet0 = Time to TargetN’ = Effective Navigation Ratio

Missile-to-Target

nM

nT

,

nM / nT = [ N’ / ( N’ – 2 )] [ 1 – ( 1 – t / t0 )N ’ – 2 ]

Example:

τ = 0, N’ = 3, t / t0 = 1

⇒ nM / nT = 3

Page 244: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 244/421

2/24/2008  ELF  244 

2

00 0.2 0.4 0.6 0.8 1.0

t / t0, Non-Dimensional Time

4

6

Missile to Target

 AccelerationRatio

Target Maneuvers Require 6 to 10 Time Constants to Settle Out Miss Distance Target Maneuvers Require 6 to 10 Time Constants to Settle Out Miss Distance 

0 1

0.3

0.2

( σMAN )Max

gc nT τ2

N’ = 3

N’ = 4

Note: Proportional Guidance( σMAN )Max is the envelope of adjoint solu tion( σMAN )Max = Max miss ( 1 σ ) from target accel, ftnT = Target acceleration, ggc = Gravitation constant, 32.2τ = Missile time constant, s

σMAN = gc nT τ2 e-( t0 / τ ) j = 2∑N ’ – 1 { ( N’ - 3 )! [ - ( t0 / τ )] j / [( j – 2 )!

( N’ – j – 1 )! j! ]}If N’ = 3, σMAN = gc nT τ2 e-( t0 / τ ) [ ( t0 / τ )2 / 2 ]If N’ = 4, σMAN = gc nT τ2 e-( t0 / τ ) [ ( t0 / τ )2 / 2 - ( t0 / τ )3 / 6 ]If N’ = 5, σMAN = gc nT τ2 e-( t0 / τ ) [ ( t0 / τ )2 / 2 - ( t0 / τ )3 / 3 + ( t0 /τ )4 / 24 ]If N’ = 6, σMAN = gc nT τ2 e-( t0 / τ ) [ ( t0 / τ )2 / 2 - ( t0 / τ )3 / 2 + ( t0 /τ )4 / 8 - ( t0 / τ )5 / 120 ]

Page 245: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 245/421

2/24/2008  ELF  245 

0.1

00 2 4 6 8tO / τ 10

N’ = 6N’ = Effective navigation ratioτ0 = Time of flight, s

References:

•Donatelli, G.A., et al, “ Methodology for Predict ing Miss Distance for Air Launched Missi les,” AIAA-82-0364, January 1982•Bennett, R.R., et al, “ Analyt ical Determination of Miss Distances for Linear Homing Navigation ,” Hughes Memo 260, March 1952

An Aero Control Missile Has Reduced Miss 

Distance at Low Altitude / High Dynamic Pressure 

An Aero Control Missile Has Reduced Miss 

Distance at Low Altitude / High Dynamic Pressure 

1

10

100

M   a   x    i   m   u   m    M    i   s   s    D   u   e

    t   o    M   a   n   e   u   v   e   r    i   n   g

    T   a   r   g   e    t ,    f    t

h = SL

h = 20k f t

h = 40k f t

h = 60k f t

h = 80k f t

( σMan )Max = 0.13 gc nT τ2 @ N’ = 4, t0 / τ = 2Note: Proportional guidanceTarget maneuver init iated for max miss ( t0 / τ = 2 )

( σMan )Max in figure = Envelope of adjoint missdistanceτ = Missile time constant, sN’ = Effective navigation ratio = 4nT = Target acceleration, ggc = Gravitation constant = 32.2

Page 246: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 246/421

2/24/2008  ELF  246 

0.1

1

0 2 4 6 8 10

Target Maneuverability, g

    R   o   c    k   e    t    B   a   s   e    l    i   n   e

    M

Example for Rocket Baseline at Mach 2, coasting

 Assume:

• nT = 5g, VT = 1,000 ft / s, head-on intercept

•h = 20k ft ⇒ τ = 0.209 s

( σMan )Max = 0.13 ( 32.2 )( 5 )( 0.209 )2 = 0.9 ft•h = 80k ft ⇒ τ = 1.17 s

( σMan )Max = 0.13 ( 32.2 )( 5 )( 1.17 )2 = 28.7 ft

Glint Miss Distance Driven by Seeker Resolution,

Missile Time Constant, and Navigation Ratio 

Glint Miss Distance Driven by Seeker Resolution,

Missile Time Constant, and Navigation Ratio 

0.2

0.4

0.6

0.8

    (    b    T    )    R   e   s ,

    N   o   n    d    i   m   e

   n   s    i   o   n   a    l    M    i   s   s    D    i   s    t   a   n   c

   e

    f   r   o   m    G    l    i   n    t    @    2    H   z    B   a   n    d   w    i    d    t    h

σGlint = KN’ ( W / τ )1/2

KN

’ = 0.5 ( 2 KN

’ = 4 )N’ / 4

KN’ = 4 = 1.206

W = ( bT )Res2 / ( 3 π2 B )

Note:Proportional guidance Adjo int miss distance

σGlint = Miss distance due to gl int noise, ftW = Glint no ise spectral density , ft2 / Hzτ = Missile time constant, sN’ = Effective navigation ratio( bT )Res = Target span resolut ion at seeker blind range, ftB = Noise bandwidth, Hz ( 1 < B < 5 Hz )

Example: Rocket Baseline at Mach 2, h= 20k ft altitude ⇒ τ = 0.209 s

 Assume:

•N’ = 4

•B = 2 Hz

Page 247: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 247/421

2/24/2008  ELF  247 

0

0 0.2 0.4 0.6 0.8 1

Tau, Missi le Time Constant, s

    S    i   g   m   a

    /

N' = 3 N' = 4 N' = 6

•B = 2 Hz

•( bT )Res = b t = 40 ft ( radar seeker beamwidth resolution of target wing span )

Calculate:

W = ( 40 )2 / [ 3 π2 ( 2 )] = 27.0 ft2 / Hz

σGlint

/ ( bT

)Res

= KN

’ ( W / τ )1/2 / ( bt

)Res

= 1.206 ( 27.0 / 0.209 )1/2 / 40 = 0.343

σGlint = 0.343 ( 40 ) = 13.7 ftReference:Bennett, R.R., et al, “Analyt ical Determination of Miss Distances for Linear Homing Navigation,” Hughes Memo 260, March 1952

Page 248: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 248/421

Missile Carriage RCS and Launch Plume Are 

Considerations in Launch Platform Observables 

Missile Carriage RCS and Launch Plume Are 

Considerations in Launch Platform Observables 

Missile Carriage Alternatives Internal Carriage: Lowest Carriage RCS

Conformal Carriage: Low Carriage RCS

Conventional External Pylon or External Rail Carriage: High Carriage RCS

Plume Alternatives Min Smoke: Lowest Launch Observables ( H2O Contrail )

Reduced Smoke: Reduced Launch Observables ( e.g., HCl Contrail from APOxidizer )

Carriage and

Launch Observables

Robustness

Lethality

Miss Distance

ObservablesSurvivability

Reliability

Cost

Launch PlatformIntegration /Firepower 

Page 249: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 249/421

2/24/2008  ELF  249 

High Smoke: High Launch Observables ( e.g., Al2O3 Smoke from Al Fuel )

Center Weapon Bay Best for Ejection Launchers

F-22 Bay Loadout: 3 AIM-120C, 1 GBU-32 F-117 Bay Loadout: 1 GBU-27, 1 GBU-10 B-1 Bay Loadout: 8 AGM-69

Video Side Weapon Bay Best for Rail Launchers

Examples of Weapon Bay Internal Carriage and 

Load-out 

Examples of Weapon Bay Internal Carriage and 

Load-out 

Page 250: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 250/421

2/24/2008  ELF  250 

 AMRAAM Loading in F-22 Bay F-22 Side Bay: 1 AIM-9 Each Side Bay RAH-66 Side Bay: 1 AGM-114, 2 FIM-92, 4 Hydra 70 Each Side Bay

Minimum Smoke Propellant Has Low Observables Minimum Smoke Propellant Has Low Observables 

High Smoke Example: AIM-7

Particles ( e.g., metal fuel ) at allatmosphere temperature.

Reduced Smoke Example: AIM-120

Contrail ( HCl from AP oxidizer ) at T < -10° Fatmospheric temperature.

Minimum Smoke Example: Javelin

Contrail (H2O ) at T < -35º Fatmospheric temperature.

Page 251: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 251/421

2/24/2008  ELF  251 

High Smoke Motor 

Reduced Smoke Motor 

Minimum Smoke Motor 

High Altitude Flight and Low RCS Enhance 

Survivability 

High Altitude Flight and Low RCS Enhance 

Survivability 

100

1000

10000

100000

1000000

10000000

    P    t ,    R   a    d   a   r    T   r   a

   n   s   m    i    t    t   e    d    P   o   w   e

   r

    R   e   q   u    i   r   e    d    f   o

   r    D   e    t   e   c    t    i   o   n ,    W

Example for Pt= 50,000 W:

Not detected if:

h > 25k ft for σ = 0.001 m2

h > 77k ft for σ = 0.1 m2

Pt = ( 4 π )3 Pr  R4 / ( Gt Gr  σ λ2 ) Other SurvivabilityConsiderations

Robustness

Lethality

Miss Distance

ObservablesSurvivability

Reliability

Cost

Launch PlatformIntegration /Firepower 

Page 252: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 252/421

2/24/2008  ELF  252 

0 20 40 60 80 100

h, Geometric Alt itude, kft

RCS = 0.1 m2 RCS = 0.01 m2 RCS = 0.001 m2

Note: Range Slant Angle = 20 deg, Gt = Transmitter Gain = 40 dB, Gr = Receiver Gain = 40 dB, λ = Wavelength = 0.03

m, Pr  = Receiver Sensitivity = 10-14 W, σ = radar cross section ( RCS ) Based on Radar Range Equation with ( S / N )Detect = 1 and Unobstructed Line-of-Sight

Mission Planning and High Speed Enhance 

Survivability 

Mission Planning and High Speed Enhance 

Survivability 

0

1

2

   x   p    (    V    /    R   m   a   x    ) ,    N   o   n  -    d    i   m   e   n   s    i   o   n   a    l    T    h   r   e   a    t

    E   x   p   o   s   u

   r   e    T    i   m   e

texp = 2 ( Rmax / V ) cos [ sin-1 ( yoffset / Rmax )] – treact

Example:

yoffset = 7 nm, Rmax = 10 nm = 60750 ft,y / R = 0.7, t = 15 s

   R m  a  x treact V

texp V

Flyby

SAM

Siteyoffset

Page 253: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 253/421

2/24/2008  ELF  253 

0 0.2 0.4 0.6 0.8 1

yoffset / Rmax, Non-dimens ional Offset Distance from

Threat

    t   e

treac t ( V / Rmax ) = 0 treac t ( V / Rmax ) = 1.0

Note: Based on assumption of constant altitude, constant heading flyby of threat SAM site with an unobstructed line-of-sight. texp = exposure time toSAM threat, Rmax = max detection range by SAM threat, V = flyby veloci ty,yoffset = flyby offset, treact = SAM site reaction time from detection to launch

yoffset max react

If V = 1000 ft / s, t react ( V / Rmax ) = 0.247

•texp ( V / Rmax ) = 2 cos [ sin-1 ( 7 / 10 )] –15 ( 1000 / 60746 ) = 1.428 – 0.247 = 1.181

•texp = 1.181 ( 60746 / 1000 ) = 71.7 s

If V = 4000 ft / s, t react ( V / Rmax ) = 0.988

•texp ( V / Rmax ) = 0.440

•texp = 0.440 ( 60746 / 4000 ) = 6.7 s

Low Altitude Flight and Terrain Obstacles 

Provide Masking from Threat 

Low Altitude Flight and Terrain Obstacles 

Provide Masking from Threat 

500

1000

1500

2000

    h   m   a   s    k ,

    A    l    t    i    t   u    d   e    t    h   a    t

    M   a   s    k   s    L    i   n   e  -   o    f  -    S    i   g    h    t

    E   x   p   o   s   u   r   e    t   o    S   u

   r    f   a   c   e    T    h   r   e   a    t ,    f    t

hmask = ( hmask )obstacle + ( hmask )earth = hobstacle ( Rlos / Robstacle ) + ( Rlos / 7113 )2

hmask = alti tude that allows obstacle and earth

curvature to mask exposure to surface threat LOS, ft

hobstacle = height of obs tacle above terrain, ft

Rlos = line-of-sight range to surface threat, ft

Robstacle = range from surface threat to obstacle, ft

Height of low hill or tall tree ≈ 100 ft

Height of moderate hill ≈ 200 ft

Height of high hill ≈ 500 ft

Height of low mountain ≈ 1000 ft

Page 254: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 254/421

2/24/2008  ELF  254 

0

0 10 20 30 40

Rlos, Line-of-Sight Range to Surface Threat, nm

Rlos ( hobstacle / Robstacle ) = 100 ft

Rlos ( hobstacle / Robstacle ) = 200 ftRlos ( hobstacle / Robstacle ) = 500 ft

Rlos ( hobstacle / Robstacle ) = 1000 ft

Example:hobstacle = 200 ft

Robstaacle = 5.0 nm = 30395 ft

Rlos = 10.0 nm = 60790 ft

Rlos ( hobstacle / Robstaacle ) = 60790 ( 200 /30395 ) = 400 ft

hmask = 200 ( 60790 / 30395 ) + ( 60790 /7113 )2 = 400 + 73 = 473 ft above terrain

Insensitive Munitions Improve Launch Platform 

Survivability 

Insensitive Munitions Improve Launch Platform 

Survivability  Critical Subsystems

Rocket motor or fuel tank

Warhead Severity Concerns Ranking of Power Output - Type

1. Detonation ( ~ 0.000002 s r ise time )

2. Partial detonation ( ~ 0.0001 s rise time )

3. Explosion ( ~ 0.001 s rise time )4. Deflagration or propulsion rise time ( ~ 0.1 s rise time )

5. Burning ( > 1 s )

Design and test considerations ( MIL STD 2105C )

Page 255: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 255/421

2/24/2008  ELF  255 

Fragment / bul let impact or blast Sympathetic detonation

Fast / slow cook-off fi re

Drop

Temperature Vibration

Carrier landing ( 18 ft / s sink rate )

Robustness

Lethality

Miss Distance

ObservablesSurvivability

Reliability

Cost

Launch PlatformIntegration /Firepower 

High System Reliability Is Provided by High Subsystem Reliability and Low Parts Count High System Reliability Is Provided by High Subsystem Reliability and Low Parts Count 

Typical Event /Subsystem

Rsystem ≈ 0.94 = R Arm X RLaunch X RStruct X R Auto XR Act X RSeeker X RIn Guid X RPS X RProp X RFuze X RW/H

 Arm ( 0.995 – 0.999 )Launch ( 0.990 – 0.995 )

Structure ( 0.997 – 0.999 )

 Autopi lot ( 0.993 – 0.995 )

 Actuators ( 0.990 – 0.995 )

Seeker ( 0.985 – 0.990 )

Inertial Guidance ( 0.995 – 0.999 )

P S l ( 0 995 0 999 )

Reliability

Typical System Reliability

Page 256: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 256/421

2/24/2008  ELF  256 

Power Supply ( 0.995 – 0.999 )Propuls ion ( 0.995 – 0.999 )

Fuze ( 0.987 – 0.995 )

Warhead ( 0.995 – 0.999 )

0.90 0.92 0.94 0.96 0.98 1.00

Typical Reliability

Sensors, Electronics and Propulsion Drive 

Missile Production Cost 

Sensors, Electronics and Propulsion Drive 

Missile Production Cost 

Dome Seeker Guidance andControl

Propulsion•Rocket• Airbreather 

Wings

Stabilizers

Warheadand Fuzing

 AerothermalInsulation

FlightControl

Power Supply

Structure•Rocket• Airbreather 

 –

 –

 – – –

 –

CostRobustness

Lethality

Miss Distance

ObservablesSurvivability

Reliability

Cost

Launch PlatformIntegration /Firepower 

DataLink

Page 257: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 257/421

2/24/2008  ELF  257 

Very High( > 25% Production Cost )

 –High( > 10% )

Moderate( > 5% )

Relatively Low( < 5% )

Note:System assembly and test ~ 10% production costPropulsion and structure parts count / cost of airbreathing missiles are higher than that of rockets

Sensors and Electronics Occupy a Large Portion 

of a High Performance / High Cost Missile.

Sensors and Electronics Occupy a Large Portion 

of a High Performance / High Cost Missile.

Example: Derby / R-Darter Missile

Page 258: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 258/421

2/24/2008  ELF  258 

Source: http://www.israeli-weapons.com/weapons/missile_systems/air_missiles/derby/Derby.html

Cost Considerations Cost Considerations 

Life Cycle

System Development and Demonstration ( SDD )

Production

Logistics

Culture / processes

Relative Emphasis of Cost, Performance, Reliabil ity, Organization Structure

Page 259: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 259/421

2/24/2008  ELF  259 

Relaxed Mil STDs

IPPD

Profit

Competition

SDD Cost Is Driven by Schedule Duration and 

Risk 

SDD Cost Is Driven by Schedule Duration and 

Risk 

10

100

1000

10000

0 2 4 6 8 10 12 14

   C   S   D   D ,

   S   D   D

   C  o  s   t   i  n   M   i   l   l   i  o  n  s

CSDD = $20,000,000 tSDD1.90, ( tSDD in years )

Example:

5 year ( medium risk ) SDD program

CSDD = $20,000,000 tSDD1.90

= ( 20,000,000 ) ( 5 )1.90

= $426,000,000

Low

Risk

SDD

High

Risk

SDD

Moderate

Risk

SDD

Page 260: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 260/421

2/24/2008  ELF  260 

0 2 4 6 8 10 12 14

tSDD, SDD Schedule Duration in Years

AGM-142 TOW 2 SLAM-ER MLRS LB Hellfire J ASSM Hellfire II

SLAM J DAM AGM-130 Harpoon ATACMS Tomahawk ESSM

AIM-120A J SOW HARM J avelin BAT PAC-3 PatriotNote: SDD required schedule duration depends upon risk. Should not ignore risk in shorter schedule.-- Source of data: Nicho las, T. and Rossi, R., “U.S. Missile Data Book, 1999,” Data Search Assoc iates, 1999 – SDD cost based on 1999 US$

Light Weight Missiles Have Low Unit Production 

Cost 

Light Weight Missiles Have Low Unit Production 

Cost 

100000

1000000

10000000

Javelin

Longbow Hellfire

 AMRAAMMLRS

HARM

JSOW

Tomahawk

C1000th ≈ $6,100 WL0.758, ( WL in lb )

C

   o   s    t   o    f    M    i   s   s    i    l   e    N   u

   m    b   e   r    1    0    0    0 ,

    U .    S .    $

Page 261: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 261/421

2/24/2008  ELF  261 

10000

10 100 1000 10000

Example:

2,000 unit buy of 100 lb missile:

C1000th ≈ $6,100 WL0.758 = 6100 ( 100 )0.758 =

$200,000

Cost of 2,000 miss iles = 2000 ( $200000 ) =$400,000,000

Note:-- Source of data: Nicholas, T. and Rossi, R., “U.S. Missi le Data Book, 1999,” Data Search Associates, 1999 – Unit product ion cost based on 1999 US$

    C    1    0    0    0    t    h ,    C

WL , Launch Weight, lb

Learning Curve and Large Production Reduce 

Unit Production Cost 

Learning Curve and Large Production Reduce 

Unit Production Cost 

0.1

1

/C    1   s    t ,    C   o   s    t   o    f    U   n    i    t   x

    /    C   o   s    t   o    f    F    i   r   s    t    U   n

    i    t

Javelin ( L = 0.764, C1st = $3.15M,Y1 = 1994 )

Long bow HF ( L = 0.761, C1st =$4.31M, Y1 = 1996 )

 AMRAAM ( L = 0.738, C1st =$30.5M, Y1 = 1987 )

MLRS ( L = 0.811, C1st = $0.139M,Y1 = 1980 )

HARM ( L = 0.786, C1st = $9.73M,Y1 = 1981 )

JSOW ( L = 0.812, C1st = $2.98M,Y1 = 1997 )

Cx = C1st L log2x, C2x = L Cx , where C in U.S. 99$

Example:For a learningcurve coefficientof L = 80%, cost of uni t #1000 is 11%

the cost of the first

L = 1.0

L = 0.9

L = 0.8

Page 262: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 262/421

2/24/2008  ELF  262 

0.01

1 10 100 1000 10000 100000 1E+06

x, Number of Units Produced

    C   x    /    C Y1 1997 )

Tomahawk ( L = 0.817, C1st =$13.0M, Y1 = 1980 )

Source of data: Nicholas, T. and Rossi, R., “ U.S. Miss ile Data Book,1999,” Data Search Associates, 1999

Labor intensive learning curve: L < 0.8Machine intensive learning curve: L > 0.8 )

Contributors to the learning curve include:• More efficient labor • Reduced scrap• Improved processes

the cost of the firstunit L = 0.7

Low Parts Count Reduces Missile Unit 

Production Cost 

Low Parts Count Reduces Missile Unit 

Production Cost 

10

100

1000

10000

100000

1000000

P

  a  r   t  s   C  o  u  n   t ,   H  o  u  r  s ,  o  r   C  o  s   t   (   U   S

   $   )

Page 263: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 263/421

2/24/2008  ELF  263 

0Parts Fasteners Circuit Cards Connectors Assembly /

 Test Hours

Unit

Production

Cost ( US$ )

   

Current Tomahawk Tactical Tomahawk

Note: Tactical Tomahawk has superior flexibility ( e.g., shorter mission planning, in-flight retargeting, BDI / BDA,modular payload ) at lower parts count / cost and higher reliability. Enabling technologies for low parts count include:casting , pultrusion / extrusion, centralized electronics, and COTS.

Copperhead Seeker and Electronics Production Patriot Control Section Production

Video of Hellfi re Seeker and Electronics Production

Tactical Missile Culture Is Driven by Rate 

Production of Sensors and Electronics 

Tactical Missile Culture Is Driven by Rate 

Production of Sensors and Electronics 

Page 264: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 264/421

2/24/2008  ELF  264 

Peacetime Logistics Activity

•Contractor Post-production Engineering•Training Manuals / Tech Data Package•Simulation and Software Maintenance•Configuration Management

•Engineering Support•System Analysis•Launch Platform Integration•Requirements Documents•Coordinate Suppliers

•Storage Alternatives

•Wooden Round ( Protected )O R d ( H idi t T C i Sh k )

Logistics Cost Considerations Logistics Cost Considerations 

Wartime Logistics Activity

•Deployment Alternatives• Ai rli ft

•Sealift•Combat Logistics

•Launch Platform Integration•Mission Planning•Field Tests•Reliability Data

•Maintainability Data•Effectiveness Data

Page 265: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 265/421

2/24/2008  ELF  265 

( )•Open Round ( Humidi ty, Temp, Corrosion, Shock )

•Reliability Maintenance•Surveillance•Testing

•Maintenance Al ternatives

•First level ( depot )•Two level ( depot, field )

•Disposal

y•Effectiveness Data•Safety Data

Simple: St inger More Sophisticated: Hawk and SLAMRAAM Complex: PAC-3

Very Complex: THAAD Video of Logistics Alternatives

Logistics Cost Lower for Simple Missile Systems Logistics Cost Lower for Simple Missile Systems 

Page 266: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 266/421

2/24/2008  ELF  266 

Logistics Is Simpler for Light Weight Missiles Logistics Is Simpler for Light Weight Missiles 

0

2

4

6

10 100 1000 10000

Missile Weight, lb

    S   u   p   p   o   r    t    P   e   r   s   o   n   n   e    l   r   e   q   u    i   r   e    d

    f   o   r    I   n

   s    t   a    l    l   a    t    i   o   n

Support personnel f or installation with 50 lb lif t limit per person

Support personnel for installation with 100 lb lif t limit per person

Machine lift f or installation

Video of Simple Logistics fo r aLight weight Missile

Page 267: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 267/421

2/24/2008  ELF  267 

Predator ( 21 lb ) Sidewinder ( 190 lb ) Sparrow ( 500 lb ) Laser Guided Bomb ( 2,500 lb )

Small MEMS Sensors Can Provide Health 

Monitoring, Reducing Cost and Weight 

Small MEMS Sensors Can Provide Health 

Monitoring, Reducing Cost and Weight 

Micro-machined Electro-Mechanical Systems ( MEMS )

Small size / low cost semiconductor manufacturing process2,000 to 5,000 sensors on a 5 in sil icon wafer 

Wireless ( RF ) Data Collection and Health Monitor ing

Distributed Sensors Over Missi le

Stress / strain

Vibration

 Acoustics

Temperature

Page 268: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 268/421

2/24/2008  ELF  268 

pPressure

Reduced Logist ics Cost and Improved Reliabili ty

Health monitor ing

Reduced Weight and Production Cost

More Efficient Design

Missile Carriage Size, Shape, and Weight Are 

Driven by Launch Platform Compatibility 

Missile Carriage Size, Shape, and Weight Are 

Driven by Launch Platform Compatibility 

Surface Ships

CLS

~24” x 24”

263”

263”

~168”

3400 lb

3400 lb

~500 lb to3000 lb

~   2   2   ”     ~    2   2

   ”

Fighters /Bombers /UCAVs

Rail /Ejection

VLS

Submarines

Launch Platform Integration / Firepower 

Robustness

Lethality

Miss Distance

ObservablesSurvivability

Reliability

Cost

Launch PlatformIntegration /Firepower 

22”

US Launch Platform Launcher Carriage Span / Shape Length Weight

Page 269: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 269/421

2/24/2008  ELF  269 

Ground

Vehicles158” 3700 lb

Helos

LaunchPods

Rail ∼13” x 13” 70” 120 lb

~   2   8   ”      ~    2   8

   ”

Light Weight Missiles Enhance Firepower Light Weight Missiles Enhance Firepower 

E, carry 1

C, carry 3

C, carry 1

E, carry 2

C, carry 2E, carry 3

E, carry 1

C, carry 1

E, carry 2

C, carry 2

5,000 lb

4,000 lb

3,000 lb

2,000 lb

1,000 lb

    M   a   x    S    t   r    i    k   e

    W   e   a   p   o   n

    W   e    i   g

    h    t

    C    l   e

   a   n

C    L    T   a

   n    k

d    T   a   n

    k   s

2    A    I    M

  -    9

A    G    M  -    8    8

2    A    I    M

  -    9

    C    l   e

   a   n

C    L    T   a

   n    k

    T   a   n

    k   s

2    A    I    M

  -    9

A    G    M  -    8    8

2    A    I    M

  -    9

F-18 C / E

Inboard Asymmetric

Bring-Back Load Limit

Outboard AsymmetricBring-Back Load Limit

Page 270: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 270/421

2/24/2008  ELF  270 

   +    C

   +    2    I   n    b    d

   +    C    L    T    k   +    2

   +    C    L    T    k   +    2    A

   +    2    I   n    b    d    T    k   +    2

Configuration for Day Operationwith Bring-Back Load

   +    C

   +    2    I   n    b    d

   +    C    L    T    k   +    2

   +    C    L    T    k   +    2    A

   +    2    I   n    b    d    T    k   +    2

Configuration for Night Operationwith Bring-Back Load

Launch Envelope Limitations in Missile / Launch 

Platform Physical Integration 

Launch Envelope Limitations in Missile / Launch 

Platform Physical Integration 

Off BoresightSeeker field of regard ⇒ potential obscur ing from launch platform

Minimum Range

Launcher rail clearance and aeroelasticity ⇒ miss at min range

Helo rotor downwash ⇒ miss at min range

Safety

Launcher retention ⇒ potential inadvertent release, potential hang-fire

Launch platform local flow field α, β ⇒ potential unsafe separationL h l tf i t ti l f ti

Page 271: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 271/421

2/24/2008  ELF  271 

Launch platform maneuvering ⇒ potential unsafe separation

Handling qualities with stores ⇒ potential unsafe handling qualities

Launch platform bay / canister acoustics ⇒ missi le factor of safety

Launch platform bay / canister vibration ⇒ missile factor of safety

Store Separation Wind Tunnel Tests Are 

Required for Missile / Aircraft Compatibility 

Store Separation Wind Tunnel Tests Are 

Required for Missile / Aircraft Compatibility 

F-18 Store Compatibi lity Test in AEDC 16T AV-8 Store Compatibil ity Test in AEDC 4T

Types of Wind Tunnel Testing for Store Compatibility

- Flow field mapping with probe

Page 272: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 272/421

2/24/2008  ELF  272 

pp g p

- Flow field mapping with store

- Captive trajectory simulation

- Drop testing

Example Stores with Flow Field Interaction: Kh-41 + AA-10

Examples of Rail Launched and Ejection 

Launched Missiles 

Examples of Rail Launched and Ejection 

Launched Missiles 

Example Rail Launcher: Hellf ire / Brimstone Example Ejection Launcher: AGM-86 ALCM

Page 273: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 273/421

2/24/2008  ELF  273 

Video of Hellf ire / Brimstone Carriage / Launch Video of AGM-86 Carriage / Launch

Examples of Safe Store Separation Examples of Safe Store Separation 

Laser Guided Bombs Drop from F-117

Page 274: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 274/421

2/24/2008  ELF  274 

 AMRAAM Rail Launch from F-16 Video of Rapid Drop ( 16 Bombs ) from B-2

Examples of Store Compatibility Problems Examples of Store Compatibility Problems 

Unsafe Separation Hang-Fire Store Aeroelastic Instability

Page 275: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 275/421

2/24/2008  ELF  275 

MIL-STD-8591 Aircraft Store Suspension and 

Ejection Launcher Requirements 

MIL-STD-8591 Aircraft Store Suspension and 

Ejection Launcher Requirements  

Store Weight / Parameter 30 Inch Suspension 14 Inch Suspension

♦ Weight Up to 100 lb Not Appl icable Yes

•  Lug height ( in ) 0.75

•  Min ejector area ( in x in ) 4.0 x 26.0

♦ Weight 101 to 1,450 lb Yes Yes

•  Lug height ( in ) 1.35 1.00•  Min lug well ( in ) 0.515 0.515

•  Min ejector area ( in x in ) 4. 0 x 36.0 4.0 x 26.0

♦ Weight Over 1,451 lb Yes Not Appl icable

•  Lug height ( in ) 1.35

•  Min lug well ( in ) 1.080•  Min ejector area ( in x in ) 4.0 x 36.0

Page 276: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 276/421

2/24/2008  ELF  276 

Ejection Stroke

Rail Launcher Forward Hanger Aft Hanger  

LAU-7 Sidewinder Launcher  2.260 2.260

LAU 117 Maverick Launcher  1.14 7.23

MIL-STD-8591 Aircraft Store Rail Launcher 

Examples 

MIL-STD-8591 Aircraft Store Rail Launcher 

Examples 

Page 277: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 277/421

2/24/2008  ELF  277 

Note: Dimensions in inches.

• LAU 7 rail launched store weight and diameter limits are ≤ 300 lb, ≤ 7 in

•LAU 117 rail launched store weight and diameter limits are ≤ 600 lb, ≤ 10 in

Baseline AIM-120B AMRAAM

Compressed Carriage AIM-120C AMRAAM ( Reduced Span Wing / Tail )

Compressed Carriage Missiles Provide Higher 

Firepower 

Compressed Carriage Missiles Provide Higher 

Firepower 

17 5 in 17 5 in

Baseline AMRAAM: Loadout

of 2 AMRAAM per F-22 Semi-Bay

Page 278: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 278/421

2/24/2008  ELF  278 

17.5 in 17.5 in

12.5 in 12.5 in 12.5 in

Compressed Carriage AMRAAM: Loadout of 3 AMRAAM per F-22 Semi-Bay

Note: Alternative approaches to compressed carriage include surfaces with small span, folded surfaces, wraparound surfaces, and planar surfaces that extend ( e.g., switch blade, Diamond Back, Longshot ).

Video of Longshot Kit on CBU-97

Example of Aircraft Carriage and Fire Control 

Interfaces 

Example of Aircraft Carriage and Fire Control 

Interfaces 

WingWing Deploy

Safety Pin

Folding

Suspension

Lug

Fire Control /

 Avionics

UmbilicalConnector 

Flight Control

 Access Cover  Electrical

Safety Pin

Folding

SuspensionLug

Page 279: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 279/421

2/24/2008  ELF  279 

Example: ADM-141 TALD ( Tactical Air-Launched Decoy )Carriage and Fire Control Interfaces

Example of Ship Weapon Carriage and Launcher,

Mk41 VLS 

Example of Ship Weapon Carriage and Launcher,

Mk41 VLS 

8 Modules / Magazine Module Gas Management

Canister Cell Hatch

Cell 

Before 

Firing 

Cell 

After 

Firing 

Ship DeckExhaust Hatch

Missile Cover 

Plenum

Page 280: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 280/421

2/24/2008  ELF  280 

Tomahawk Launch 8 Canister Cells / Module Standard Missi le Launch

Robustness Is Required for Carriage, Shipping,

and Storage Environment 

Robustness Is Required for Carriage, Shipping,

and Storage Environment Environmental Parameter Typical Requirement Video: Ground / Sea Environment

Surface Temperature -60° F* to 160° F

Surface Humidity 5% to 100%

Rain Rate 120 mm / h**

Surface Wind 100 km / h steady***

150 km / h gusts****Salt fog 3 g / mm2 deposited per year 

Vibration 10 g rms at 1,000 Hz: MIL STD 810, 648, 1670A

Shock Drop height 0.5 m, half sine wave 100 g / 10 ms: MIL STD 810, 1670A

 Acoustic 160 dB

Page 281: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 281/421

2/24/2008  ELF  281 

Note: MIL-HDBK-310 and earlier MIL-STD-210B suggest 1% world-wide climatic extreme typical requirement.

* Lowest recorded temperature = -90° F. 20% probability temperature lower than -60° F during worst month of worst location.

** Highest recorded rain rate = 436 mm / h. 0.5% probability greater than 120 mm / h during worst month of worst location.*** Highest recorded steady wind = 342 km / h. 1% probability greater than 100 km / h during worst month of wors t location.

**** Highest recorded gust = 378 km / h. 1% probability greater than 150 km / h during worst month of worst location.

Summary of Measures of Merit and Launch 

Platform Integration 

Summary of Measures of Merit and Launch 

Platform Integration  Measures of Merit

Robustness

Warhead lethali ty Miss distance

Carriage and launch observables

Other survivability considerations

Reliability

Cost

Launch Platform Integration Firepower, weight, fitment

Store separation

Launch platform handling qualities, aeroelasticity Hang-fire

Page 282: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 282/421

2/24/2008  ELF  282 

g

Vibration

Standard launchers

Carriage and storage environment Discussion / Questions?

Classroom Exercise ( Appendix A )

Measures of Merit and Launch Platform 

Integration Problems 

Measures of Merit and Launch Platform 

Integration Problems 1. IR signal attenuation is greater than 100 dB per km through a c____.

2. GPS / INS enhances seeker lock-on in adverse weather and ground c______.

3.  A data link can enhance missile seeker lock-on against a m_____ target.

4.  An example of a missile counter-counter measure to flares is an i______i_____ seeker.

5. Compared to a mid-wave IR seeker, a long wave IR seeker receives moreenergy from a c___ target.

6. High f ineness kinetic energy penetrators are required to defeat b_____targets.

7. For the same lethality with a blast fragmentation warhead, a small decrease inmiss distance allows a large decrease in the required weight of the w______.

F bl t / f h d h t t l ti f b t i i d t

Page 283: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 283/421

2/24/2008  ELF  283 

8. For a blast / frag warhead, a charge-to-metal ratio of about one is required toachieve a high total fragment k______ e_____.

9. A blast fragmentation warhead tradeoff is the number of fragments versus theindividual fragment w_____.

Measures of Merit and Launch Platform 

Integration Problems ( cont ) 

Measures of Merit and Launch Platform 

Integration Problems ( cont ) 10. Kinetic energy penetration is a function of the penetrator diameter, length,

density, and v_______.

11. In proport ional homing guidance, the objective is to make the line-of-sightangle rate equal to z___.

12.  Aeromechanics contributors to missile time constant are flight controleffectiveness, flight control system dynamics, and dome e____ s____.

13. Miss distance due to heading error is a function of missile navigation ratio,velocity, time to correct the heading error, and the missile t___ c_______.

14.  A missile must have about t_____ times the maneuverability of the target.

15. Minimizing the miss distance due to radar glint requires a high resolution

seeker, an optimum missile time constant and an optimum n_________ r____.

16 Weapons on low observable launch platforms use i carriage

Page 284: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 284/421

2/24/2008  ELF  284 

16. Weapons on low observable launch platforms use i_______ carriage.

17. Weapons on low observable launch platforms use m______ smoke propellant.

18. For an insensit ive munition, burning is preferable to detonation because itreleases less p____.

Measures of Merit and Launch Platform 

Integration Problems ( cont ) 

Measures of Merit and Launch Platform 

Integration Problems ( cont ) 

19. Missile system reliability is enhanced by subsystem reliability and low p____count.

20. High cost subsystems of missiles are sensors, electronics, and p_________.

21. Missile SDD cost is driven by the program duration and r___.

22. Missile unit production cost is driven by the number of units produced,learning curve, and w_____.

23. First level maintenance is conducted at a d____.

24.  A standard launch system for U.S. Navy ships is the V_______ L_____ S_____.

25. Most light weight missiles use rail launchers while most heavy weight missiles

use e_______ launchers.26. Higher firepower is provided by c_________ carriage.

Page 285: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 285/421

2/24/2008  ELF  285 

27. The typical environmental requirement from MIL-HDBK-310 is the _% world-wide climatic extreme.

Outline Outline  Introduction / Key Drivers in the Design Process

 Aerodynamic Considerations in Tactical Missile Design

Propulsion Considerations in Tactical Missile Design

Weight Considerations in Tactical Missile Design

Flight Performance Considerations in Tactical Missile Design

Measures of Merit and Launch Platform Integration

Sizing Examples

Development Process

Summary and Lessons Learned

Page 286: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 286/421

2/24/2008  ELF  286 

References and Communication

 Appendices ( Homework Problems / Classroom Exercises,

Example of Request for Proposal, Nomenclature, Acronyms,Conversion Factors, Syllabus )

Sizing Examples Sizing Examples  Rocket Baseline Missile

Standoff range requirement

Wing sizing requirement

Multi-parameter harmonization

Lofted range comparison

Ramjet Baseline Missile

Range robustness

Propulsion and fuel alternatives

Velocity control

Page 287: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 287/421

2/24/2008  ELF  287 

Velocity control

Computer Aided Conceptual Design Sizing Tools

Soda Straw Rocket Design, Build, and Fly

Ai -to-Air Engagement Analysis Process and 

Assumptions 

Ai -to-Air Engagement Analysis Process and 

Assumptions 

F-pole range provides kil l of head-on threat outside of 

threat weapon launch range  Aircraft contrast for typical engagement

C = 0.18

Typical visual detection range by target ( Required F-polerange ) RD = 3.3 nm

Typical alti tude and speed of launch aircraft, target aircraft,

and missile h = 20k ft altitude

Page 288: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 288/421

2/24/2008  ELF  288 

VL = Mach 0.8 = 820 ft / s

VT = Mach 0.8 = 820 ft / s

VM = 2 VT = 1,640 ft / s

Assumed Ai -to-Air Engagement Scenario for 

Head-on Intercept 

Assumed Ai -to-Air Engagement Scenario for 

Head-on Intercept 

t = 0 s (Launch Missi le)

RL= Launch Range = 10.0 nm

Red Aircraft

( 820 ft / s )

Blue Aircraft

t = tf  = 24.4 s ( Missile Impacts Target )

Red Aircraft

Blue Aircraft( 820 ft / s )

Blue Missile( 1640 ft / s )

RL= VM t f  + VT tf 

RF-Pole = VM t f  - VL tf 

RF = Missile Flight Range = 6.7 nm

Page 289: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 289/421

2/24/2008  ELF  289 

( 820 ft / s )

R F-pole = 3.3 nm

Destroyed

0

2

4

6

8

    R ,    V    i   s    i    b    l   e    R   a   n   g   e    f   o   r

    5    0    f    t    2    T   a   r   g   e    t ,

   n

Visual Detection Range,nm

Visual RecognitionRange, nm

Target Contrast and Size Drive Visual Detection 

and Recognition Range 

Target Contrast and Size Drive Visual Detection 

and Recognition Range 

Note:

RD

= Visual detection range for probability of detection PD = 0.5

C = Contrast

CT = Visual threshold contrast = 0.02

 Atp= Target presented area = 50 ft2

RR = Visual recognition range

θF = Pilot v isual fovial angle = 0.8 deg

Clear weather 

Pilot search glimpse time = 1 / 3 s

Example:

If C = 0.18

RD = 3.3 nm

RR = 1.0 nm

RD = 1.15 [ A tp( C – CT )]1/2, RD in nm, A tp

in ft2

RR = 0.29 RD

Page 290: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 290/421

2/24/2008  ELF  290 

0

0.01 0.1 1C, Contrast

Pilot search g limpse time = 1 / 3 s

C = 0.01 C = 0.02 C = 0.05 C = 0.1 C = 0.2 C = 0.5 C = 1.0

High Missile Velocity Improves Standoff Range High Missile Velocity Improves Standoff Range 

0.2

0.4

0.6

0.8

1

    F  -    P   o    l   e    R   a   n   g   e    /    L   a   u   n   c    h    R   a   n   g

VL / VM = 0VL / VM = 0.2

VL / VM = 0.5

VL / VM = 1.0

Example:• VL = VT

• VM = 2 VT

RF-Pole / RL = 1 – ( VT + VL ) / ( VM + VT ) Note: Head-on intercept

RF-Pole = Standoff range at intercept

RL= Launch rangeVM = Missi le average velocity

VT = Target velocity

VL = Launch velocity

Page 291: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 291/421

2/24/2008  ELF  291 

0

0 0.2 0.4 0.6 0.8 1

Target Velocity / Missile Velocity

VM 2 VT

• Then VT / VM = VL / VM = 0.5• RF-Pole / RL = 0.33

• RF-Pole = RD = 3.3 nm• RL = 3.3 / 0.33 = 10.0 nm

Missile Flight Range Requirement Is Greatest for 

a Tail Chase Intercept 

Missile Flight Range Requirement Is Greatest for 

a Tail Chase Intercept 

0

0.5

1

1.5

2

2.5

3

R    F    /    R    L ,

    M    i   s   s    i    l   e    F    l    i   g    h    t    R   a

   n   g   e    /    L   a   u   n   c    h    R   a

   n   g   e

( RF / RL ) Head-on( RF / RL ) Tail Chase

Examples:

•Head-on Intercept

• VM = 1,640 ft / s, VT = 820 ft / s• VM / VT = 1640 / 820 = 2• RF / RL = 2 / ( 2 + 1 ) = 0.667• R = 10 0 nm

( RF / RL )Head-on = ( VM / VT ) / [(VM / VT ) + 1 ]

( RF / RL )TailChase = ( VM / VT ) / [(VM / VT ) - 1 ]

Page 292: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 292/421

2/24/2008  ELF  292 

0

0 1 2 3 4 5

VM / VT, Missi le Veloc ity / Target Veloc ity

     • RL = 10.0 nm• RF = 0.667 ( 10.0 ) = 6.67 nm

•Tail Intercept at same condi tions• R

F/ R

L= 2 / ( 2 – 1 ) = 2.0

• RF = 2.0 ( 10.0 ) = 20.0 nm

Drawing of Rocket Baseline Missile Configuration Drawing of Rocket Baseline Missile Configuration 

STA 60.8

19.4

3.418.5

STA 125.4

LEmac at STA 67.0BL 10.2

Λ = 45°

40.2STA 0 19.2 46.1 62.6 84.5 138.6

Nose Forebody PayloadBay

Midbody Aftbody Tailcone

Rocket Motor 

Λ = 57°

12.0

LEmac atSTA 131.6

BL 8.0

16.18.0 d

cgBO cgLaunch

143.9

Page 293: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 293/421

2/24/2008  ELF  293 

Note: Dimensions in inches

Source: Bithell, R.A. and Stoner, R.C., “ Rapid Approach for Missile Synthesis, Vol. 1, Rocket Synthesis

Handbook,” AFWAL-TR-81-3022, Vol. 1, March 1982.

Mass Properties of Rocket Baseline Missile Mass Properties of Rocket Baseline Missile 

1 Nose ( Radome ) 4.1 12.0

3 Forebody structure 12.4 30.5Guidance 46.6 32.62 Payload Bay Structure 7.6 54.3

Warhead 77.7 54.34 Midbody Structure 10.2 73.5

Control Actuation System 61.0 75.55 Aftbody Structure 0.0 –

Rocket Motor Case 47.3 107.5Insulation ( EDPM – Silica ) 23.0 117.2

6 Tailcone Structure 6.5 141.2

Nozzle 5.8 141.2Fixed Surfaces 26.2 137.8Movable Surfaces 38.6 75.5

Component Weight, lb. C.G. STA, in.

Page 294: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 294/421

2/24/2008  ELF  294 

Burnout Total 367.0 76.2Propellant 133.0 107.8

Launch Total 500.0 84.6

Rocket Baseline Missile Definition Rocket Baseline Missile Definition Body

Dome Material Pyroceram Airf rame Material Aluminum 2219-T81

Length, in 143.9Diameter, in 8.0

 Airf rame thickness, in 0.16Fineness ratio 17.99Volume, ft3 3.82Wetted area, ft2 24.06

Nozzle exit area, ft2 0.078Boattail fineness ratio 0.38Nose fineness ratio 2.40Nose bluntness 0.0Boattail angle, deg 7.5

Movable surfaces ( forward )

Material Aluminum 2219-T81Planform area, ft2 ( 2 panels exposed ) 2.55Wetted area, ft2 ( 4 panels ) 10.20Aspect ratio ( 2 panels exposed ) 2 82

Page 295: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 295/421

2/24/2008  ELF  295 

 Aspect ratio ( 2 panels exposed ) 2.82Taper ratio 0.175Root chord, in 19.4

Tip chord, in 3.4Span, in ( 2 panels exposed ) 32.2Leading edge sweep, deg 45.0

Rocket Baseline Missile Definition ( cont ) Rocket Baseline Missile Definition ( cont ) 

Movable surfaces ( continued )Mean aerodynamic chord, in 13.3Thickness ratio 0.044Section type Modified double wedgeSection leading edge total angle, deg 10.01xmac, in 67.0ymac, in ( from root chord ) 6.2

 Actuator rate l imit, deg / s 360.0Fixed surfaces ( aft )

Material Aluminum 2219-T81Modulus of elastici ty, 106 psi 10.5Planform area, ft2 ( 2 panels exposed ) 1.54Wetted area, ft2 ( 4 panels ) 6.17

 Aspect ratio ( 2 panels exposed ) 2.59Taper ratio 0.0

Root chord, in 18.5Tip chord, in 0.0Span, in ( 2 panels exposed ) 24.0Leading edge sweep, deg 57.0

Page 296: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 296/421

2/24/2008  ELF  296 

g g p, gMean aerodynamic chord, in 12.3Thickness ratio 0.027

Section type Modified double wedgeSection leading edge total angle, deg 6.17xmac, in 131.6ymac, in ( from root chord ) 4.0

Rocket Baseline Missile Definition ( cont ) Rocket Baseline Missile Definition ( cont ) References values

Reference area, ft2 0.349Reference length, ft 0.667

Pitch / Yaw Moment of inertia at launch, slug-ft2 117.0Pitch / Yaw Moment of inert ia at burnout, slug-ft2 94.0

Rocket Motor Performance ( altitude = 20k ft, temp = 70° F )

Burning time, sec ( boost / sustain ) 3.69 / 10.86

Maximum pressure, psi 2042

 Average pressure, psi ( boost / sustain ) 1769 / 301

 Average thrust, lbf ( boost / sustain ) 5750 / 1018

Total impulse, lbf-s ( boost / sustain ) 21217 / 11055

Specific impulse, lbf-s / lbm ( boost / sustain ) 250 / 230.4

PropellantWeight, lbm ( boost / sustain ) 84.8 / 48.2

Flame temperature @ 1 000 psi F 5282 / 5228

Page 297: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 297/421

2/24/2008  ELF  297 

Flame temperature @ 1,000 psi, °F 5282 / 5228

Propellant density, lbm / in3 0.065

Characteristic velocity, ft / s 5200

Burn rate @ 1000 psi, in / s 0.5

Burn rate pressure exponent 0.3

Rocket Baseline Missile Definition ( cont ) Rocket Baseline Missile Definition ( cont ) Propellant ( continued )

Burn rate sensitivity with temperature, % / °F 0.10

Pressure sensitivity with temperature, % / °F 0.14Rocket Motor Case

Yield / ultimate strength, psi 170,000 / 190,000Material 4130 Steel

Modulus of elasticity, psi 29.5 x 106 psiLength, in 59.4Outside diameter, in 8.00Thickness, in (minimum) 0.074Burst pressure, psi 3140Volumetric efficiency 0.76

Grain configuration Three slots + web

Dome ellipse ratio 2.0Nozzle

Housing material 4130 Steel

Exit geometry Contoured ( equiv 15° )

Page 298: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 298/421

2/24/2008  ELF  298 

Exit geometry Contoured ( equiv. 15 )Throat area, in2 1.81Expansion ratio 6.2Length, in 4.9Exit diameter, in 3.78

Rocket Baseline Missile Has Boost-Sustain 

Thrust - Time History 

Rocket Baseline Missile Has Boost-Sustain 

Thrust - Time History 

2

4

6

8

Thrust – 1,000 lb

Boost Total Impulse = ∫Tdt = 5750 ( 3.69 ) = 21217 lb-s

Sustain Total Impulse = ∫Tdt = 1018 ( 10.86 ) = 11055 lb-s

Page 299: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 299/421

2/24/2008  ELF  299 

Time – seconds0 4 8 12 16

0

Note: Alti tude = 20k ft, Temperature = 70° FTotal impu lse drives velocity change

Rocket Baseline Missile Aerodynamic 

Characteristics 

Rocket Baseline Missile Aerodynamic 

Characteristics 

12

8m

   a    l     F   o   r   c   e

  ~    C    N

    P    i    t   c    h    i   n   g    M   o   m   e   n    t  –    C   m

20

16

-16.0

-8.0

-12.0

0

-4.0

1.2

0.6

M

1.5

2.02.352.873.954.60

2.352.0

M = 1.2 and 1.5

4.600.6

3.95

SRef = 0.349 ft2, lRef = d = 0.667 ft, CG at STA 75.7, δ = 0 deg

Page 300: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 300/421

2/24/2008  ELF  300 

4

00 4 8 12 16

α, Angle of Attack – Deg20

    N   o   r   m

24

Rocket Baseline Missile Aerodynamic 

Characteristics ( cont ) 

Rocket Baseline Missile Aerodynamic 

Characteristics ( cont ) 

0.4

1.2

0.8

    C    A   a    tα   =    0    d   e   g

0.1

0

Power Off 

Power On

0.2

0.3

    C

    Nδ   a

    tα

   =    0    d   e   g

 ,    P   e   r    D   e   g

0.4

1.2

0.8

.002

0

.004

.006

K2

K1

C A = C Aα = 0 + K1 δ2 + K2 α δ

   a    tα

   =    0

    d   e   g ,

    P   e   r    D   e   g

    K    1 ,

    K    2  ~    P   e   r

    D   e   g    2

Page 301: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 301/421

2/24/2008  ELF  301 

00 1 2 3 4

M, Mach Number 5

0    C   mδ

0 1 2 3 4M, Mach Number 

5

High Altitude Launch Enhances Rocket Baseline 

Range 

High Altitude Launch Enhances Rocket Baseline 

Range 

10

20

30

40

    A    l    t    i    t   u    d   e  ~    1    0    3    f    t

Burnout

Boost /

Sustain

TerminationMach = 1.5

Coast

Vmax = 2147 ft / s

V = 1916 ft / s

Vmax = 2524 ft / s

ML = 0.7

CD AVG= 0.65

Constant Altitude Flight

Page 302: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 302/421

2/24/2008  ELF  302 

Range ~ nm0 5 10 15 20

025

Vmax 1916 ft / s

Low Altitude Launch and High Alpha Maneuvers 

Enhance Rocket Baseline Turn Performance 

Low Altitude Launch and High Alpha Maneuvers 

Enhance Rocket Baseline Turn Performance 

    C   r   o   s   s    R   a   n   g   e

    1 ,    0

    0    0    f    t .

25

20

15

10

5Termination at M = 1.0

Marks at 2 s intervals

 Alt.

10k f t

10k f t

40k f t

40k ft

α

15°

10°

15°

10°

1

2

3

4

1

2

3

4

Page 303: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 303/421

2/24/2008  ELF  303 

0-10 -5 0 5 10

Down Range 1,000 ft.

40k f t 10°4

Note: Off boresight envelope that is shown does not include the rocket baseline seeker field-of-regard limit ( 30 deg ).

Paredo Shows Range of Rocket Baseline Driven 

by I SP , Propellant Weight, Drag, and Static Margin 

Paredo Shows Range of Rocket Baseline Driven 

by I SP , Propellant Weight, Drag, and Static Margin 

-0.5

0

0.5

1

1.5

Isp Prop.

Weight

CD0 Drag-

Due-to-Lift

Static

Margin

Thrust Inert

Weight

Nondimensional

Range

Sensitivity to

Parameter 

Note: Rocket baseline:

hL = 20k ft, ML = 0.7, MEC = 1.5

R@ ML = 0.7, hL = 20k ft = 9.5 nm

Example: 10% increase in propellantweight ⇒ 8.8% increase in f light range

Page 304: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 304/421

2/24/2008  ELF  304 

-1

Parameter 

Boost - Sustain Trajectory Assumptions Boost - Sustain Trajectory Assumptions 

 Assumptions

1 degree of freedom Constant altitude

Simplif ied equation for axial acceleration based on thrust,drag, and weight nX = ( T – D ) / W

Missile weight varies with burn rate and time W = WL – WP t / tB

Drag is approximated by D = CDO

q S

Page 305: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 305/421

2/24/2008  ELF  305 

0

5

10

15

0 5 10 15 20 25

   n   x ,

    A   x    i   a    l     A   c   c   e    l   e   r   a    t    i   o   n ,

Example of Rocket Baseline Axial Acceleration Example of Rocket Baseline Axial Acceleration 

Note:

tf = 24.4 sML = 0.8hL = 20,000 ftTB = 5750 lbtB = 3.69 sTS = 1018 lb

tS = 10.86 sD = 99 lb at Mach 0.8D = 1020 lb at Mach 2.1WL = 500 lbWP = 133 lb

nX = ( T - D ) / W

Boost

Sustain

Coast

Page 306: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 306/421

2/24/2008  ELF  306 

-5

t, Time, s

0

1000

2000

3000

    V ,

    V   e    l   o   c    i    t   y

 ,    f    t    /   s

Example of Rocket Baseline Missile Velocity vs 

Time 

Example of Rocket Baseline Missile Velocity vs 

Time 

Boost

Sustain

Coast

ΔV / ( gc ISP ) = - ( 1 - D AVG / T ) ln ( 1 - Wp / Wi ), During Boost-Sustain

V / VBO = 1 / { 1 + t / { 2 WBO / [ gc ρ AVG SRef  ( CD0) AVG VBO ]}}, During Coast

Note:

ML = 0.8hL = 20k feet

Page 307: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 307/421

2/24/2008  ELF  307 

0 5 10 15 20 25

t, Time, s

Range and Time-to-Target of Rocket Baseline 

Missile Meet Requirements 

Range and Time-to-Target of Rocket Baseline 

Missile Meet Requirements 

0

2

4

6

8

10

    R ,

    F    l    i   g    h    t    R   a   n

   g   e ,   n   m

Boost

Sustain

Coast

(RF)Req = 6.7 nm @ t =24.4 s

R = Δ Rboost

+ Δ Rsustain

+ Δ Rcoast

Note:ML = 0.8

hL = 20k ft

Page 308: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 308/421

2/24/2008  ELF  308 

0 5 10 15 20 25

t, Time, s

Sizing Examples Sizing Examples  Rocket Baseline Missile

Standoff range requirement

Wing sizing requirement

Multi-parameter harmonization

Lofted range comparison

Ramjet Baseline Missile

Range robustness

Propulsion and fuel alternatives

Velocity control

Page 309: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 309/421

2/24/2008  ELF  309 

Computer Aided Conceptual Design Sizing Tools

Soda Straw Rocket Design, Build, and Fly

Example of Wing Sizing to Satisfy Required 

Maneuver Acceleration 

Example of Wing Sizing to Satisfy Required 

Maneuver Acceleration Size Wing for the Assumptions

( nZ )Required = 30 g to counter 9 g maneuvering target )( nZ ) = Δ ( nZ )Wing + Δ ( nZ )Body + Δ ( nZ )Tail

Rocket Baseline @Mach 220,000 ft altitude367 lb weight ( burnout )

From Prior Example, ComputeαWing = α’Max = ( α + δ )Max = 22 deg for rocket baseline

α = 0.75δ, αBody = αTail = 9.4 deg

Δ ( nZ )Body = q SRef  ( CN )Body / W = 2725 ( 0.349 ) ( 1.28 ) / 367 = 3.3 g ( f rom body )

Δ ( nZ )Tail = q STail [( CN )Tail ( SRef / STail )] / W = 2725 ( 1.54 ) ( 0.425 ) / 367 = 4.9 g ( from tail )

Video of Intercept of Maneuvering Target

Page 310: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 310/421

2/24/2008  ELF  310 

Δ ( nZ )Wing = ( nZ )Required - Δ ( nZ )Body - Δ ( nZ )Tail = 30 – 3.3 – 4.9 = 21.8 g

( SW )Required = Δ ( nZ )Wing W / { q [( CN )Wing (SRef / SWing )]} = 21.8 ( 367 ) / {( 2725 ) ( 1.08 )} = 2.72 ft2

Note: ( SW )RocketBaseline = 2.55 ft2

Wing Sizing to Satisfy Required Turn Rate Wing Sizing to Satisfy Required Turn Rate   Assume

( γ.)Required > 18 deg / s to counter 18 deg / s maneuvering aircraft

Rocket Baseline @

Mach 2

20,000 ft altitude

367 lb weight ( burnout )

γi = 0 deg

Compute

γ.= gc n / V = [ q SRef  CNα α + q SRef  CNδ δ - W cos ( γ ) ] / [( W / gc ) V ]

α / δ = 0.75

α’ = α + δ = 22 deg ⇒ δ = 12.6 deg, α = 9.4 deg

γ.= [ 2725 ( 0.349 )( 0.60 )( 9.4 ) +2725 ( 0.349 )( 0.19 )( 12.6 ) – 367 ( 1 )] / ( 367 / 32.2 )( 2074 ) = 0.31

rad / s or 18 deg / s

Note: ( S ) 18 deg / s Turn Rate

Page 311: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 311/421

2/24/2008  ELF  311 

Note: ( SW )RocketBaseline ⇒ 18 deg / s Turn Rate

Wing Sizing to Satisfy Required Turn Radius Wing Sizing to Satisfy Required Turn Radius   Assume Maneuvering Aircraft Target with

γ.= 18 deg / s = 0.314 rad / s

V = 1000 ft / s

( RT )Target = V / γ.= 1000 / 0.314 = 3183 ft

 Assume Rocket Baseline @

Mach 2

20,000 ft altitude 367 lb weight ( burnout )

Compute γ.

= 18 deg / s ( prior f igure )

( RT )RocketBaselinet = V / γ.= 2074 / 0.314 = 6602 ft

Note: ( RT )RocketBaselinet > ( RT )Target ⇒ Rocket Baseline Can Be Counter-measured by Target in a Tight Turn

Counter-Countermeasure Alternatives Larger Wing

Page 312: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 312/421

2/24/2008  ELF  312 

g g

Higher Angle of Attack

Longer Burn Motor with TVC

Sizing Examples Sizing Examples  Rocket Baseline Missile

Standoff range requirement

Wing sizing requirement

Multi-parameter harmonization

Lofted range comparison

Ramjet Baseline Missile

Range robustness

Propulsion and fuel alternatives

Velocity control

Page 313: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 313/421

2/24/2008  ELF  313 

Computer Aided Conceptual Design Sizing Tools

Soda Straw Rocket Design, Build, and Fly

Combined Weight / Miss Distance Drivers: Nozzle 

Expansion and Motor Volumetric Efficiency 

Combined Weight / Miss Distance Drivers: Nozzle 

Expansion and Motor Volumetric Efficiency 

Fixed surface number of panels 4 3 +0.054 +0.100Movable surface number of panels 4 2 +0.071 +0.106Design static margin at launch 0.40 0.30 +0.095 +0.167Wing movable surface sweep ( deg ) 45.0 49.5 -0.205 +0.015Tail fixed surface sweep ( deg ) 57.0 60.0 +0.027 +0.039Wing movable surface thickness ratio 0.044 0.034 +0.041 +0.005

Nose fineness ratio 2.4 2.6 -0.016 -0.745Rocket chamber sustain pressure ( psi ) 301 330 -0.076 -0.045Boattail fineness ratio ( length / diameter ) 0.38 0.342 +0.096 +0.140Nozzle expansion ratio 6.2 6.82 -0.114 -0.181Motor volumetric efficiency 0.76 0.84 -0.136 -0.453Propellant density ( lb / in3 ) 0.065 0.084 -0.062 +0.012

Boost thrust ( lb ) 5,750 6,325 +0.014 -0.018Sustain thrust ( lb ) 1,018 1,119 +0.088 +0.246Characteristic velocity ( ft / s ) 5,200 5,720 -0.063 -0.077Wing location ( percent total length ) 47.5 42.75 +0.181 -0.036

Parameter Baseline W* σ*SensitivityVariation

Note: Strong impact with synergyB li W i ht 500 lb Mi di t 62 3 ft

Page 314: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 314/421

2/24/2008  ELF  314 

Note: Strong impact with synergy

Strong impact

Moderate impact with synergy

Moderate impact

Baseline: Weight = 500 lb, Miss distance = 62.3 ft

W* = weight sensitivity for parameter variation = ΔW / Wσ* = miss distance sensitiv ity for parameter variation = Δ σ / σ

A Harmonized Missile Can Have Smaller Miss 

Distance and Lighter Weight 

A Harmonized Missile Can Have Smaller Miss 

Distance and Lighter Weight 

Judicious changes

Boost thrust ( lb ) 5,750 3,382 3,382 3,382Wing location ( percent missile length to 1/4 mac ) 47.5 47 44 46Wing taper ratio 0.18 0.2 0.2 0.2Nose fineness ratio 2.4 3.2 2.55 2.6Nose blunting ratio 0.0 0.05 0.05 0.05Nozzle expansion ratio 6.2 15 15 15Sustain chamber pressure ( psi ) 301 1,000 1,000 1,000Boattail fineness ratio 0.38 0.21 0.21 0.21

Tail leading edge sweep ( deg ) 57 50 50 50Technology limited changes

No. wing panels 4 2 2 2No. tail panels 4 3 3 3Wing thickness ratio 0.044 0.030 0.030 0.030Wing leading edge sweep ( deg ) 45 55 55 55Static margin at launch ( diam ) 0.4 0.0 0.0 0.0

Propellant density ( lb / in3

) 0.065 0.084 0.084 0.084Motor volumetric efficiency 0.76 0.84 0.84 0.84

Measures of MeritTotal weight ( lb ) 500 385.9 395.0 390.1Miss distance ( ft ) 62.3 63.1 16.2 16.6Time to target ( s ) 21.6 23.8 23.6 23.8

Parameter Baseline Value Weight Miss Distance Harmonized

Missile Configured for Minimum:

Page 315: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 315/421

2/24/2008  ELF  315 

g ( )Length ( in ) 144 112.7 114.7 114.9Mach No. at burnout 2.20 2.08 2.09 2.07Weight of propellant ( lb ) 133 78.3 85.4 85.9Wing area ( in2 ) 368.6 175.5 150.7 173.8Tail area ( in2 ) 221.8 109.1 134.5 112.0

*Note: Value of driving parameter  

Baseline Missile vs Harmonized Missile Baseline Missile vs Harmonized Missile 

144”

57°45°

Propellant Density( lb / in3 );

0.0650.084

50°55°

NoseFineness;

2.42.6

Surfaces; {4 wings / 4 tails

2 wings / 3 tailsWeight ( lb ); 500

390

Page 316: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 316/421

2/24/2008  ELF  316 

50°55°

115”

Sizing Examples Sizing Examples  Rocket Baseline Missile

Standoff range requirement

Wing sizing requirement

Multi-parameter harmonization

Lofted range comparison

Ramjet Baseline Missile

Range robustness

Propulsion and fuel alternatives

Velocity control

Computer Aided Conceptual Design Sizing Tools

Page 317: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 317/421

2/24/2008  ELF  317 

Computer Aided Conceptual Design Sizing Tools

Soda Straw Rocket Design, Build, and Fly

Lofted Glide Trajectory Provides Extended Range Lofted Glide Trajectory Provides Extended Range 

Using Rocket Baseline, Compare

Lofted Launch-Coast-Glide Trajectory

Lofted Launch-Ballis tic Trajectory Constant Altitude Trajectory

 Assume for Lofted Launch-Coast-Glide Trajectory:

γi = 45 deg

γ = 45 deg dur ing boost and sustain

γ = 45 deg coast

Switch to ( L / D )max glide at optimum altitude

( L / D )maxg glide trajectory after apogee

hi = hf  = 0 ft

Velocity, Horizontal Range, and Altitude During Initial Boost @ γ = 45 degΔV = - gc ISP [ 1 – ( D AVG / T ) - ( W AVG sin γ ) / T ] ln ( 1 - Wp / Wi ) = -32.2 ( 250 ) [ 1 - ( 419 /

5750 ) – 458 ( 0.707 ) / 5750 ] ln ( 1 - 84.8 / 500 ) = 1,303 ft / s

ΔR = ( Vi + ΔV / 2 ) tB = ( 0 + 1303 / 2 ) 3.69 = 2,404 ft

Page 318: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 318/421

2/24/2008  ELF  318 

ΔRx = ΔR cos γi = 2404 ( 0.707 ) = 1,700 ft

ΔRy = ΔR sin γi = 2404 ( 0.707 ) = 1,700 ft

h = h i + ΔRy = 0 + 1700 = 1,700 ft

Lofted Glide Trajectory Provides Extended 

Range ( cont ) 

Lofted Glide Trajectory Provides Extended 

Range ( cont )  Velocity, Horizontal Range, and Alti tude During Sustain @ γ = 45 deg

ΔV = - gc ISP [ 1 – ( D AVG / T ) – ( W AVG sin γ ) / T ] ln ( 1 - Wp / Wi ) = -32.2 ( 230.4 ) [ 1 – ( 650 /1018 ) – 391 ( 0.707 ) / 1018 ] ln ( 1 - 48.2 / 415.2 ) = 81 ft / sec

VBO = 1303 + 81 = 1,384 ft / s

ΔR = ( Vi + ΔV / 2 ) tB = ( 1303 + 81 / 2 ) 10.86 = 14,590 ft

ΔRx = ΔR cos γi = 14590 ( 0.707 ) = 10,315 ft

ΔRy = ΔR sin γi = 14,590 ( 0.707 ) = 10,315 ft

h = h i + ΔRy = 1700 + 10315 = 12,015 ft Velocity, Horizontal Range, and Alti tude During Coast @ γ = 45 deg to h@( L / D )max

Vcoast = Vi { 1 – [( gc sin γ ) / Vi ] t } / { 1 + {[ gc ρ AVG SRef  ( CD0) AVG Vi ] / ( 2 W )} t } = 1384 { 1 –

[( 32.2 ( 0.707 )) / 1384 ] 21 } / { 1 + {[ 32.2 ( 0.001338 ) ( 0.349 ) ( 0.7 ) ( 1384 )] / ( 2 ( 367 ))}21 } = 674 ft / s

Rcoast = { 2 W / [ gc ρ AVG SRef  ( CD0) AVG )]} ln { 1 – [ gc

2 ρ AVG SRef  ( CD0) AVG / ( 2 W )] [ s in γ ] t2 +

{[ gc ρ AVG SRef  ( CD0) AVG Vi ] / ( 2 W )} t } = { 2 ( 367 ) / [ 32.2 ( 0.001338 ) ( 0.349 ) ( 0.7 )] ln

{ 1 – [ (32.2)2 ( 0.001338 ) ( 0.349 ) ( 0.7 ) / (( 2 ( 367 ))] [ 0.707 ] ( 21 )2 + {[ 32.2 ( 0.001338 )( 0.349 ) ( 0.7 ) ( 1384 )] / ( 2 ( 367 ))} 21 } = 17148 ft

Page 319: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 319/421

2/24/2008  ELF  319 

( Rx )coast = ( Ry )coast = Rcoast sinγ = 17148 ( 0.707 ) = 12124 ft

Lofted Glide Trajectory Provides Extended Range 

( cont ) 

Lofted Glide Trajectory Provides Extended Range 

( cont ) 

Flight Conditions At End-of-Coast Are:

t = 35 s

V = 674 ft / s

h = 24,189 ft

q = 251 psf 

M = 0.66

( L / D )max = 5.22 α( L / D )max

= 5.5 deg

Initiate α = α( L / D )max= 5.5 deg at h = 24,189 ft

Incremental Horizontal Range During ( L / D )max Glide Is

ΔRx

= ( L / D ) Δh = 5.22 ( 24189 ) = 126,267 ft

Total Horizontal Range for Elevated Launch-Coast-Glide Trajectory Is

Rx = ΣΔRx = ΔRx,Boost + ΔRx,Sustain + ΔRx,Coast + ΔRx,Glide = 1700 + 10315 + 12124 + 126267 =150406 ft = 24.8 nm

Page 320: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 320/421

2/24/2008  ELF  320 

Lofted Glide Trajectory Provides Extended 

Range ( cont ) 

Lofted Glide Trajectory Provides Extended 

Range ( cont ) 

0

10

20

30

0 10 20 30

R Range nm

    h ,

    A    l    t    i    t   u    d   e ,

    k    f    t

           S         u        s           t        a            i         n

            B        a            l            l            i        s

           t            i        c

®z

²

B     a    l      l      i      s    

t      i      c    

G  l  i  d  e  @   (   L   /    D    )  m a x  

z ÄCo-altitude

Note: Rocket Baseline

z End of boost

End of sustain

ÈLof ted ball istic apogee, t = 35 s, V = 667 ft / s, h = 21,590 ft

ÊLof ted coast apogee, t = 35 s, V = 674 ft / s, h = 24,189 ft

®Lofted ballistic impact, t = 68 s, γ = - 71 deg, V = 1368 ft / s

²Lofted glide impact, t = 298 s, γ = - 10.8 deg, V = 459 ft / s

Ä Co-alti tude fl ight impact, t = 115 s, V = 500 ft / s

ÈØ

           C        o        a        s           t            @   

 γ         =

            4            5

            d        e        g   

Page 321: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 321/421

2/24/2008  ELF  321 

R, Range, nm

Sizing Examples Sizing Examples  Rocket Baseline Missile

Standoff range requirement

Wing sizing requirement

Multi-parameter harmonization

Lofted range comparison

Ramjet Baseline Missile

Range robustness

Propulsion and fuel alternatives

Velocity control

Computer Aided Conceptual Design Sizing Tools

Page 322: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 322/421

2/24/2008  ELF  322 

p p g g

Soda Straw Rocket Design, Build, and Fly

Ramjet Baseline Is a Chin Inlet Integral Rocket 

Ramjet ( IRR ) 

Ramjet Baseline Is a Chin Inlet Integral Rocket 

Ramjet ( IRR ) 

Sta 0.

Guidance WarheadRamjet Fuel Boost Propellant

Booster, andRamjet Engine

Boost Nozzle

Tail Cone Af t-bodyMid-bodyPayload BayForebody

23.5 43.5 76.5 126.0

159.0 171.0

Sta 150.311.6

11.5

16.5

37°

Note: Dimensions are in inches

ChinInlet Transport A ir Duct

20.375 dia

Nose

Page 323: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 323/421

2/24/2008  ELF  323 

Source: Bithell, R.A. and Stoner, R.C. “Rapid Approach for Missile Synthesis” , Vol. II, Air -breathingSynthesis Handbook, AFWAL TR 81-3022, Vol. II, March 1982.

Component Weight, lb CG Sta, in  

Nose 15.9 15.7

Forebody Structure 42.4 33.5Guidance 129.0 33.5

Payload Bay Structure 64.5 60.0Warhead 510.0 60.0

Midbody Structure 95.2 101.2Inlet 103.0 80.0Electrical 30.0 112.0Hydraulic System for Control Actuation 20.0 121.0

Fuel Distribution 5.0 121.0 Af tbody Structure 44.5 142.5

Engine 33.5 142.5

Tailcone Structure 31.6 165.0Ramjet Nozzle 31.0 165.0Flight Control Actuators 37.0 164.0

Fins ( 4 ) 70.0 157.2End of Cruise 1,262.6 81.8

Ramjet Fuel ( 11900 in3 ) 476.0 87.0

Start of Cruise 1,738.6 83.2Boost Nozzle ( Ejected ) 31.0 164.0

Mass Properties of Ramjet Baseline Missile Mass Properties of Ramjet Baseline Missile 

Page 324: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 324/421

2/24/2008  ELF  324 

Frangible Port 11.5 126.0

End of Boost 1,781.1 84.9

Boost Propellant 449.0 142.5

Booster Ignition 2,230.1 96.5

Ramjet Baseline Missile Definition Ramjet Baseline Missile Definition 

InletType Mixed compression

Material TitaniumConical forebody half angle, deg 17.7Ramp wedge angle, deg 8.36Cowl angle, deg 8.24Internal contraction ratio 12.2 PercentCapture area, ft2 0.79

Throat area, ft

2

0.29BodyDome Material Silicon nitride

 Airframe Material TitaniumCombustor Material Insulated InconelLength, in 171.0

Diameter, in 20.375Fineness ratio 8.39Volume, ft3 28.33Wetted area, ft2 68.81Base area, ft2 ( cruise ) 0.58Boattail fineness ratio N/A

Page 325: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 325/421

2/24/2008  ELF  325 

Nose half angle, deg 17.7Nose length, in 23.5

Ramjet Baseline Missile Definition ( cont ) Ramjet Baseline Missile Definition ( cont ) 

Tail ( Exposed )Material Titanium

Planform area ( 2 panels ), ft2

2.24Wetted area ( 4 panels ), ft2 8.96

 Aspect ratio ( 2 panels exposed ) 1.64

Taper ratio 0.70

Root chord, in 16.5

Span, in. ( 2 panels exposed ) 23.0Leading edge sweep, deg 37.0

Mean aerodynamic chord, in 14.2

Thickness ratio 0.04

Section type Modified double wedge

Section leading edge total angle, deg 9.1xmac, in 150.3

ymac, in ( from root chord ) 5.4

Reference valuesReference area ft2 2 264

Page 326: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 326/421

2/24/2008  ELF  326 

Reference area, ft2 2.264

Reference length, ft 1.698

0 1 2 3 4 5 6Subscripts0 Free stream f low into inlet ( Example, Ramjet Basel ine at Mach 4, α = 0 deg ⇒ A0 = 104 in2. Note: AC = 114 in2 )1 Inlet throat ( Ramjet Baseline A1 = AIT = 41.9 in2 )2 Diffuser exit ( Ramjet Baseline A2 = 77.3 in2 )3 Flame holder plane ( Ramjet Baseline A3 = 287.1 in2 )4 Combustor exit ( Ramjet Baseline A = 287 1 in2 )

 Ac = Inlet capture area

SRef = Reference area

Engine Nomenclature and Flowpath Geometry for 

Ramjet Baseline 

Engine Nomenclature and Flowpath Geometry for 

Ramjet Baseline 

Ramjet Engine Station Identification 

( CD0)Nose Corrected = ( CD0

)Nose Uncorrected x ( 1 - Ac / SREF )

120°

 Ac = 114 in2

20.375 in

SRef 

Page 327: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 327/421

2/24/2008  ELF  327 

4 Combustor exit ( Ramjet Baseline A4 = 287.1 in2 )

5 Nozzle throat ( Ramjet Baseline A5 = 103.1 in2 )6 Nozzle exit ( Ramjet Baseline A6 = 233.6 in2 )Ref Reference Area ( Ramjet Baseline Body Cross-sectional Area, SRef  = 326 in2 )

    N   o   r   m

   a    l     F   o   r   c   e    C   o   e    f    f    i   c

    i   e   n    t ,    C    N

α, Angle of Attack ~ deg

0 4 8 12 16

Mach1.21.52.0

3.04.0

.40

.30

.20

.10

0

    A   x    i   a    l     F   o   r   c   e    C   o   e    f    f    i   c    i   e   n    t ,    C    A

0 4 8 12 16

Mach1.2

1.5

2.0

3.0

4.0

SRef  = 2.264 ft2

lRef  = dRef  = 1.698 ftXcg @ Sta 82.5 in

δ = 0 deg

4.0

3.0

2.0

1.0

0

α, Angle of Attack ~ deg

Aerodynamic Characteristics of Ramjet Baseline Aerodynamic Characteristics of Ramjet Baseline 

Page 328: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 328/421

2/24/2008  ELF  328 

Source: Reference 27, based on year 1974 computer program from Reference 32.

+ .4

0

-.4

-.8

-1.2

-1.6

Aerodynamic Characteristics of Ramjet Baseline 

( cont ) 

Aerodynamic Characteristics of Ramjet Baseline 

( cont ) 

    P    i    t   c    h    i   n   g    M   o   m   e   n    t    C   o   e    f    f    i   c    i   e   n    t ,    C   m

α, Angle of Attack ~ deg0 4 8 12 16

Mach4.0

3.0

2.0

1.5

1.2

SRef  = 2.264 ft2

lRef 

= dRef 

= 1.698 ftXcg @ Sta 82.5 inδ = 0 deg

Page 329: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 329/421

2/24/2008  ELF  329 

, g g

Source: Reference 27, based on year 1974 computer program from Reference 32.

Aerodynamic Characteristics of Ramjet Baseline 

( cont ) 

Aerodynamic Characteristics of Ramjet Baseline 

( cont ) 

.4

.3

.2

.1

0

   C   D    0

M, Mach Number 

0 1 2 3 4

   C    N

δ  ~   p   e   r    d

   e   g

   C   m

δ  ~   p   e   r    d   e   g

.10

.05

SRef  = 2.264 ft2

lRef  = dRef  = 1.698 ftXcg @ Sta 82.5 inδ= 0 deg

α = 0 deg.-.4

0

-.2

Source: Reference 27 based on year 1974 computer program from

Page 330: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 330/421

2/24/2008  ELF  330 

0 1 2 3 40M, Mach Number 

Source: Reference 27, based on year 1974 computer program from

Reference 32.

100

1000

10000

100000

0 1 2 3 4

    T   m   a   x ,

    M   a   x

    T    h   r   u   s    t ,    l    b

h = Sea Level

h = 20k ft

h = 40k fth = 60k ft

h = 80k ft

Thrust Modeling of Ramjet Baseline Thrust Modeling of Ramjet Baseline 

Note:

Standard atmosphere

T = Tmax ϕ

φ = 1 if stochiometric ( f / a = 0.0667 )

α = 0 deg

Example: M = 3.5, h = 60k ft, ϕ= 1 ⇒ Max Thrust = 1,750 lb

Page 331: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 331/421

2/24/2008  ELF  331 

M, Mach Number 

Figure based on Reference 27 predict ion

Specific Impulse Modeling of Ramjet Baseline Specific Impulse Modeling of Ramjet Baseline 

••

   I   S   P ,

   S  p  e  c   i   f   i  c   I  m

  p  u   l  s  e ,  s

1,500

1,000

500

00 1 2 3 4

Note:

Standard atmosphere

ϕ ≤ 1

ISP based on Reference 27 computer prediction.

Example: M = 3.5 ⇒ ISP = 1,120 s

Page 332: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 332/421

2/24/2008  ELF  332 

M, Mach Number 

Rocket Booster Acceleration / Performance of 

Ramjet Baseline 

Rocket Booster Acceleration / Performance of 

Ramjet Baseline 30

20

10

0

0 1.0 2.0 3.0 4.0

    B   o   o   s    t    T    h   r   u   s    t  ~    1    0    0    0    l    b

Time ~ s5.0 6.0

( ISP )Booster = 250 s

3.0

2.5

2 0B   u   r   n   o   u    t    M   a   c    h    N   u   m    b   e   r

2.0

1.0

0

Standard atmosphere

ML = 0.80Constant altitude flyout

    B   o   o   s    t    R   a   n   g   e

  ~   n   m

0 20 40 60

Page 333: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 333/421

2/24/2008  ELF  333 

2.0    B

h, Altitude 1,000 ft

0 20 40 600 20 40 60 80h, Altitude 1,000 ft

Ramjet Baseline Has Best Performance at High 

Altitude 

Ramjet Baseline Has Best Performance at High 

Altitude 

500

400

300

200

100

00 1 2 3 4

    R   a   n   g   e  ~

   n   m

M, Mach Number 

h = SL

20,000 ft

40,000 ft

60,000 ft

Note: ML = 0.8, Constant Al titude Fly-out

Page 334: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 334/421

2/24/2008  ELF  334 

,

Example, Mach 3 / 60k ft flyout ⇒ 445 nm. Breguet Range Predict ion is R = V ISP ( L / D ) ln [ WBC / ( WBC - Wf )] = 2901 ( 1040 )( 3.15 ) ln ( 1739 / ( 1739 - 476 )) = 3,039,469 ft or 500 nm. Predicted range is 10% greater than baseline missi le data.

L , y

From Paredo Sensitivity, Ramjet Baseline Range 

Driven by I SP , Fuel Weight, Thrust, and C D 0 

From Paredo Sensitivity, Ramjet Baseline Range 

Driven by I SP , Fuel Weight, Thrust, and C D 0 

-1

-0.5

0

0.5

1

1.5

ISP Fuel

Weight

Thrust CD0, Zero-

Lift Drag

Coefficient

CLA, Lift-

Curve-

Slope

Coefficient

Inert

Weight

Parameter 

    N   o

   n    d    i   m   e   n   s    i   o   n   a    l     R

   a   n   g   e    S   e   n   s    i    t    i   v    i    t   y

    t   o    P   a   r

   a   m   e    t   e   r

Sea Level Flyout at Mach 2.3 20k ft Flyout at Mach 2.5

Example: At Mach 3.0 / 60k f t alti tude

cruise, 10% increase in fuel weight⇒ 9.6% increase in fl ight range

Page 335: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 335/421

2/24/2008  ELF  335 

40k ft Flyout at Mach 2.8 60k ft Flyout at Mach 3.0

Ramjet Baseline Flight Range Uncertainty Is +/- 7%, 1 σRamjet Baseline Flight Range Uncertainty Is +/- 7%, 1 σ

Parameter Baseline Value at Mach 3.0 / 60k ft Uncertainty in Parameter  ΔR / R from Uncertain ty

1. Specific Impulse 1040 s +/- 5%, 1σ +/- 5%, 1σ  

2. Ramjet Fuel Weight 476 lb +/- 1%, 1σ +/- 0.9%, 1σ  

3. Cruise Thrust ( φ = 0.39 ) 458 lb +/- 5%, 1σ +/- 2%, 1σ  

4. Zero-Lift Drag Coefficient 0.17 +/- 5%, 1σ +/- 4%, 1σ  

5. Lift Curve Slope Coefficient 0.13 / deg +/- 3%, 1σ +/- 1%, 1σ  

6. inert Weight 1205 lb +/- 2%, 1σ +/- 0.8%, 1σ  

Level of Maturi ty Based on Flight Demo of Prototype, Subsystem Tests, and Integration

Wind tunnel tests

Direct connect, freejet, and booster firing propulsion tests

Structure test

Mock-up

Hardware-in-loop simulation

Flight Test

Total Flight Range Uncertainty at Mach 3.0 / 60k ft Flyout

Page 336: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 336/421

2/24/2008  ELF  336 

g g y y

ΔR / R = [ (ΔR / R )12 + (ΔR / R )2

2 + (ΔR / R )32 + (ΔR / R )4

2 + (ΔR / R )52 + (ΔR / R )6

2 ]1/2 = +/- 6.9%, 1σ

R = 445 nm +/- 31 nm, 1σ

Sizing Examples Sizing Examples 

Rocket Baseline Missile

Standoff range requirement

Wing sizing requirement

Multi-parameter harmonization

Lofted range comparison

Ramjet Baseline Missile

Range robustness

Propulsion and fuel alternatives

Velocity control

Computer Aided Conceptual Design Sizing Tools

Page 337: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 337/421

2/24/2008  ELF  337 

Soda Straw Rocket Design, Build, and Fly

Slurry Fuel and Efficient Packaging Provide 

Extended Range Ramjet 

Slurry Fuel and Efficient Packaging Provide 

Extended Range Ramjet Propuls ion / Configuration Fuel Type / Volumetric

Performance (BTU / in3) /Density (lb / in3)

Fuel Volume (in3) /Fuel Weight (lb)

ISP (s) / CruiseRange at Mach 3.5,60k ft (nm)

Liquid Fuel Ramjet RJ-5 / 581 / 0.040 11900 / 476 1120 / 390

Ducted Rocket ( Low Smoke ) Solid Hydrocarbon / 1132 /0.075

7922 / 594 677 / 294

Ducted Rocket ( HighPerformance )

Boron / 2040 / 0.082 7922 / 649 769 / 366

Solid Fuel Ramjet Boron / 2040 / 0.082 7056 / 579 1170 / 496

Slurry Fuel Ramjet 40% JP-10, 60% boroncarbide / 1191 / 0.050

11900 / 595 1835 / 770

Page 338: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 338/421

2/24/2008  ELF  338 

Note: Flow Path Available Fuel Rcruise = V ISP ( L / D ) ln [ WBC / ( WBC - Wf )]

Sizing Examples Sizing Examples 

Rocket Baseline Missile

Standoff range requirement

Wing sizing requirement

Multi-parameter harmonization

Lofted range comparison

Ramjet Baseline Missile

Range robustness

Propulsion and fuel alternatives

Velocity control

Computer Aided Conceptual Design Sizing Tools

Page 339: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 339/421

2/24/2008  ELF  339 

Soda Straw Rocket, Design, Build, and Fly

Example of Ramjet Velocity Control Through Fuel 

Control 

Example of Ramjet Velocity Control Through Fuel 

Control 

0.1

1

10

0 1 2 3 4

Mi, Impact Mach Number at Sea Level

Ramjet BaselineEquivalence Ratio

Ramjet Baseline Fuel

Flow Rate, lb / s

T

W

D

N t R j t b li ti l i t t l l t d t t l i t t i t T th t W i ht D d

Example for Ramjet Baseline:

Mi = 4, h = sea level, T0 = 519R

T + W - D = 0

W = WBO = 1263 lb

D = CD0q SRef  = 3353 CD0

MI2 = 3353 ( 0.14 )

( 4 )2 = 7511 lb

Trequired = D - W = 7511 - 1263 = 6248 lb

wf 

.= T / ISP = 6248 / 1000 = 6.25 lb / s

φ = Trequired / Tφ = 1 = 6248 / 25000 = 0.25

Note: Excess air provides cooling of combustor 

Page 340: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 340/421

2/24/2008  ELF  340 

Note: Ramjet baseline, vertical impact at sea level, steady state veloci ty at impact, T = thrust, W = weight, D = drag,WBO = burnout weight, CD0

= zero-lift drag coefficient, Mi= impact Mach number, Trequired = required thrust for steadystate flight, w f 

.= fuel flow rate, ISP = specific impulse, φ = equivalence ratio ( φ = 1 stochiometric )

Sizing Examples Sizing Examples 

Rocket Baseline Missile

Standoff range requirement

Wing sizing requirement

Multi-parameter harmonization

Lofted range comparison

Ramjet Baseline Missi le

Range robustness

Propulsion and fuel alternatives

Surface impact velocity

Computer Aided Conceptual Design Sizing Tools

S d St R k t D i B ild d Fl

Page 341: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 341/421

2/24/2008  ELF  341 

Soda Straw Rocket Design, Build, and Fly

Computer Sizing Code Should Have Fast 

Turnaround and Be Easy to Use 

Computer Sizing Code Should Have Fast 

Turnaround and Be Easy to Use  Objective of Conceptual Design

Search Broad Solution Space

Iterate to Design Convergence

Characteristics of Good Conceptual Design Sizing Code Fast Turnaround Time

Easy to Use Directly Connect Predictions of Aeromechanics and Physical

Parameters to Trajectory Code

Simple, Physics Based Methods

Includes Most Important, Driving Parameters Provides Insight into Relationships of Design Parameters

Stable Computation

Imbedded Baseline Missile Data

Page 342: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 342/421

2/24/2008  ELF  342 

Human Designer Makes the Creative Decisions

Example of DO -Based Conceptual Sizing 

Computer Code –ADAM 

Example of DO -Based Conceptual Sizing 

Computer Code –ADAM  Conceptual Sizing Computer Program

 Advanced Design of Aerodynamic Missiles ( ADAM )

PC compatible Written in DOS

 Aerodynamic Module Based on NACA 1307 Calculates Static and dynamic stability derivatives

Control effectiveness and trim conditions 3, 4, 5, and 6-DOF Simulation Modules

Proportional guidance

Input provided automatically by aerodynamic module

Configurations Benchmarked with Wind Tunnel Data Greater than 50 Input Parameters Available

Defaults to benchmark configuration ( s )

Page 343: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 343/421

2/24/2008  ELF  343 

Example of Spreadsheet Based Conceptual 

Sizing Computer Code - TMD Spreadsheet 

Example of Spreadsheet Based Conceptual 

Sizing Computer Code - TMD Spreadsheet 

Conceptual Sizing Computer Code Tactical Missile Design ( TMD ) Spreadsheet

PC compatible

Windows Excel spreadsheet

Based on Tactical Missile Design Short Course and Textbook  Aerodynamics

Propulsion

Weight

Flight trajectory Measures of merit

Page 344: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 344/421

2/24/2008  ELF  344 

Example of Spreadsheet Based Conceptual 

Sizing Computer Code, TMD Spreadsheet 

Example of Spreadsheet Based Conceptual 

Sizing Computer Code, TMD Spreadsheet Define Mission Requirements [ Flight Performance ( RMax, RMin, V AVG ) , MOM, Const raints ]

Establish Baseline ( Rocket , Ramjet )

 Aerodynamics Input ( d, l, lN, A, c, t, xcg ) Aerodynamics Output [ CD0

, CN, xac, Cmδ, L / D, ST ]

Propulsion Input ( pc, ε, c*, Ab, At, A0, Hf , ϕ, T4, Inlet Type )Propulsion Output [ Isp, Tcruise, p t2

/ p t0, w

., Tboost, Tsustain, ΔV

Boost]

Weight Input ( WL, WP, ρ, σmax )Weight Output [ WL, WP, h, dT / dt, T, t, σbuckling, MB, σ, Wsubsystems, xcg, Iy ]

Trajectory Input ( h i, Vi, Type ( cruise, boost , coast, ballistic, turn, glide )

Trajectory Output ( R, h, V, and γ versus time )

MeetPerformance?

Measures of Merit and Constraints

No [ pBlast, PK, nHit,

Vfragments PKEKE

No [ RMax, RMin, V AVG ]

Yes

 Al t Mission

 Al t Baseline

Resize / Alt Config /Subsystems / Tech

Page 345: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 345/421

2/24/2008  ELF  345 

Measures of Merit and Constraints V g , P ,KEWarhead, τTotal,σHE, σMAN, Rdetect,

CSDD, C1000th, Cunit x ]Yes

Example of TMD Spreadsheet Sizing Code 

Verification: Air-to-Air Range Requirement 

Example of TMD Spreadsheet Sizing Code 

Verification: Air-to-Air Range Requirement  Example Launch Conditions

hL = 20k f t

ML = 0.8 Example Requirement

RF = 6.7 nm with tf  < 24.4 s

Solutions for Rocket Baseline

 ADAM: RF = 6.7 nm at t f  = 18 s TMD Spreadsheet: RF = 6.7 nm at t f  = 19 s

3 DOF using wind tunnel aero data: RF = 6.7 nm at t f  = 21 s

Differences in Flight Time to 6.7 nm Most ly Due to Zero-Lift Drag Coefficient.For Example:  ADAM prediction at Mach 2.0: ( CD0

)coast = 0.53

TMD Spreadsheet prediction at Mach 2.0: ( CD0)coast = 0.57

Wind tunnel aero data at Mach 2.0: ( CD0)coast = 1.05

Wind Tunnel Data / Baseline Missile Data Correction Required to Reduce

Uncertainty in CD0

Page 346: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 346/421

2/24/2008  ELF  346 

Uncertainty in CD0

Sizing Examples Sizing Examples 

Rocket Baseline Missile

Standoff range requirement

Wing sizing requirement

Multi-parameter harmonization

Lofted range comparison

Ramjet Baseline Missi le

Range robustness

Propulsion and fuel alternatives

Surface impact velocity

Computer Aided Conceptual Design Sizing Tools

Soda Straw Rocket Design Build and Fly

Page 347: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 347/421

2/24/2008  ELF  347 

Soda Straw Rocket Design, Build, and Fly

Example of Design, Build, and Fly Customer 

Requirements 

Example of Design, Build, and Fly Customer 

Requirements  Objective – Design, Build, and Fly Soda Straw Rocket with:

Flight Range Greater Than 90 ft

Weight Less Than 2 g

Furnished Property

Launch System

Distance Measuring Wheel

Weight Scale Micrometer Scale

Engineer’s Scale

Scissors

Furnished Material 1 “Giant” Soda Straw: 0.28 in Diameter by 7.75 in Length, Weight = 0.6 g

1 Strip Tabbing: ½ in by 6 in, Weight = 1.4 g

1 Ear Plug: 0.33 – 0.45 in Diameter by 0.90 in Length, Weight = 0.6 g

1 “Super Jumbo” Soda Straw: 0 25 in Diameter by 7 75 in Length

Page 348: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 348/421

2/24/2008  ELF  348 

1 Super Jumbo Soda Straw: 0.25 in Diameter by 7.75 in Length

Example of Design, Build, and Fly Customer 

Requirements ( cont ) 

Example of Design, Build, and Fly Customer 

Requirements ( cont ) 

Furnished Property Launch System with Specified Launch Conditions

Launch Tube Diameter: 0.25 in

Launch Tube Length ( e.g., 6 in )

Launch Pressure ( e.g., 30 psi )

Launch Elevation Angle ( e.g., 40 deg )

Predict Flight Trajectory Range and Compare with Test

Page 349: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 349/421

2/24/2008  ELF  349 

Soda Straw Rocket Launcher and Targeting Soda Straw Rocket Launcher and Targeting 

9. Rocket on Launcher 

8. Launch Tube

7. Incl inometer 

6b. Manual ValveLauncher ( 0.1 saverage response )

6a. Solenoid ValveLauncher ( 0.025 saverage response )

5. Launch Switch

4. Pressure Gauge

3. Air Hose

2. Pressure Tank

1. Pump

11. Rockets wi th Various Length, Tail Geometry, Nose Geometry, and Other Surfaces

Page 350: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 350/421

2/24/2008  ELF  350 

g , y, y,

10. Laser Pointer Targeting Device

It Is Easy to Make a Soda Straw Rocket It Is Easy to Make a Soda Straw Rocket 

1. Cut Large Diameter “ Giant” Soda Straw to DesiredLength

3. Slide Ear Plug Inside Soda Straw

5. Apply Adhesive Tabs to Soda Straw

4. Cut Adhesive Tabs to Desired Height and Width of Surfaces

7. Slide Giant Soda Straw Rocket Over Smaller 

Diameter “Super Jumbo” Soda Straw Launch Tube

2. Twist and Squeeze Ear Plug to Fit Inside SodaStraw

6. Wrap Front of Ear Plug and Straw with Tape

Page 351: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 351/421

2/24/2008  ELF  351 

Soda Straw Rocket Baseline Configuration Soda Straw Rocket Baseline Configuration 

llcc = 6.0 in= 6.0 in

l = 7.0 inl = 7.0 in

Ear Plug Soda Straw Strip Tabbing

0.28 in0.25 in

0.5 in

Page 352: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 352/421

2/24/2008  ELF  352 

Soda Straw Rocket Baseline Weight and Balance Soda Straw Rocket Baseline Weight and Balance 

Component Weight, g cg Station, inNose ( Plug ) 0.6 0.5

Body ( Soda Straw ) 0.5 3.5

Fins ( Four ) 0.5 6.75

Total 1.6 3.39

Page 353: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 353/421

2/24/2008  ELF  353 

Soda Straw Rocket Baseline Definition Soda Straw Rocket Baseline Definition 

Body

Material Type HDPE Plastic

Material density, lb / in3 0.043

Material strength, psi 4,600Thickness, in 0.004

Length, in 7.0

Diameter, in 0.28

Fineness ratio 25.0

Nose fineness ratio 0.5Fins

Material Plastic

Planform area, in2 ( 2 panels exposed ) 0.25

Wetted area, in2 ( 4 panels ) 1.00

 Aspect ratio ( 2 panels exposed ) 1.00Taper ratio 1.0

Chord, in 0.5

Span ( exposed ), in 0.5

Span ( total including body ), in 0.78

Leading edge sweep, deg 0

xmac, in 6.625

Page 354: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 354/421

2/24/2008  ELF  354 

Soda Straw Rocket Baseline Definition ( cont ) Soda Straw Rocket Baseline Definition ( cont ) 

Nose

Material Type Foam

Material densi ty, lb / in3 0.012 Average diameter 0.39 in

Length 0.90 in

Reference Values

Reference area, in2 0.0616

Reference length, in 0.28

Thrust Performance

Inside cavity length, in 6.0

Typical Pressure, psi 30

Maximum thrust @ 30 psi pressure, lb 1.47

Time constant, s ( standard temperature ) 0.025

Page 355: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 355/421

2/24/2008  ELF  355 

For body-tail geometry, static margin given by

( x AC – xCG ) / d = - {( CN α )B {[ xCG – ( x AC )B ] / d } + ( CNα )T {[ xCG – ( x AC )T ] / d }( ST /SRef  )} / [( CNα )B + ( CNα )T ST / SRef  ]

For baseline soda straw configurationxCG = 3.39 in, d = 0.28 in, ( CNα )B = 2 per rad, ST = 0.25 in2, SRef  = 0.0616 in2

( x AC )B = [( x AC )B / lN ] lN = 0.63 ( 0.14 ) = 0.09 in

( CNα )T = π AT / 2 = π ( 1 ) / 2 = 1.57( x AC )T = 6.5 + 0.25 ( cmac )T = 6.63

Substituting( x AC - xCG ) / d = - { 2 ( 3.39 – 0.09 ) / 0.28 + [ 1.57 ( 3.39 – 6.63 ) / 0.28 ] [ ( 0.25 ) /

0.0616 ]} / [ 2 + 1.57 ( 0.25 ) / 0.0616 ] = 6.00 ( statically stable )

x AC = 6.00 ( 0.28 ) + 3.39 = 5.07 in from nose

Soda Straw Rocket Baseline Static Margin Soda Straw Rocket Baseline Static Margin 

(( xx AC )Tl

( x AC  ) B 

x x AC AC 

x x CG CG 

d

Page 356: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 356/421

2/24/2008  ELF  356 

Soda Straw Rocket Has High Acceleration Boost 

Performance 

Soda Straw Rocket Has High Acceleration Boost 

Performance 

0

20

40

60

80

100

0 2 4 6 8 10

s, Distance Traveled During Launch, Inches

    V ,

    V   e    l   o

   c    i    t   y ,

    f   p   s

pgauge = 15 psi pgauge = 30 psi

pgauge = 60 psi

T = ( p – p0 ) A = pgauge ( 1 – e – t / τ ) A

a ≈ 32.2 T / W, V = ∫ a dt, s = ∫ V dtThrust ( T ) from Pressur ized Tube of Area A

T = ( p – p0 ) A = pgauge ( 1 – e – t / τ ) A

 A = ( π / 4 ) ( 0.25 )2 = 0.0491 in2, τ = Valve Rise Time

Example: Assume pgauge = 30 psi , lt = 6 in, τ = 0.025 s ( Averagefor Solenoid Valve ), s = lc = 6 in

Thrust Equation Is:

T = 30 ( 1 - e – t / 0.025 ) ( 0.0491 ) = 1.4726 ( 1 - e – 40.00 t )

Note: Ac tual Boost Thrust Lower ( Pressure Loss,

Boundary Layer, Launch Tube Leakage, LaunchTube Friction )

Equations for Acceleration ( a ), Velocity ( V ), andDistance ( s ) During Boost Are:

a ≈ 32.2 T / W = 32.2 ( 1.4726 ) ( 1 - e – 40.00 t ) / 0.00352= 13471.1 ( 1 - e – 40.00 t )

V = ∫ a dt = 13471.1 t + 336.78 e  – 40.00 t – 336.78

s = ∫ V dt = 6735.57 t2 – 8.419 e  – 40.00 t – 336.78 t +8.419

End of Boost Conditions Are:

s = lc = 6 in = 0.500 ft ⇒ t = 0.0188 s

a = 7123 ft / s2 = 221 g

V = 75.2 ft / sq = ½ ρ V2 = ½ ( 0.002378 ) ( 75.2 )2 = 6.72 psf 

Note: Time TicsEvery 0.01 s

Page 357: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 357/421

2/24/2008  ELF  357 

M = V / c = 75.2 / 1116 = 0.0674

Most of the Soda Straw Rocket Drag Coefficient 

Is from Body Skin Friction 

Most of the Soda Straw Rocket Drag Coefficient 

Is from Body Skin Friction 

0

0.5

1

1.5

0 2 4 6 8 10

ST / SRef, Tail Planform Area / Reference Area

    C    D    0 ,

    Z   e   r   o  -    L    i    f    t    D   r

   a   g    C   o   e    f    f    i   c    i   e   n    t

V = 40 fps V = 80 fps

Example: V = 75.2 fps, ST = 0.00174 ft2, SRef  =0.000428 ft2 ⇒ ST / SRef  = 4.07

Compute:CD0

= 0.053 ( 25.0 ){ 0.0674 / [( 6.72 ) ( 0. 583 )]}0.2 +0.12 + 2 { 0.0133 { 0.0674 / [( 6.72 ) ( 0.0417 )]} 0.2 }[ 2

( 4.07 )] = 0.58 + 0.12 + 0.16 = 0.86Note:• Above Drag Coefficient Not Exact• Based on Assumption of Turbulent Boundary

Layer • Soda Straw Rocket Small Size and Low Velocity ⇒

Laminar Boundary Layer ⇒ Large Boundary Layer Thickness on Aft Body at Tails

Compute Drag Force:Dmax = CD qmax SRef  = 0.86 ( 6.72 ) ( 0.000428 ) =

0.00247 lbCompare Drag Force to Weight:Dmax / W = 0.00247 / 0.00352 = 0.70

Note: Drag Force Smaller Than Weight

CD0= ( CD0

)Body,Friction + ( CD0)Base,Coast + ( CD0

)Tail,Friction

= 0.053 ( l / d ) [ M / ( q l )]0.2 + 0.12 + nT { 0.0133 [ M / ( q cmac )]0.2 } ( 2 ST / SRef  )

Page 358: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 358/421

2/24/2008  ELF  358 

0

10

20

30

40

0 20 40 60 80 100

Rx, Horizontal Range, ft

    h  -    h    i ,    H   e    i   g    h    t   a    b   o   v   e    I   n    i

    t    i   a    l     L   a   u   n   c    h

    H   e    i   g    h    t ,    f    t

Gamma = 10 Deg Gamma = 30 Deg Gamma = 50 Deg

Soda Straw Rocket Baseline Has a Ballistic Flight 

Range Greater Than 90 Feet 

Soda Straw Rocket Baseline Has a Ballistic Flight 

Range Greater Than 90 Feet Rx = { 2 W cos γi / [ gc ρ SRef  CD0

]} ln { 1 + t / { 2W / [ gc ρ SRef  CD0

Vi ]}}

h = { 2 W sin γi / [ gc ρ SRef  CD0]} ln { 1 + t / { 2

W / [ gc ρ SRef  CD0 Vi ]}} + h i - gc t2

/ 2

Note: Time Ticsevery 0.5 s

Example, Assume l t = 6 in, pgauge = 30 psi , γi= 30 deg, τ = 0.025 sec, Soda StrawBaseline, t = t impact = 1.8 s

Horizontal Range At Impact = Rx = { 2 (0.00352 ) cos γi / [ 32.2 ( 0.002378 ) (0.000428 ) ( 0.86 )]} ln { 1 + t / { 2 (0.00352 ) / [ 32.2 ( 0.002378 ) (0.000428 ) ( 0.86 ) ( 75.2 )]}}

= 249.8 cos γi ln ( 1 + 0.301 t )

= 249.8 ( 0.866 ) ln [ 1 + 0.301 ( 1.8 )] =93.7 ft

Height At Impact = h = { 2 ( 0.00352 )sin γi / [ 32.2 ( 0.002378 ) ( 0.000428 ) (0.86 )} ln { 1 + t / { 2 ( 0.00352 ) / [ 32.2( 0.002378 ) ( 0.000428 ) ( 0.86 ) ( 75.2)]}} + h i – 32.2 t2 / 2

= 249.8 sin γi ln ( 1 + 0.301 t ) + hi –32.2 t2 / 2 = 249.8 ( 0.5 ) ln [ 1 + 0.301 (

1.8 )] + h i – 32.2 ( 1.2 )2

/ 2= h + 1 9 ft

Page 359: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 359/421

2/24/2008  ELF  359 

= h i + 1.9 ft

Soda Straw Rocket Range Driven by Inside 

Chamber Length and Launch Angle 

Soda Straw Rocket Range Driven by Inside 

Chamber Length and Launch Angle 

-0.2

0

0.2

0.4

0.6

0.8

lc Gamma pgauge W tau CD0

NondimensionalRange

Sensitivity to

Parameter 

Note: Decreased chamber length ⇒shorter duration thrust ( decreasedtotal impulse ) ⇒ decreased end-of-boost velocity

Soda Straw Rocket Baseline:

W = Weight = 0.00423 lb

lc = inside chamber length = 6 in

τ = Time constant to open solenoidvalve = 0.025 s

pgauge = gauge pressure = 30 psi

γi = Initial / launch angle angle = 30 deg

l t = 7 inV = Launch veloci ty = 75.2 fps

CD0= Zero-lift drag coefficient = 0.86

t impact = Time from launch to impact =1.8 s

Rx = Horizontal range = 94 ft

Example: 10% decrease in

inside chamber length ⇒7.7% decrease in range at t =1.8 s. Note: Result isnonlinear because insidechamber length = launcher length. Increase in lc alsoleads to decrease in range.

Page 360: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 360/421

2/24/2008  ELF  360 

Soda Straw Rocket Baseline Flight Range 

Uncertainty Is +/- 2.4%, 1 σ

Soda Straw Rocket Baseline Flight Range 

Uncertainty Is +/- 2.4%, 1 σ

Estimate of Level of Maturity / Uncertainty of Soda Straw Rocket Baseline Parameters Based on

Wind tunnel test

Thrust static test

Weight measurement

Prediction methods

Total Flight Range Uncertainty for 30 psi launch at 30 deg

ΔR / R = [ (ΔR / R )1

2 + (ΔR / R )2

2 + (ΔR / R )3

2 + (ΔR / R )4

2 + (ΔR / R )5

2 + (ΔR / R )6

2 ]1/2 = +/- 2.4%, 1σ

R = 94 ft +/- 2.3 ft, 1σ

+/- 0.2%, 1σ+/- 20%, 1σ0.866. Zero-Lift Drag Coefficient

+/- 0.2%, 1σ+/- 20%, 1σ0.025 s5. Solenoid Time Constant

+/- 0.4%, 1σ+/- 6%, 1σ1.6 g4. Weight

+/- 0.5%, 1σ+/- 3%, 1σ30 psi3. Gauge Pressure

+/- 1.7%, 1σ+/- 3%, 1σ30 deg2. Launch Angle

+/- 1.5%, 1σ+/- 2%, 1 σ6 in1. Inside Chamber Length

ΔR / R Due toUncertainty

Uncertainty inParameter 

Baseline ValueParameter 

Page 361: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 361/421

2/24/2008  ELF  361 

1 - Customer Requirements2 – Customer Importance Rating ( Total = 10 )

3 – Design Characteristics

4 – Design Characterist ics Impor tance Rating ( Total = 10 )

5 – Design Characteristics Sensitivity Matrix

6 – Design Characteristics Weighted Importance7 – Design Characteristics Relative Importance

House of Quality Translates Customer 

Requirements into Engineering Emphasis 

House of Quality Translates Customer 

Requirements into Engineering Emphasis 

Weight

Flight Range

3

7

Tail Planform AreaChamber Length

46

28

26 = ( 7x2 + 3x4 )74 = ( 7x8 + 3x6 )

21

  0

Note on Design Characteristics SensitivityMatrix: ( Room 5 ):

++ Strong Synergy

+ Synergy

0 Near Neutral Synergy

- Anti-Synergy- - Strong Anti-Synergy

Note: Based on House of Quality, ins ide chamber length most important design parameter.

Page 362: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 362/421

2/24/2008  ELF  362 

DOE Explores the Broad Possible Design Space 

with a Reasonably Small Set of Alternatives 

DOE Explores the Broad Possible Design Space 

with a Reasonably Small Set of Alternatives 

0.1254Lower Value

0.256Upper Value

ST, Tail Planform Area,

in2

lc, Inside Chamber 

Length, in

Engineering

Characteristics Range

“Petite”

“Stiletto”

“Shorty”“ Big Kahuna”

Concept Sketch

0.1254

0.1256

0.2540.256

ST, Tail Planform Area,in2

lc, Inside Chamber Length, in

Full Factorial DOE Based on Upper / Lower Values of k = 2 Parameters:Number of Combinations = 2k = 22 = 4

Design Space for Design of Experiments ( DOE )

Note: DOE concepts should emphasize customer driving requirements and the driving engineering characteristics.

Page 363: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 363/421

2/24/2008  ELF  363 

Engineering Experience Should Guide the DOE 

Set of Alternatives and the Preferred Design 

Engineering Experience Should Guide the DOE 

Set of Alternatives and the Preferred Design   As an Example, for the Soda Straw Rocket, from

Experience We Know That

Soda Straw Rocket Must Fit on Launcher  Maximum Boost Veloci ty Occurs When Chamber Length = Launch

Tube Length

Three or Four Tails Best for Stability

Tails That Are Too Small May Result in an Unstable Flight

Tails That Are Too Large Add Weight and Cause TrajectoryDispersal

Canards Require Larger Tails for Stabil ity, Add Weight, and CauseTrajectory Dispersal

Wings Add Weight, Add Drag, and Cause Trajectory Dispersal

Page 364: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 364/421

2/24/2008  ELF  364 

Engineering Experience Should Guide the DOE 

Set of Alternatives and Preferred Design ( cont ) 

Engineering Experience Should Guide the DOE 

Set of Alternatives and Preferred Design ( cont ) 

 As an Example, Soda Straw Rocket Geometry Should Be Comparable to an OperationalRocket with Near-Neutral Static Stabil ity ( e.g., Hydra70 )

2.66

1.89

1.89

2.79

2.79

b / d,

Total Tail Span /Diameter 

217.9“Petite”

Hydra 70

“Stiletto”

“Shorty”

“ Big Kahuna”

Concept Sketch

115.1

225

217.9

225

c / d,

Tail Chord /Diameter 

l / d,

Total Length /Diameter 

Note: For a subsonic rocket with the center-of-gravity in the center of the rocket, slender body theory and slender 

surface theory give total tail span and chord for neutral stability of b NeutralStability ≈ 2 d and cNeutralStability > ≈ drespectively.

Page 365: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 365/421

2/24/2008  ELF  365 

Optimum Design Should Have Balanced 

Engineering Characteristics 

Optimum Design Should Have Balanced 

Engineering Characteristics 

 As an Example, for the Soda Straw Rocket Design We

Should Reflect Customer Emphasis of Requirements for 

Range

Weight

Provide Balanced Emphasis of Most Important EngineeringCharacteristics

Chamber Length

Tail Size / Span

Page 366: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 366/421

2/24/2008  ELF  366 

Summary of Sizing Examples Summary of Sizing Examples 

Rocket Powered Missile ( Sparrow Derived Baseline ) Standoff range requirement

Wing area sizing requirements for maneuverability, turn rate, andturn radius

Multi-parameter harmonization

Ballistic versus lofted glide flight range

Ramjet Powered Missile ( ASALM Derived Baseline ) Robustness in range uncertainty

Propulsion and fuel alternatives

Surface target impact velocity Computer Aided Sizing Tools for Conceptual Design

 ADAM

 Analytical prediction of aerodynamics

Numerical solution of equations of motion

Page 367: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 367/421

2/24/2008  ELF  367 

Summary of Sizing Examples ( cont ) Summary of Sizing Examples ( cont ) 

Computer Aided Sizing Tools for Conceptual Design ( cont ) TMD analytical sizing spreadsheet ( based on this text )

 Analytical prediction of aero, propulsion, and weight

Closed form analytical solution of s implif ied equations of motion

Soda Straw Rocket Design, Build, and Fly

Static margin Drag

Performance

Sensitivity study

House of Quality Design of Experiment ( DOE )

Discussion / Questions?

Classroom Exercise ( Appendix A )

Page 368: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 368/421

2/24/2008  ELF  368 

2/24/2008

Sizing Examples Problems Sizing Examples Problems 

1. Required flight range is shorter for a head-on intercept and it is longer for a t___ c____ intercept.

2. The rocket baseline center-of-gravity moves f______ with motor burn.

3. The rocket baseline is an a_______ airf rame.4. The rocket baseline thrust profi le is b____ s______.

5. The rocket baseline motor case and nozzle are made of s____.

6. The rocket baseline flight range is driven by ISP, propellant weightfraction, drag, and s_____ m_____.

7. Contributors to the maneuverabili ty of the rocket baseline are its body,tail , and w___.

8.  Although the rocket baseline has sufficient g’s and turn rate tointercept a maneuvering aircraft, it needs a smaller turn r_____.

9. Compared to a co-altitude trajectory, the rocket baseline has extendedrange with a l_____ glide trajectory.

10. The ramjet baseline has a c___ inlet.

11. The Mach 4 ramjet baseline has a t_______ airframe.

Page 369: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 369/421

2/24/2008  ELF  369 

2/24/2008 ELF 370

Sizing Examples Problems ( cont ) Sizing Examples Problems ( cont ) 

12.  Although the ramjet baseline combustor is a nickel-based super alloy, itrequires insulation, due high temperature. The super alloy is i______.

13. The flight range of the ramjet baseline is dr iven by ISP, weight, thrust,

zero-lift coefficient, and the weight fraction of f___.14. Extended range for the ramjet baseline would be provided by more

efficient packaging of subsystems and the use of s_____ fuels.

15.  A conceptual design sizing code should be based on the simplicity,

speed, and robustness of p______ based methods.16. The House of Quality room for design characteristics weighted

importance indicates which engineering design characteristics are mostimportant in meeting the c_______ r___________.

17. Paredo sensitivity identifies the design parameters that are mosti________.

18. DOE concepts should emphasize the customer driving requirements andthe dr iving e__________ characteristics

19. If the total tail span ( including body diameter ) is twice the bodydiameter, the missile is approximately n________ s_____.

Page 370: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 370/421

2/24/2008  ELF  370 

2/24/2008 ELF 371

Outline Outline 

Introduction / Key Drivers in the Design Process

 Aerodynamic Considerations in Tactical Missile Design

Propulsion Considerations in Tactical Missile Design Weight Considerations in Tactical Missile Design

Flight Performance Considerations in Tactical Missile Design

Measures of Merit and Launch Platform Integration Sizing Examples

Development Process

Summary and Lessons Learned References and Communication

 Appendices ( Homework Problems / Classroom Exercises,Example of Request for Proposal, Nomenclature, Acronyms,Conversion Factors, Syllabus )

Page 371: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 371/421

2/24/2008  ELF  371 

2/24/2008 ELF 372

Relationship of Technology Assessment / 

Roadmap to the Development Process 

Relationship of Technology Assessment / 

Roadmap to the Development Process  Technology Roadmap Establishes Time-phased

Interrelationships for  Technology development and validation tasks

Technology options

Technology goals

Technology transition ( ATD, ACTD, DemVal, PDRR, SDD )

Technology Roadmap Identifies Key, enabling, high payoff technologies

Technology drivers

Key decision points Critical paths

Facili ty requirements

Resource needs

Page 372: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 372/421

2/24/2008  ELF  372 

2/24/2008 ELF 373

Research Technology Acquisition

Relationship of Design Maturity to the US 

Research, Technology, and Acquisition Process 

Relationship of Design Maturity to the US 

Research, Technology, and Acquisition Process 

BasicResearch

ExploratoryDevelopment

 AdvancedDevelopment

Demonstration& Validation

SystemDevelopment

andDemonstration

Production

~ $0.1B ~ $0.9B~ $0.3B ~ $0.5B ~ $1.0B ~ $6.1B ~ $1.2B

6.1 6.2 6.3 6.4 6.5

SystemUpgrades

Technology

Development~ 10 Years

Technology

Demonstration~ 8 Years

Prototype

Demonstration~ 4 Years

Full Scale

Development~ 5 Years

Limited~ 2 Years

1-3 Block

Upgrades~ 5-15 Years

First

Block~ 5Years

ProductionNote:Total US DoD Research and Technology for Tactical Missi les ≈ $1.8 Billi on per year 

Total US DoD Acquisi tion ( SDD + Production + Upgrades ) for Tactical Miss iles ≈ $8.3 Billi on per year Tactical Missiles ≈ 11% of U.S. DoD RT&A budgetUS Indust ry IR&D typically s imi lar to US DoD 6.2 and 6.3A

Matur ity Level Conceptual Design Prel iminary Design Detai l Design Production Design

Drawings ( type ) < 10 ( subsystems ) < 100 ( components ) > 100 ( parts ) > 1000 ( parts )

Page 373: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 373/421

2/24/2008  ELF  373 

2/24/2008 ELF 374

Technology Readiness Level ( TRL ) Indicates 

the Maturity of Technology 

Technology Readiness Level ( TRL ) Indicates 

the Maturity of Technology TRL 1- 3

Category 6.1

Basicresearch

TRL 4

Category 6.2A

Exploratorydevelopmentof acomponent,conceptualdesignstudies, andpredictionmethods

TRL 5

Category 6.2B

Exploratorydevelopmentof asubsystem

TRL 6

Category 6.3

 Advanced techdemo of asubsystem

TRL 7

Category 6.4

Prototypedemonstration

Initial assessment ⇒ component test ⇒ subsystem test ⇒ integrated subsystems ⇒ integrated missile

Page 374: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 374/421

2/24/2008  ELF  374 

2/24/2008  ELF  375 

Conceptual Design Has Broad Alternatives 

While Detail Design Has High Definition 

Conceptual Design Has Broad Alternatives 

While Detail Design Has High Definition 

1

10

100

1000

0 5 10 15

Time ( Years )

    T   y   p    i   c   a    l     N   u   m    b   e   r

   o    f    A    l    t   e   r   n   a    t    i   v   e    C   o

   n   c   e   p    t   s

   o   r    N   u   m    b   e   r   o    f    D   e   s    i   g   n    D   r   a   w    i   n

   g   s

Number of Concepts

Number of Drawings

Conceptual Prelim. Detail Product ionDesign Design Design Design

Page 375: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 375/421

3 5

2/24/2008  ELF  376 

US Tactical Missile Follow-On Programs Occur 

about Every 24 Years 

US Tactical Missile Follow-On Programs Occur 

about Every 24 Years 

Year Entering SDD

 AIM-9X ( maneuverabili ty ), 1996 - Hughes

 AIM-120 ( autonomous, speed,

range, weight ), 1981 - Hughes

Long Range ATS, AGM-86, 1973 - Boeing  AGM-129 ( RCS ), 1983 - General Dynamics

PAC-3 (accuracy), 1992 - Lockheed MartinLong Range STA, MIM-104, 1966 - Raytheon

1950 1965 1970 1975 1980 1985 1990 1995 > 2000

 AGM-88 ( speed, range ), 1983 - TI

Man-portable STS, M-47, 1970 - McDonnell Douglas

 Anti -radar ATS, AGM-45, 1961 - TI

Short Range ATA, AIM-9, 1949 - Raytheon

Javelin ( gunner survivability,lethality , weight ), 1989 - TI

Medium Range ATA, AIM-7,1951 - Raytheon

Medium Range ATS, AGM-130, 1983 - Rockwell JASSM ( cost, range,observables ), 1999 - LM

Hypersonic Missile, > 2007

Hypersonic Missile > 2007

Long Range STS, BGM-109, 1972 - General Dynamics Hypersonic Missile > 2007

Page 376: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 376/421

2/24/2008  ELF  377 

Missile Design Validation / Technology 

Development Is an Integrated Process 

Missile Design Validation / Technology 

Development Is an Integrated Process •Rocket Static•Turbojet Static•Ramjet Tests-Direct Connect-Freejet

StructureTest

HardwareIn-Loop

Simulation

Ballistic Tests

Lab Tests

Seeker 

 Ac tuators / Init iators

Sensors

Propulsion Model

 Aero Model

Model Digital Simulation

Wind TunnelTests

Propulsion

 Ai rf rame

Guidanceand Control

Power Supply

Warhead

EnvironmentTests•Vibration•Temperature

Sled Tests

IM Tests

IM Tests

Flight Test Progression( Captive Carry,Jettison,Separation, Unpowered

Guided Flights, PoweredGuided Flights, LiveWarhead Flights )Lab Tests

Tower Tests

 Autopi lo t / Electronics

Witness / Arena Tests

Page 377: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 377/421

2/24/2008  ELF  378 

 Airframe Wind Tunnel Test ………………………………………………………

Propulsion Static Firing with TVC ……..

Propulsion Direct Connect Test …………………………………….

Propulsion Freejet Test …………

Examples of Missile Development Tests and 

Facilities 

Examples of Missile Development Tests and 

Facilities 

Page 378: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 378/421

2/24/2008  ELF  379 

Examples of Missile Development Tests and 

Facilities ( cont ) 

Examples of Missile Development Tests and 

Facilities ( cont )  Warhead Arena Test ……………………………………………………….

Warhead Sled Test ………………………

Insensitive Munition Test ……………………………………………..

Structure Test …………………………………………..

Page 379: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 379/421

2/24/2008  ELF  380 

Examples of Missile Development Tests and 

Facilities ( cont ) 

Examples of Missile Development Tests and 

Facilities ( cont )  Seeker Test ……………………………………………………….

Hardware-In-Loop ………

Environmental Test ……………………………………………..

Submunition Dispenser Sled Test ……………………

Page 380: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 380/421

2/24/2008  ELF  381 

RCS Test ……………………………………………………………….

Store / Avionics Test

Flight Test ……………………………………………………………………….

Video of Facil ities and Tests

Examples of Missile Development Tests and 

Facilities ( cont ) 

Examples of Missile Development Tests and 

Facilities ( cont ) 

Page 381: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 381/421

2/24/2008  ELF  382 

Missile Flight Test Should Cover Extremes of 

Flight Envelope 

Missile Flight Test Should Cover Extremes of 

Flight Envelope 

Flight 7

Flight 7

Flight 3

Flight 7

Flight 1

Flight 3

F l ig h t  7

Flight 3

Flight 7

   H   i  g    h    D

  y  n  a  m

   i  c    P  r

  e  s  s  u

  r  e

High Aero Heating

High L / D Cruise

   L  o  w    D  y

  n  a  m   i

  c    P  r  e  s

  s  u  r  e

    B   o   o   s    t   e   r

    T   r   a   n   s    i    t    i   o   n   :

    T    h   r   u   s    t  -    D   r   a   g

Note: Seven Flights from Oct 1979 to May 1980.Flight 1 failure of fuel control. As a result of the high thrust , the flight Mach number exceeded the design Mach number.

Example: Ramjet Baseline Propuls ion Test Validation ( PTV )

Page 382: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 382/421

2/24/2008  ELF  383 

Example of Aero Technology Development Example of Aero Technology Development 

Conceptual Design ( 5 to 50 input parameters ) Prediction

Preliminary Design ( 50 to 200 input parameters ) Prediction

Missile DATCOM. Contact: AFRL. Attr ibutes include: Low cost MISL3. Contact: NEAR. Attr ibutes include: Modeling vortex shedding

SUPL. Contact: NEAR. Attr ibutes include: Paneling complex geometry

 AP02. Contact: NSWC. Attributes include: Periodic updates

CFD. Contact: Georgia Tech. Attributes include: Model runs on ParallelProcessing PCs

Preliminary Design Optimization

Response Surface Model: Contact: Georgia Tech. Attributes include10x more rapid computation

Probabilistic Analysis: Contact: Georgia Tech. Attr ibutes include anevaluation of design robustness

Page 383: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 383/421

Page 384: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 384/421

2/24/2008  ELF  385 

Example of Missile Technology State-o -the-Art 

Advancement: Air-to-Air Missile Maneuverability 

Example of Missile Technology State-o -the-Art 

Advancement: Air-to-Air Missile Maneuverability 

0

10

20

30

40

50

60

1950 1960 1970 1980 1990 2000 2010

Year IOC

    O   p   e   r   a    t    i   o   n   a    l     A

   n   g    l   e   o    f    A    t    t   a   c    k ,

    D   e

 AIM-7A

 AM-9B

R530

 AA-8 AIM-54

R550

Skyflash

Python 3

 AA-10 Aspide

Super 530D

 AA-11

 AIM-120

Python 4

 AA-12

MICA

 AIM-132

 AIM-9X

Controls Augmentedwith PropulsionDevices ( TVC,Reaction Jet )

Page 385: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 385/421

2/24/2008  ELF  386 

Example of Missile Technology State-o -the-Art 

Advancement: Ramjet Propulsion 

Example of Missile Technology State-o -the-Art 

Advancement: Ramjet Propulsion 

0

1

2

3

45

6

7

1950 1960 1970 1980 1990 2000 2010

Year Flight Demonstration

    M   c   r   u    i   s   e ,

    C   r   u    i   s   e    M   a   c    h

    N   u   m    b   e   r

Cobra X-7 Vandal/Talos St-450 SE 4400RARE Bloodhound BOMARC Typhon STATEXD-21 CROW SA-6 Sea Dart LASRM ALVRJ 3M80 ASAL M AS-17 / Kh-31 ASMP

 ANS Kh-41 SLAT BrahMos Meteor HyFly SED

Scramjet

Ramjet

Page 386: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 386/421

2/24/2008  ELF  387 

Enabling Technologies for Tactical Missiles Enabling Technologies for Tactical Missiles DomeFaceted / WindowMulti-modeMulti-spectralMulti-lens

Seeker 

Multi-modeMulti-spectralSARStrapdownUncooled ImagingHigh Gimbal

G & CGPS / INSIn-flight Optimizeα, β Feedback ATR

Propulsion

Hypersonic Turbine-BasedLiqu id / Solid Fuel RamjetVariable Flow Ducted RocketScramjetCombined Cycle PropulsionHigh Temperature Turbine

High Temperature Combustor High Density Fuel / PropellantHigh Throttle Fuel ControlEndothermic FuelComposite CasePintle / Pulsed / Gel Motor High Burn Rate Exponent PropellantLow Observable

WarheadHigh Energy DensityMulti-modeHigh Density Penetrator Boosted Penetrator Smart Dispenser 

Powered Submunition

InsulationHypersonicHigh Density

Flight ControlEM andPiezoelectricTVC / Reaction JetDedicated RollPower 

MEMS

 AirframeLifting BodyNeutral Static MarginLattice FinsSplit CanardLow Δx AC Wing / Low Hinge Moment ControlFree-to-Roll TailsCompressed Carriage

Low Drag InletMixed Compression InletSingle Cast StructureVARTM, Pultrusion, Extrusion , Filament WindHigh Temperature Compos itesTitanium Alloy

MEMS Data CollectionLow Observable Shaping and Materials

Electronics

COTS

Central

Data LinkBDI / BDAIn-flight RetargetMoving TargetPhased Array

Page 387: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 387/421

2/24/2008  ELF  388 

Summary of Development Process Summary of Development Process 

Development Process

Technology roadmap

Development activities

Time frame

Level of Design Maturi ty Related to Stage of Development

Missile Follow-on Programs

Subsystems Development Activi ties

Subsystems Integration and Missile System Development

Flight Test Activi ties

Missi le Development Tests and Facil ities

State-of-the-Art Advancement in Tactical Missiles New Technologies for Tactical Missiles

Discussion / Questions?

Classroom Exercise ( Appendix A )

Page 388: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 388/421

2/24/2008  ELF  389 

Development Process Problems Development Process Problems 

1.  A technology roadmap establishes the high payoff technologies g____.

2. The levels of design maturity from the most mature to least mature areproduction, detail, preliminary, and c_________ design.

3. Technology transitions occur from basic research to exploratorydevelopment, to advanced development, to d____________ and v_________.

4.  Approximately 11% of the U.S. RT&A budget is allocated to t_______m_______.

5. In the U.S., a tactical missile has a follow-on program about every __ years.

6. Compared to the AIM-9L, the AIM-9X has enhanced m______________.

7. Compared to the AIM-7, the AIM-120 has autonomous guidance, lighter weight, higher speed, and longer r____.

8. Compared to the PAC-2, the PAC-3 has h__ t_ k___ accuracy.

9. Guidance & control is verified in the h_______ in l___ simulation.

10.  Airbreathing propulsion ground tests include direct connect tests and

f______ tests.11.  Aerodynamic force and moment data are acquired in w___ t_____ tests.

Page 389: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 389/421

2/24/2008  ELF  390 

Outline Outline 

Introduction / Key Drivers in the Design Process

 Aerodynamic Considerations in Tactical Missile Design

Propulsion Considerations in Tactical Missile Design Weight Considerations in Tactical Missile Design

Flight Performance Considerations in Tactical Missile Design

Measures of Merit and Launch Platform Integration Sizing Examples

Development Process

Summary and Lessons Learned References and Communication

 Appendices ( Homework Problems / Classroom Exercises,Example of Request for Proposal, Nomenclature, Acronyms,Conversion Factors, Syllabus )

Page 390: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 390/421

2/24/2008  ELF  391 

Evaluate Alternatives and Iterate the System-o - 

Systems Design 

Evaluate Alternatives and Iterate the System-o - 

Systems Design • Mission / Scenario

Definition

• WeaponRequirements,Trade Studiesand Sensitivity

 Analysis

• Launch PlatformIntegration

• Weapon ConceptDesign Synthesis

• Technology Assessment andDev Roadmap

InitialTech

InitialReqs

BaselineSelected

 Al tConcepts

Initial Carriage /Launch

Iteration

RefineWeapons

Req

Initial Revised

Trades / Eval Effectiveness / Eval

TechTrades

InitialRoadmap

RevisedRoadmap

Update

Note: Typical design cycle for conceptual design is usually 3 to 9 months

 Al ternate Concepts ⇒ Select Preferred Design ⇒Eval / Refine

Page 391: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 391/421

2/24/2008  ELF  392 

Exploit Diverse Skills for a Balanced Design Exploit Diverse Skills for a Balanced Design 

Customer ( requirements pull )

⇒ mission / MIR weight ing

Operations analysts⇒ system-of-systems analysis

System integration engineers⇒ launch platform integration

Missile design engineers⇒ missile concept synthesis

Technical specialists ( technology push )⇒ technology assessment / roadmap

Page 392: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 392/421

2/24/2008  ELF  393 

Utilize Creative Skills Utilize Creative Skills 

Use Creative Skil ls to Consider Broad Range of Alternatives

 Ask Why? of Requirements / Constraints

Project into Future ( e.g., 5 – 15 years )

State-of-the-art ( SOTA )

Threat

Scenario / Tactics / Doctrine

Concepts

Technology Impact Forecast Recognize and Disti ll the Most Important, Key Drivers

Develop Missile Concept that is Synergistic within aSystem-of-Systems

Develop Synergistic / Balanced Combination of HighLeverage Subsystems / Technologies

Page 393: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 393/421

2/24/2008  ELF  394 

Identify and Quantify the High Payoff Measures of Merit 

Identify and Quantify the High Payoff Measures of Merit 

Max / MinRange

Time toTarget

Robustness

WeightSurvivability

Lethality Miss Distance

Observables

Reliability

Page 394: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 394/421

2/24/2008  ELF  395 

Start with a Good Baseline Start with a Good Baseline 

I would haveused the wheelas a baseline.

Page 395: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 395/421

2/24/2008  ELF  396 

Conduct Balanced, Unbiased Tradeoffs Conduct Balanced, Unbiased Tradeoffs 

 Aerodynamics

Propulsion

Structures

Seeker 

Guidance andControl

Warhead – Fuze

Production

Page 396: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 396/421

2/24/2008  ELF  397 

 AA- 8 / R-60 Python 4 Magic 550 U-Darter 

Python 5 Derby / R-Darter AIM-9L Aspide

 AA-10 / R-27 Skyflash AIM-7 R-37

 AA-12 / R-77 AIM-9x Super 530D AIM-132

 AA-11 / R-73 AIM-54 AIM-120 Mica

IRIS-T Meteor A-Darter Taildog

Evaluate Many Alternatives Evaluate Many Alternatives 

Note: Although all of the above are supersonic air-to-air missiles, they have different configuration geometry

Page 397: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 397/421

2/24/2008  ELF  398 

Search a Broad Design Solution Space ( Global 

Optimization vs Local Optimization ) 

Search a Broad Design Solution Space ( Global 

Optimization vs Local Optimization ) 

Local Optimum ( e.g., Lowest Cost

Only in Local Solut ion Space )

Local Optimum ( e.g., Lowest CostOnly in Local Solut ion Space )

Global Optimum ( e.g., Lowest Cost inGlobal Solution Space ) within Constraints

Page 398: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 398/421

2/24/2008  ELF  399 

Evaluate and Refine as Often as Possible Evaluate and Refine as Often as Possible 

Page 399: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 399/421

2/24/2008  ELF  400 

Provide Balanced Emphasis of Analytical vs 

Experimental 

Provide Balanced Emphasis of Analytical vs 

Experimental 

Thomas Edison: " Genius is 1%

inspiration and 99% perspiration."

 Albert Einstein: " The only real

valuable thing is in tuition."

Page 400: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 400/421

2/24/2008  ELF  401 

Use Design, Build, and Fly Process, for 

Feedback That Leads to Broader Knowledge 

Use Design, Build, and Fly Process, for 

Feedback That Leads to Broader Knowledge 

Design

Build

Fly ( Test )

Prediction SatisfiesCustomer 

Requirements?

Test Results SatisfyCustomer Requirements

and Consistent withPrediction?

Is it Producible?

No

Yes

                                              C                                               l                                               i                                  m

                                               b                                                L

                                  a                                             d                                             d

                                  e                                  r                                   o

                                               f                                                K

                                  n                                  o                                  w

                                               l                                  e                                             d                                  g                                               e

Data

Failure /

Success

Information

Understanding

Wisdom

No

No

Where is the wisdom we have lost inknowledge? Where is the knowledgewe have lost in information?--T. S.

Eliot ( The Rock ) Knowledge comes by taking thingsapart: analysis. But wisdom comes byputting things together.--John A.Morrison

We are drowning in information but

starved for knowledge.--John Naisbitt( Megatrends: Ten New Directions Transforming Our Lives )

We learn wisdom from failure muchmore than from success. We oftendiscover what will do, by finding outwhat will no t do; and probably he who

never made a mistake never made adiscovery.--Samuel Smiles ( Self Help ) 

Knowledge

Page 401: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 401/421

2/24/2008  ELF  402 

Evaluate Technology Risk Evaluate Technology Risk 

Page 402: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 402/421

2/24/2008  ELF  403 

Keep Track of Assumptions and Develop Real- 

Time Documentation 

Keep Track of Assumptions and Develop Real- 

Time Documentation 

It’s finallyfinished ! . . .

Page 403: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 403/421

Page 404: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 404/421

2/24/2008  ELF  405 

Utilize Group Skills Utilize Group Skills 

Source: Nicolai, L.M., “ Designing a Better Engineer,” AIAA Aerospace America, April 1992

Detail /ProductionDesign –

30%

Other ThanDesign –

60%

Preliminary Design – 8%Conceptual Design – 2%

(Test, Analysis,Configuration

Management, Software,Program Management,

Integration,Requirements,

etc.)

Page 405: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 405/421

2/24/2008  ELF  406 

Balance the Tradeoff of Importance vs Priority Balance the Tradeoff of Importance vs Priority 

 Advanced Programs /

Conceptual Design

SDD Programs /

Preliminary Design

Production Programs /

Detail Design

Page 406: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 406/421

2/24/2008  ELF  407 

Evaluate Alternatives and Iterate the 

Configuration Design 

Evaluate Alternatives and Iterate the 

Configuration Design 

Yes

Establish Baseline

Meet

Performance?

No

No

Yes

Resize / Alt Conf ig / Subsystems / Tech

 Al t Mission

 Al t Baseline

Define Mission Requirements

 Aerodynamics

Propulsion

Weight

Trajectory

Measures of Merit and Constraints

Page 407: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 407/421

2/24/2008  ELF  408 

Configuration Sizing Conceptual Design 

Guidelines: Aeromechanics 

Configuration Sizing Conceptual Design 

Guidelines: Aeromechanics 

Configuration Sizing Parameter Aeromechanics Design Guideline Body fineness ratio 5 < l / d < 25

Nose fineness ratio lN / d ≈ 2 if M > 1 Boattail or flare angle < 10 deg

Efficient cruise dynamic pressure q < 1,000 psf  

Missile homing velocity VM / VT > 1.5

Ramjet combustion temperature > 4,000° F Oblique shocks prior to inlet normal > 2 obl ique shocks / compressions i f M >

shock to satisfy MIL-E-5008B 3.0, > 3 shocks / compressions if M > 3.5

Inlet flow capture Shock on cowl lip at Mmax cruise

Ramjet Minimum cruise Mach number M > 1.2 x MInletStart , M > 1.2 MMaxThrust = Drag

Subsystems packaging Maximize available volume for fuel /propellant

Page 408: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 408/421

2/24/2008  ELF  409 

Configuration Sizing Conceptual Design 

Guidelines: Guidance & Control 

Configuration Sizing Conceptual Design 

Guidelines: Guidance & Control 

Configuration Sizing Parameter G&C Design Guideline Body bending frequency ωBB > 2 ω ACT

Trim control power  α / δ > 1 Neutral stability tail-body If low aspect ratio, b / d ≈ 2, c / d > ≈ 1

Stability & control cross coupling < 30%

 Airframe time constant τ < 0.2 s

Missile maneuverability nM / nT > 3

Proportional guidance ratio 3 < N’ < 5

Target span resolution by seeker < btarget

Missile heading rate γ.

M> γ.

T Missile turn radius RTM

< RTT

Page 409: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 409/421

2/24/2008  ELF  410 

Wrap Up ( Part 1 of 2 ) Wrap Up ( Part 1 of 2 ) 

Missile design is a creative and i terative process that includes System considerations

Missile concepts and sizing Flight trajectory evaluation

Cost / performance drivers may be “ locked in” duringconceptual design

Missile design is an opportunity for a diverse group to worktogether for a better product Military customer ⇒ mission / scenario definition

Operations analysts ⇒ system-of-systems modeling System integration engineers ⇒ launch platform integration

Missi le design engineers ⇒ missile concept synthesis

Technical specialists ⇒ technology assessment / technology roadmap

Page 410: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 410/421

2/24/2008  ELF  411 

Wrap Up ( Part 2 ) Wrap Up ( Part 2 ) 

The missile conceptual design philosophy requires Iteration, iteration, iteration

Evaluation of a broad range of alternatives Traceable flow-down allocation of requirements

Starting with a good baseline

Paredo sensitivity analysis to determine the most important, driving

parameters Synergistic compromise / balanced subsystems and technologies

that are high leverage

 Awareness of technology SOTA / technology assessment

Technology impact forecast

Robust design

Creative design decisions made by the designer ( not the computer )

Fast, simple, robust, physics-based prediction methods

Page 411: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 411/421

2/24/2008  ELF  412 

Outline Outline 

Introduction / Key Drivers in the Design Process

 Aerodynamic Considerations in Tactical Missile Design

Propulsion Considerations in Tactical Missile Design

Weight Considerations in Tactical Missile Design

Flight Performance Considerations in Tactical Missile Design

Measures of Merit and Launch Platform Integration

Sizing Examples

Development Process

Summary and Lessons Learned

References and Communication

 Appendices ( Homework Problems / Classroom Exercises,Example of Request for Proposal, Nomenclature, Acronyms,

Conversion Factors, Syllabus )

Page 412: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 412/421

2/24/2008  ELF  413 

References References 

1. “Missile.index,” http://missile.index.ne.jp/en/

2. AIAA Aerospace Design Engineers Guide, American Institu te of Aeronautics and Astronautics , 1993

3. Bonney, E.A., et al, Aerodynamics, Propulsion, Structures, and Design Practice , “ Principles of Guided Missile Design” ,D. Van Nostrand Company, Inc., 1956

4. Jerger, J.J., Systems Preliminary Design Principles of Guided Missile Design , “ Principles of Guided Missile Design” , D.Van Nostrand Company, Inc., 1960

5. Chin, S.S., Missile Configuration Design , McGraw-Hill Book Company, 1961

6. Mason, L.A., Devan, L., and Moore, F.G., “Aerodynamic Design Manual for Tactical Weapons,” NSWCTR 81-156, 1981

7. Pitts, W.C., Nielsen, J.N., and Kaattari, G.E., “Lif t and Center of Pressure of Wing-Body-Tail Combinations at Subsonic,Transonic, and Supersonic Speeds,” NACA Report 1307, 1957

8. Jorgensen, L.H., “Prediction of Static Aerodynamic Characteristics for Space-Shutt le-Like, and Other Bodies at Anglesof Attack From 0° to 180°,” NASA TND 6996, January 1973

9. Hoak, D.E., et al., “ USAF Stabil ity and Control DATCOM,” AFWAL TR-83-3048, Global Engineering, 1978

10. “ Nielsen Engineering & Research (NEAR) Aerodynamic Software Products,” http://www.nearinc.com/near/software.htm

11. Ash ley, H., Engineering Analysis of Flight Vehicles,Dover Publications, Inc., 1974

12. Anderson, John D. Jr., “Modern Compressible Flow,” Second Edition, McGraw Hill , 1990

13. Kinro th, G.D. and Anderson, W.R., “ Ramjet Design Handbook,” CPIA Pub. 319 and AFWAL TR 80-2003, June 1980

14. “Technical Aerodynamics Manual,” North American Rockwell Corporation , DTIC AD 723823, June 1970

15. Oswatitsch, K.L., “Pressure Recovery for Missi les with Reaction Propuls ion at High Supersonic Speeds” , NACA TM -1140, 1947

16. Carslaw, H.S. and Jaeger, J. C., Conduction of Heat in Solids, Clarendon Press, 1988 

Page 413: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 413/421

2/24/2008  ELF  414 

References ( cont ) References ( cont ) 

17. Allen, J. and Eggers, A.J., “ A Study of the Motion and Aerodynamic Heating of Balli stic Missiles Entering the Earth ’s Atmosphere at High Supersonic Speeds” , NACA Report 1381, Apri l 1953.

18. Schneider, S.H., Encyclopedia of Climate and Weather, Oxford University Press, 1996

19. Klein, L.A., Millimeter-Wave and Infrared Multisensor Design and Signal Processing, Artech House, Boston, 1997

20. US Army Ordnance Pamphlet ORDP-20-290-Warheads, 1980

21. Carleone, J. (Editor), Tactical Missile Warheads, “  AIAA Vol . 155 Progress in Astronautics and Aeronaut ics,” AmericanInstitute of Aeronautics and Astronautics, 1993

22. Christman, D.R. and Gehring, J.W., “ Analysis of High-Veloci ty Projecti le Penetration Mechanics,” Journal of AppliedPhysics, Vol. 37, 1966

23. Heaston, R.J. and Smoots, C.W., “Precision Guided Munit ions,” GACIAC Report HB-83-01, May 1983

24. Donatelli, G.A. and Fleeman, E.L., “ Methodology for Predict ing Miss Distance for Air Launched Missiles,” AIAA-82-0364, January 1982

25. Bennett, R.R. and Mathews, W.E., “ Analyt ical Determination of Miss Distances for L inear Homing NavigationSystems,” Hughes Tech Memo 260, 31 March 1952

26. Nicholas, T. and Rossi, R., “US Missi le Data Book, 1996,” Data Search Associates, 1996

27. Bithell, R.A. and Stoner, R.C., “Rapid Approach for Missile Synthesis,” AFWAL TR 81-3022, March 1982

28. Fleeman, E.L. and Donatelli, G.A., “Conceptual Design Procedure Applied to a Typical Air-Launched Missile,” AIAA 81-1688, August 1981

29. Hindes, J.W., “ Advanced Design of Aerodynamic Missiles ( ADAM ),” October 1993

30. Frits, A.P., et al, “ A Conceptual Sizing Tool for Tactical Missiles, “ AIAA Missi le Sciences Conference, November 2002

31. Bruns, K.D., Moore, M.E., Stoy , S.L., Vukelich, S.R., and Blake, W.B., “ Missile DATCOM,” AFWAL-TR-91-3039, Apr il

1991

Page 414: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 414/421

2/24/2008  ELF  415 

References ( cont ) References ( cont ) 

32. Moore, F.G., et al, “ The 2002 Version of the Aeroprediction Code” , Naval Surface Warfare Warfare Center, March 2002

33. Nicolai, L.M., “Design ing a Better Engineer,” AIAA Aerospace America, April 1992

Page 415: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 415/421

2/24/2008  ELF  416 

Bibliography of Other Reports and Web Sites Bibliography of Other Reports and Web Sites 

System Design

Fleeman, E.L., “Tactical Missile Design,”  American Institute of Aeronautics and Astronautics, 2006

“ DoD Index of Specifications and Standards,” http://stinet.dtic.mil/str/dodiss.html

“Periscope,” http://www.periscope1.com/

Defense Technical Information Center, http://www.dtic.mil/ NATO Research & Technology Organisation, http://www.rta.nato.int/

“ Missile System Flight Mechanics,” AGARD CP270, May 1979

Hogan, J.C., et al., “ Missile Automated Design ( MAD ) Computer Program,” AFRPL TR 80-21, March 1980

Rapp, G.H., “Performance Improvements With Sidewinder Missi le Airf rame,” AIAA Paper 79-0091, January 1979

Nicolai, L.M., Fundamentals of Aircraft Design , METS, Inc., 1984

Lindsey, G.H. and Redman, D.R., “ Tactical Missile Design,” Naval Postgraduate School, 1986

Lee, R.G., et al, Guided Weapons, Third Edition , Brassey’s, 1998

Giragosian, P.A., “ Rapid Synthesis for Evaluating Missile Maneuverability Parameters,” 10th AIAA Appl ied Aerodynamics Conference, June 1992

Fleeman, E.L. “ Aeromechanics Technologies for Tactical and Strategic Guided Missi les,” AGARD Paper 

presented at FMP Meeting in London, England, May 1979 Raymer, D.P., Aircraft Design, A Conceptual Approach, American Institute of Aeronaut ics and Ast ronautics, 1989

Ball , R.E., The Fundamentals of Aircraft Combat Survivabili ty Analysis and Design, American Institute of  Aeronautics and Astronaut ics, 1985

“ National Defense Preparedness Association Conference Presentations,” http://www.dtic.mil/ndia

Page 416: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 416/421

2/24/2008  ELF  417 

Bibliography of Other Reports and Web Sites ( cont ) Bibliography of Other Reports and Web Sites ( cont ) 

System Design ( continued ) Eichblatt , E.J., Test and Evaluation of the Tactical Missile, American Institute of Aeronaut ics and Astronautics,

1989 “ Aircraft Stores Interface Manual (ASIM),” http://akss.dau.mil/software/1.jsp “ Advanced Sidewinder Missi le AIM-9X Cost Analysis Requirements Description (CARD),”

http://deskbook.dau.mil/jsp/default.jsp Wertz, J.R and Larson W.J., Space Mission Analysis and Design, Microprism Press and Kluwer Academic

Publishers, 1999

“ Directory of U.S. Military Rockets and Missiles” , http://www.designation-systems.net/

Fleeman, E.L., et al, “ Technologies for Future Precision Strike Miss ile Systems,” NATO RTO EN-018, July 2001

“ The Ordnance Shop” , http://www.ordnance.org/portal/

“ Conversion Factors by Sandelius Instruments” , http://www.sandelius.com/reference/conversions.htm “Defense Acquisition Guidebook”, http://akss.dau.mil/dag/

 Aerodynamics “ A Digital Library for NACA,” http://naca.larc.nasa.gov/ Briggs, M.M., Systematic Tactical Missile Design, Tactical Missile Aerodynamics: General Topics , “AIAA Vol.

141 Progress in Astronautics and Aeronautics,” American Institute of Aeronautics, 1992 Briggs, M.M., et al., “ Aeromechanics Survey and Evaluation, Vol. 1-3,” NSWC/DL TR-3772, October 1977 “ Missile Aerodynamics,” NATO AGARD LS-98, February 1979 “ Missile Aerodynamics,” NATO AGARD CP-336, February 1983 “ Missile Aerodynamics,” NATO AGARD CP-493, April 1990 “ Missile Aerodynamics,” NATO RTO-MP-5, November 1998

Nielsen, J.N., Missile Aerodynamics , McGraw-Hill Book Company, 1960

Page 417: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 417/421

2/24/2008  ELF  418 

Bibliography of Other Reports and Web Sites ( cont ) Bibliography of Other Reports and Web Sites ( cont ) 

 Aerodynamics ( cont inued ) Mendenhall, M.R. et al, “ Proceedings of NEAR Conference on Missile Aerodynamics,” NEAR, 1989 Nielsen, J.N., “Missile Aerodynamics – Past, Present, Future,” AIAA Paper 79-1818, 1979 Dillenius, M.F.E., et al, “Engineering-, Intermediate-, and High-Level Aerodynamic Predict ion Methods and

 Appl ications,” Journal of Spacecraft and Rockets, Vo l. 36, No. 5, September-October, 1999

Nielsen, J.N., and Pitts, W.C., “ Wing-Body Interference at Supersonic Speeds wi th an Application toCombinations with Rectangular Wings,” NACA Tech. Note 2677, 1952

Spreiter, J.R., “ The Aerodynamic Forces on Slender Plane-and Cruciform-Wing and Body Combinations” , NACAReport 962, 1950

Simon, J.M., et al, “ Missile DATCOM: High Angle of Attack Capabili ties, AIAA-99-4258 Burns, K.A., et al, “ Viscous Effects on Complex Configurations,” WL-TR-95-3060, 1995

Lesieutre, D., et al, “ Recent Appl ications and Improvements to the Engineering-Level Aerodynamic Predict ionSoftware MISL3,’’ AIAA-2002-0274 Moore, F.G., Approximate Methods for Weapon Aerodynamics, American Institute of Aeronaut ics and

 Astronaut ics, 2000 “1976 Standard Atmosphere Calculator”, http://www.digitaldutch.com/atmoscalc/ “ Compressible Aerodynamics Calculator” , http://www.aoe.vt.edu/~devenpor/aoe3114/calc.html  Ashley, H. and Landahl, M., Aerodynamics of Wings and Bodies , Dover Publications, 1965 John, James E.A., Gas Dynamics , Second Edition, Prentice Hall, 1984 Zucker, Robert D., Fundamentals of Gas Dynamics , Matrix Publ ishers, 1977

Propulsion Chemical Information Propulsion Agency, http://www.cpia.jhu.edu/

St. Peter, J., The History of Aircraft Gas Turbine Engine Development in the United States: A Tradition of Excellence, ASME International Gas Turbine Inst itute, 1999

Page 418: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 418/421

2/24/2008  ELF  419 

Bibliography of Other Reports and Web Sites ( cont ) Bibliography of Other Reports and Web Sites ( cont ) 

Propulsion ( continued ) Mahoney, J.J., Inlets for Supersonic Missiles, American Ins ti tu te of Aeronaut ics and Ast ronautics, 1990 Sutton, G.P., Rocket Propulsion Elements , John Wiley & Sons, 1986 “ Tri-Service Rocket Motor Trade-off Study, Missile Designer’s Rocket Motor handbook,” CPIA 322, May 1980

Humble, R.W., Henry, G.N., and Larson, W.J., Space Propulsion Analysis and Design, McGraw-Hill , 1995 Jenson, G.E. and Netzer, D.W., Tactical Missile Propulsion, American Institu te of Aeronaut ics and Astronautics,

1996

Durham, F.P., Aircraft Jet Powerplants, Prentice-Hall, 1961

Bathie, W.W., Fundamentals of Gas Turbines , John Wiley and Sons, 1996

Hill , P.G. and Peterson, C.R., Mechanics and Thermodynamics of Propulsion , Addison-Weshley Publishing

Company, 1970 Mattingly, J.D., et al, Aircraft Engine Design , American Institute of Aeronautics and Astronautics, 1987

Materials and Heat Transfer 

Budinski , K.G. and Budinski , M.K., Engineering Materials Properties and Selection, Prentice Hall, 1999 “ Matweb’s Material Properties Index Page,” http://www.matweb.com

“ NASA Ames Research Center Thermal Protection Systems Expert (TPSX) and Material Properties Database” ,http://tpsx.arc.nasa.gov/tpsxhome.shtml

Harris , D.C., Materials for Infrared Windows and Domes, SPIE Optical Engineering Press, 1999 Kalpakjian, S., Manufacturing Processes for Engineering Materials, Addison Wesley, 1997 MIL-HDBK-5J, “Metallic Materials and Elements for Aerospace Vehicle Structures” , Jan 2003 “ Metallic Material Properties Development and Standardization ( MMPDS )” , http://www.mmpds.org

Page 419: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 419/421

2/24/2008  ELF  420 

Bibliography of Other Reports and Web Sites ( cont ) Bibliography of Other Reports and Web Sites ( cont ) 

Materials and Heat Transfer ( continued ) Malli ck, P.K., Fiber-Reinforced Composites: Materials, Manufacturing, and Design , Second Edition, Maecel

Dekker, 1993 Chapman, A.J., Heat Transfer , Third Edition, Macmil lan Publishing Company, 1974 Incropera, F.P. and DeWitt, D.P., Fundamentals of Heat and Mass Transfer , Fourth Edition, John Wiley and

Sons, 1996

Guidance, Navigation, Control, and Sensors Zarchan, P., Tactical and Strategic Missile Guidance , “ AIAA Vol. 124 Progress in Ast ronautics and

 Aeronautics,” American Insti tu te of Aeronautics and Astronaut ics, 1990 “ Proceedings of AGARD G&C Conference on Guidance & Contro l of Tactical Miss iles,” AGARD LS-52, May 1972

Garnell, P., Guided Weapon Control Systems, Pergamon Press, 1980 Locke, A. S., Guidance , “ Principles of Guided Missile Design” , D. Van Nostrand, 1955 Blakelock, J. H.,Automatic Control of Aircraft and Missiles, John Wiley & Sons, 1965 Lawrence, A.L., Modern Inertial Technology , Springer, 1998 Siouris, G.M., Aerospace Avionics Systems , Academic Press, 1993 Stimson, G.W., Introduction to Airborne Radar, SciTech Publish ing, 1998

Lecomme, P., Hardange, J.P., Marchais , J.C., and Normant, E.,Air and Spaceborne Radar Systems, SciTechPublishing and William Andrew Publishing, 2001 Wehner, D.R., High-Resolution Radar, Ar tech House, Norwood, MA, 1995 Donati, S., Photodetectors, Prentice-Hall , 2000 Jha, A.R., Infrared Technology , John Wiley and Sons, 2000 Schlessinger, M., Infrared Technology Fundamentals , Marcel Decker, 1995

Page 420: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 420/421

2/24/2008  ELF  421 

Follow-up Communication Follow-up Communication 

I would appreciate receiving your comments and 

corrections on this text, as well as any data,

examples, or references that you may offer.

Thank you,Gene FleemanTactical Missile Design

E-mail: [email protected] Site: http://genefleeman.home.mindspring.com

Page 421: TMDPresentation- Tatical Ballistic Missile

7/30/2019 TMDPresentation- Tatical Ballistic Missile

http://slidepdf.com/reader/full/tmdpresentation-tatical-ballistic-missile 421/421