tk-2 etil hexanol

39
Page 1 of 39 O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOL TANK REPORT: Printed - 02/12/2013 18:57:56 ETANK FULL REPORT - TK-2 ETIL HEXANOL ETank2000 FV 1.9.14 (26 Oct 2010) TABLE OF CONTENTS PAGE 1 ETANK SETTINGS SUMMARY PAGE 2 SUMMARY OF DESIGN DATA AND REMARKS PAGE 3 SUMMARY OF RESULTS PAGE 5 ROOF DESIGN PAGE 6 SHELL COURSE DESIGN PAGE 10 BOTTOM DESIGN PAGE 19 SEISMIC CALCULATIONS PAGE 24 ANCHOR BOLT DESIGN PAGE 30 CAPACITIES AND WEIGHTS PAGE 37 MAWP & MAWV SUMMARY PAGE 38

Upload: oswaldo-guerra

Post on 28-Nov-2015

48 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tk-2 Etil Hexanol

Page 1 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:56

ETANK FULL REPORT - TK-2 ETIL HEXANOLETank2000 FV 1.9.14 (26 Oct 2010)

TABLE OF CONTENTS PAGE 1

ETANK SETTINGS SUMMARY PAGE 2

SUMMARY OF DESIGN DATA AND REMARKS PAGE 3

SUMMARY OF RESULTS PAGE 5

ROOF DESIGN PAGE 6

SHELL COURSE DESIGN PAGE 10

BOTTOM DESIGN PAGE 19

SEISMIC CALCULATIONS PAGE 24

ANCHOR BOLT DESIGN PAGE 30

CAPACITIES AND WEIGHTS PAGE 37

MAWP & MAWV SUMMARY PAGE 38

Page 2: Tk-2 Etil Hexanol

Page 2 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:56

ETANK SETTINGS SUMMARY To Change These ETank Settings, Go To Tools->Options, Behavior Tab. ---------------------------------------------------------------------- No 650 Appendix F Calcs when Tank P = 0 -> Default : Verdadero -> This Tank : Verdadero Show MAWP / MAWV Calcs : Verdadero Enforce API Minimum thicknesses : Verdadero Enforce API Maximum Roof thickness : Verdadero Enforce Minimum Self Supp. Cone Pitch (2 in 12) : Verdadero Force Non-Annular Btm. to Meet API-650 5.5.1 : Falso Set t.actual to t.required Values : Falso Maximum 650 App. S or App. M Multiplier is 1 : Verdadero Enforce API Maximum Nozzle Sizes : Verdadero Max. Self Supported Roof thickness : 0,5 in. Max. Tank Corr. Allowance : 0,5 in. External pressure calcs subtract C.A. per V.5 : Falso Use Gauge Material for min thicknesses : Falso Enforce API Minimum Live Load : Verdadero Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : Verdadero

Page 3: Tk-2 Etil Hexanol

Page 3 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:56

SUMMARY OF DESIGN DATA and REMARKS Job : TK-2 ETIL HEXANOL Date of Calcs. : 02/12/2013 , 06:56 Mfg. or Insp. Date : 12/02/2013 Designer : O.G.Y. Project : CARBOQUIMICA Tag Number : TK2 Plant : CARBOQUIMICA Plant Location : MAMONAL Site : CARTAGENA Design Basis : API-650 11th Edition, Addendum 2, Nov 2009 ---------------------------------------------------------------------- - TANK NAMEPLATE INFORMATION ---------------------------------------------------------------------- - Operating Ratio: 0,4 - Design Standard: - API-650 11th Edition, Addendum 2, Nov 2009 - - API-650 Appendices Used: M - - Roof : A-240 Type 304: 0,1875in. - - Shell (6): A-240 Type 304: 0,1875in. - - Shell (5): A-240 Type 304: 0,1875in. - - Shell (4): A-240 Type 304: 0,1875in. - - Shell (3): A-240 Type 304: 0,1875in. - - Shell (2): A-240 Type 304: 0,1875in. - - Shell (1): A-240 Type 304: 0,1875in. - - Bottom : A-240 Type 304: 0,25in. - ---------------------------------------------------------------------- Design Internal Pressure = 0 PSI or 0 IN. H2O Design External Pressure = 0 PSI or 0 IN. H2O MAWP = 2,5000 PSI or 69,28 IN. H2O MAWV = -0,1510 PSI or -4,18 IN. H2O OD of Tank = 13,123 ft Shell Height = 26,25 ft S.G. of Contents = 0,833 Max. Liq. Level = 26,25 ft Design Temperature = 212 °F Tank Joint Efficiency = 0,85 Ground Snow Load = 0 lbf/ft^2 Roof Live Load = 20 lbf/ft^2 Design Roof Dead Load = 0 lbf/ft^2

Page 4: Tk-2 Etil Hexanol

Page 4 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:56

Basic Wind Velocity = 120 mph Wind Importance Factor = 1 Using Seismic Method: API-650 11th Ed. - Site Specific Seismic Use Group: III Site Class: C Sa0 = 1 %g Sai = 1 %g Sac = 1 %g Av = 1 %g Q = 1 Importance Factor = 1,5 Rwi = 4 Rwc = 2 DESIGN NOTES NOTE 1 : There are tank calculation warnings. Search for * * Warning * * notes. NOTE 2 : Tank is not subject to API-650 Appendix F.7 ** NOTE ** A Minimum Liquid Level of 1 ft. has been used for this model as entered on the Shell Design Screen.

Page 5: Tk-2 Etil Hexanol

Page 5 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:56

SUMMARY OF RESULTS Shell Material Summary (Bottom is 1) Shell Width Material Sd St Weight « CA # (ft) (psi) (psi) (lbf) « (in) 6 1,25 A-240 Type 304 22.253 27.000 413 « 0 5 5 A-240 Type 304 22.253 27.000 1.654 « 0 4 5 A-240 Type 304 22.253 27.000 1.654 « 0 3 5 A-240 Type 304 22.253 27.000 1.654 « 0 2 5 A-240 Type 304 22.253 27.000 1.654 « 0 1 5 A-240 Type 304 22.253 27.000 1.654 « 0 Total Weight 8.683 Shell API 650 Summary (Bottom is 1) ---------------------------------------------------------------------- Shell t.design t.test t.external t.seismic t.required t.actual # (in.) (in.) (in.) (in.) (in.) (in.) ---------------------------------------------------------------------- 6 0,0004 0,0004 N.A. 0,0023 0,1875 0,1875 5 0,0079 0,0078 N.A. 0,0112 0,1875 0,1875 4 0,0154 0,0152 N.A. 0,0201 0,1875 0,1875 3 0,0229 0,0227 N.A. 0,029 0,1875 0,1875 2 0,0304 0,0301 N.A. 0,038 0,1875 0,1875 1 0,0379 0,0375 N.A. 0,0469 0,1875 0,1875 ---------------------------------------------------------------------- Self Supported Conical Roof; Material = A-240 Type 304 t.required = 0,1615 in. t.actual = 0,1875 in. Roof Joint Efficiency = 0,85 Weight = 1.101 lbf Bottom Type: Flat Bottom: Non-Annular Bottom Floor Material = A-240 Type 304 t.required = 0,1875 in. t.actual = 0,25 in. Bottom Joint Efficiency = 0,85 Total Weight of Bottom = 1.523 lbf ANCHOR BOLTS: (6) 1in. UNC Bolts, A-479 Type 304 TOP END STIFFENER: L2-1/2x2-1/2x1/4, A-240 Type 304, 178, lbf

Page 6: Tk-2 Etil Hexanol

Page 6 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:56

<Roof Design Per API 650> CONICAL ROOF: A-240 Type 304 JEr = Roof Joint Efficiency = 0,85 Lr = Entered Roof Live Load = 20 lbf/ft^2 Lr_1 = Computed Roof Live Load, including External Pressure S = Ground Snow Load = 0 lbf/ft^2 Sb = Balanced Design Snow Load = 0 lbf/ft^2 Su = Unbalanced Design Snow Load = 0 lbf/ft^2 Dead_Load = Insulation + Plate_Weight + Added_Dead_Load = (0)(0/12) + 8,0325 + 0 = 8,03 lbf/ft^2 Roof Loads (per API-650 Appendix R) Pe = PV*144 = 0*144 = 0 lbf/ft^2 e.1b = DL + MAX(Sb,Lr) + 0,4*Pe = 8,03 + 20 + 0,4*0 = 28,03 lbf/ft^2 e.2b = DL + Pe + 0,4*MAX(Sb,Lr) = 8,03 + 0 + 0,4*20 = 16,03 lbf/ft^2 T = Balanced Roof Design Load (per API-650 Appendix R) = MAX(e.1b,e.2b) = 28,03 lbf/ft^2 e.1u = DL + MAX(Su,Lr) + 0,4*Pe = 8,03 + 20 + 0,4*0 = 28,03 lbf/ft^2 e.2u = DL + Pe + 0,4*MAX(Su,Lr) = 8,03 + 0 + 0,4*20 = 16,03 lbf/ft^2 U = Unbalanced Roof Design Load (per API-650 Appendix R) = MAX(e.1u,e.2u) = 28,03 lbf/ft^2 Lr_1 = MAX(T,U) = 28,03 lbf/ft^2 pt = Roof Cone Pitch = 2 in/ft Theta = Angle of Cone to the Horizontal = ATAN(pt/12) = ATAN(0,1667) = 9,4623 degrees Alpha = 1/2 the Included Apex Angle of Cone = 80,5377 degrees R2 = 6*OD/SIN(Theta) = 478,94 in. Rc = ID/2 = 78,5505 in.

Page 7: Tk-2 Etil Hexanol

Page 7 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:56

<Weight, Surface Area, and Projected Areas of Roof> Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 2*13,123^2/48 = 7,176 ft^2 Horizontal Projected Area of Roof (Per API-650 5.2.1.f) Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*13,123 = 6,5615 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*6,5615^2 = 135,256 ft^2 Roof_Area = 36*PI*OD^2/COS(Theta) = 36*PI*(13,123)^2/COS(9,4623) = 19.746 in^2 Weight = (Density)(t)(Roof_Area) = (0,2975)(0,1875)(19.746) = 1.101 lbf (New) = 1.101 lbf (Corroded) < Uplift on Tank > Per designer, not using API-650 App. F since P = 0 <Minimum Thickness of Roof Plate> ME = 28.000.000/27.304.000 = 1,0255 (per API-650 App. S.3.6.6) <Section 5.10.5.1> t-Calc1 = ME * SQRT[T/45]*OD/(400*SIN(Theta)) + CA = 1,0255 * SQRT[28,03/45]*13,123/(400*SIN(9,4623)) + 0 = 0,1615 in. t-Calc2 = ME * SQRT[U/45]*OD/(460*SIN(Theta)) + CA = 1,0255 * SQRT[28,03/45]*13,123/(460*SIN(9,4623)) + 0 = 0,1404 in. t-Calc = MAX(t-Calc1,t-Calc2) = 0,1615 in. Max_f (due to roof thickness) = 400*SIN(Theta)*(t-CA)/ME/OD = 400*SIN(9,4623)*(0,1875 - 0)/1,0255/13,123 = 0,9162 Max_T1 (due to roof thickness) = Max_f^2 * 45 = 0,9162^2 * 45 = 37,774lbf/ft^2

Page 8: Tk-2 Etil Hexanol

Page 8 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:56

P_ext_1 (due to roof thickness) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[37,774 - 8,03 - 0,4 * Max(0,20)]/144 = -0,151 PSI or -4,18 IN. H2O P_max_ext = -0,151 PSI or -4,18 IN. H2O <Actual Participating Area of Roof-to-Shell Juncture> (From API-650 Figure F-2) Wc = 0,6 * SQRT[Rc * (t-CA)] (Top Shell Course) = 0,6 * SQRT[78,5505 * (0,1875 - 0)] = 2,3026 in. (From API-650 Figure F-2) Wh = 0,3 * SQRT[R2 * (t-CA)] (or 12", whichever is less) = 0,3 * SQRT[478,94 * (0,1875 - 0)] = MIN(2,8429, 12) = 2,8429 in. Top End Stiffener: L2-1/2x2-1/2x1/4 Aa = (Cross-sectional Area of Top End Stiffener) = 1,19 in^2 Using API-650 Fig. F-2, Detail a End Stiffener Detail Ashell = Contributing Area due to shell plates = Wc*(t_shell - CA) = 2,3026 * (0,1875 - 0) = 0,432 in^2 Aroof = Contributing Area due to roof plates = Wh*(t_roof - CA) = 2,8429 * (0,1875 - 0) = 0,533 in^2 A = Actual Part. Area of Roof-to-Shell Juncture (per API-650) = Aa + Aroof + Ashell = 1,19 + 0,533 + 0,432 = 2,155 in^2 MINIMUM PARTICIPATING AREA Cone Roof ( Per API-650 Section 5.10.5.2 ) p = MAX(U,T) Fa = Min(Fy_roof,Fy_shell,Fy_stiff) = Min(24.700,24.700,24.700) = 24.700 psi A_min = Minimum Participating Area = p*D^2/(8*Fa*TAN(Theta)) = 28,03*13,123^2/(8*24.700*TAN(9,4623)) = 0,147 in^2 MaxT_A = Max Roof Load due to Participating Area ( reversing API-650 Section 5.10.5.2 ) = 45*A*3000*SIN(Theta)/OD^2 = 45*2,155*3000*SIN(9,4623)/13,123^2) = 277,724 lbf/ft^2

Page 9: Tk-2 Etil Hexanol

Page 9 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:56

P_ext_2 (Due to MaxT_A) = -[Max_T1 - DL - 0,4 * Max(Snow_Load,Lr)]/144 = -[277,724 - 8,03 - 0,4 * Max(0,20)]/144 = -1 PSI (Due to Participating Area) P_max_ext = MAX(-0,151,-1) = -0,151 PSI or -4,18 IN. H2O t.required = 0,1615 in. < ROOF DESIGN SUMMARY > t.required = 0,1615 in. t.actual = 0,1875 in. P_max_internal = 2,5 PSI or 69,28 IN. H2O P_max_external = -0,151 PSI or -4,18 IN. H2O

Page 10: Tk-2 Etil Hexanol

Page 10 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:56

SHELL COURSE DESIGN (Bottom Course is #1) VDP Criteria (per API-650 5.6.4.1) L = (6*D*(t-ca))^0,5 = (6*13,123*(0,1875-0))^0,5 = 3,8423 H = Max Liquid Level =26,25 ft L / H <= 2 Course # 1 Material: A-240 Type 304; Width = 5 ft. Corrosion Allow. = 0 in. Joint Efficiency = 0,85 API-650 ONE FOOT METHOD Sd = 22.253 PSI (allowable design stress per API-650 App. S « Table S-2a) St = 27.000 PSI (allowable test stress) DESIGN CONDITION G = 0,833 (per API-650) < Design Condition G = 0,833 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 26,25 + 2.31*0/0,833 = 26,25ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2,6*13,123*(26,25 - 1)*0,833/(22.253*0,85) + 0 = 0,0379 in. hMax_1 = E*Sd*(t_1 - CA_1)/(2,6*OD*G) + 1 = 0,85*22.253*(0,1875 - 0) / (2,6 * 13,123 * 0,833) + 1 = 125,7835 ft. Pmax_1 = (hMax_1 - H) * 0,433 * G = (125,7835 - 26,25) * 0,433 * 0,833 = 35,9007 PSI Pmax_int_shell = Pmax_1 Pmax_int_shell = 35,9007 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 26,25 + 2.31*0/1 = 26,25ft t.test = 2,6*13,123*(26,25 - 1)/(27.000*0,85) = 0,0375 in.

Page 11: Tk-2 Etil Hexanol

Page 11 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:56

Course # 2 Material: A-240 Type 304; Width = 5 ft. Corrosion Allow. = 0 in. Joint Efficiency = 0,85 API-650 ONE FOOT METHOD Sd = 22.253 PSI (allowable design stress per API-650 App. S « Table S-2a) St = 27.000 PSI (allowable test stress) DESIGN CONDITION G = 0,833 (per API-650) < Design Condition G = 0,833 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 21,25 + 2.31*0/0,833 = 21,25ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2,6*13,123*(21,25 - 1)*0,833/(22.253*0,85) + 0 = 0,0304 in. hMax_2 = E*Sd*(t_2 - CA_2)/(2,6*OD*G) + 1 = 0,85*22.253*(0,1875 - 0) / (2,6 * 13,123 * 0,833) + 1 = 125,7835 ft. Pmax_2 = (hMax_2 - H) * 0,433 * G = (125,7835 - 21,25) * 0,433 * 0,833 = 37,7041 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_2) = Min(35,9007, 37,7041) Pmax_int_shell = 35,9007 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 21,25 + 2.31*0/1 = 21,25ft t.test = 2,6*13,123*(21,25 - 1)/(27.000*0,85) = 0,0301 in. Course # 3 Material: A-240 Type 304; Width = 5 ft. Corrosion Allow. = 0 in. Joint Efficiency = 0,85 API-650 ONE FOOT METHOD Sd = 22.253 PSI (allowable design stress per API-650 App. S « Table S-2a) St = 27.000 PSI (allowable test stress)

Page 12: Tk-2 Etil Hexanol

Page 12 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:56

DESIGN CONDITION G = 0,833 (per API-650) < Design Condition G = 0,833 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 16,25 + 2.31*0/0,833 = 16,25ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2,6*13,123*(16,25 - 1)*0,833/(22.253*0,85) + 0 = 0,0229 in. hMax_3 = E*Sd*(t_3 - CA_3)/(2,6*OD*G) + 1 = 0,85*22.253*(0,1875 - 0) / (2,6 * 13,123 * 0,833) + 1 = 125,7835 ft. Pmax_3 = (hMax_3 - H) * 0,433 * G = (125,7835 - 16,25) * 0,433 * 0,833 = 39,5075 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_3) = Min(35,9007, 39,5075) Pmax_int_shell = 35,9007 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 16,25 + 2.31*0/1 = 16,25ft t.test = 2,6*13,123*(16,25 - 1)/(27.000*0,85) = 0,0227 in. Course # 4 Material: A-240 Type 304; Width = 5 ft. Corrosion Allow. = 0 in. Joint Efficiency = 0,85 API-650 ONE FOOT METHOD Sd = 22.253 PSI (allowable design stress per API-650 App. S « Table S-2a) St = 27.000 PSI (allowable test stress) DESIGN CONDITION G = 0,833 (per API-650) < Design Condition G = 0,833 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 11,25 + 2.31*0/0,833 = 11,25ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2,6*13,123*(11,25 - 1)*0,833/(22.253*0,85) + 0 = 0,0154 in.

Page 13: Tk-2 Etil Hexanol

Page 13 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:57

hMax_4 = E*Sd*(t_4 - CA_4)/(2,6*OD*G) + 1 = 0,85*22.253*(0,1875 - 0) / (2,6 * 13,123 * 0,833) + 1 = 125,7835 ft. Pmax_4 = (hMax_4 - H) * 0,433 * G = (125,7835 - 11,25) * 0,433 * 0,833 = 41,311 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_4) = Min(35,9007, 41,311) Pmax_int_shell = 35,9007 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 11,25 + 2.31*0/1 = 11,25ft t.test = 2,6*13,123*(11,25 - 1)/(27.000*0,85) = 0,0152 in. Course # 5 Material: A-240 Type 304; Width = 5 ft. Corrosion Allow. = 0 in. Joint Efficiency = 0,85 API-650 ONE FOOT METHOD Sd = 22.253 PSI (allowable design stress per API-650 App. S « Table S-2a) St = 27.000 PSI (allowable test stress) DESIGN CONDITION G = 0,833 (per API-650) < Design Condition G = 0,833 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 6,25 + 2.31*0/0,833 = 6,25ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2,6*13,123*(6,25 - 1)*0,833/(22.253*0,85) + 0 = 0,0079 in. hMax_5 = E*Sd*(t_5 - CA_5)/(2,6*OD*G) + 1 = 0,85*22.253*(0,1875 - 0) / (2,6 * 13,123 * 0,833) + 1 = 125,7835 ft. Pmax_5 = (hMax_5 - H) * 0,433 * G = (125,7835 - 6,25) * 0,433 * 0,833 = 43,1144 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_5) = Min(35,9007, 43,1144) Pmax_int_shell = 35,9007 PSI

Page 14: Tk-2 Etil Hexanol

Page 14 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:57

HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 6,25 + 2.31*0/1 = 6,25ft t.test = 2,6*13,123*(6,25 - 1)/(27.000*0,85) = 0,0078 in. Course # 6 Material: A-240 Type 304; Width = 1,25 ft. Corrosion Allow. = 0 in. Joint Efficiency = 0,85 API-650 ONE FOOT METHOD Sd = 22.253 PSI (allowable design stress per API-650 App. S « Table S-2a) St = 27.000 PSI (allowable test stress) DESIGN CONDITION G = 0,833 (per API-650) < Design Condition G = 0,833 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 1,25 + 2.31*0/0,833 = 1,25ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 S.3.2) = 2,6*13,123*(1,25 - 1)*0,833/(22.253*0,85) + 0 = 0,0004 in. hMax_6 = E*Sd*(t_6 - CA_6)/(2,6*OD*G) + 1 = 0,85*22.253*(0,1875 - 0) / (2,6 * 13,123 * 0,833) + 1 = 125,7835 ft. Pmax_6 = (hMax_6 - H) * 0,433 * G = (125,7835 - 1,25) * 0,433 * 0,833 = 44,9179 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_6) = Min(35,9007, 44,9179) Pmax_int_shell = 35,9007 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 1,25 + 2.31*0/1 = 1,25ft t.test = 2,6*13,123*(1,25 - 1)/(27.000*0,85) = 0,0004 in. Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2,5

Page 15: Tk-2 Etil Hexanol

Page 15 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:57

Transforming Courses (1) to (6) Wtr(1) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft Wtr(2) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft Wtr(3) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft Wtr(4) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft Wtr(5) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft Wtr(6) = 1,0417*[ 0,1875/0,1875 ]^2.5 = 1,0417 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 26,0417 ft INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7) V (Wind Speed) = 120 mph Ve = vf = Velocity Factor = (vs/120)^2 = (120/120)^2 = 1 Design PV = 0 PSI, OR 0 In. H2O <TOP END STIFFENER CALCULATIONS> Z = Required Top Comp Ring Section Modulus (per API-650 5.1.5.9.e) = 0 in^3 Top Comp. Ring is not required for Self-Supported Roofs if the requirements of either Section 5.10.5 or 5.10.6 are met. Actual Z = 0,457 in^3 Using L2-1/2x2-1/2x1/4, Wc = 2,3059 <INTERMEDIATE STIFFENER CALCULATIONS> (PER API-650 Section 5.9.7) * * * NOTE: Using the thinnest shell course, t_thinnest, instead of top shell course. * * * NOTE: Not subtracting corrosion allowance per user setting. ME = 27.304.000/28.000.000 = 0,9751 Hu = Maximum Height of Unstiffened Shell = {ME*600.000*t_thinnest*SQRT[t_thinnest/OD]^3} / Ve) = {0,9751*600.000*0,1875*SQRT[0,1875/13,123]^3} / 1 = 187,3583 ft Wtr = Transposed Width of each Shell Course = Width*[ t_top / t_course ]^2,5 Transforming Courses (1) to (6) Wtr(1) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft Wtr(2) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft Wtr(3) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft Wtr(4) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft Wtr(5) = 5*[ 0,1875/0,1875 ]^2.5 = 5 ft Wtr(6) = 1,0417*[ 0,1875/0,1875 ]^2.5 = 1,0417 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 26,0417 ft

Page 16: Tk-2 Etil Hexanol

Page 16 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:57

L_0 = Hts/# of Stiffeners + 1 = 26,0417/1 = 26,04 ft. No Intermediate Wind Girders Needed Since Hu >= L_0 SHELL COURSE #1 SUMMARY ------------------------------------------- t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,0379, 0, 0,0469) = 0,0469 in. t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,1875 in. t.actual = 0,1875 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2975*PI*[(12*13,123)-0,1875]*12*5*0,1875 = 1.654 lbf (New) = 1.654 lbf (Corroded) SHELL COURSE #2 SUMMARY ------------------------------------------- t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,0304, 0, 0,038) = 0,038 in. t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,1875 in. t.actual = 0,1875 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2975*PI*[(12*13,123)-0,1875]*12*5*0,1875 = 1.654 lbf (New) = 1.654 lbf (Corroded) SHELL COURSE #3 SUMMARY ------------------------------------------- t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,0229, 0, 0,029) = 0,029 in. t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4)

Page 17: Tk-2 Etil Hexanol

Page 17 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:57

t.required = MAX(t.design, t.test, t.min650) = 0,1875 in. t.actual = 0,1875 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2975*PI*[(12*13,123)-0,1875]*12*5*0,1875 = 1.654 lbf (New) = 1.654 lbf (Corroded) SHELL COURSE #4 SUMMARY ------------------------------------------- t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,0154, 0, 0,0201) = 0,0201 in. t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,1875 in. t.actual = 0,1875 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2975*PI*[(12*13,123)-0,1875]*12*5*0,1875 = 1.654 lbf (New) = 1.654 lbf (Corroded) SHELL COURSE #5 SUMMARY ------------------------------------------- t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,0079, 0, 0,0112) = 0,0112 in. t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,1875 in. t.actual = 0,1875 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2975*PI*[(12*13,123)-0,1875]*12*5*0,1875 = 1.654 lbf (New) = 1.654 lbf (Corroded) SHELL COURSE #6 SUMMARY ------------------------------------------- t.seismic governs. See E.6.2.4 table in SEISMIC calculations. t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,0004, 0, 0,0023) = 0,0023 in.

Page 18: Tk-2 Etil Hexanol

Page 18 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:57

t-650min = 0,1875 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,1875 in. t.actual = 0,1875 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2975*PI*[(12*13,123)-0,1875]*12*1,25*0,1875 = 413 lbf (New) = 413 lbf (Corroded)

Page 19: Tk-2 Etil Hexanol

Page 19 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:57

FLAT BOTTOM: NON-ANNULAR PLATE DESIGN Bottom Plate Material : A-240 Type 304 Annular Bottom Plate Material : A-36 <Weight of Bottom Plate> Bottom_Area = PI/4*(Bottom_OD)^2 = PI/4*(161,476)^2 = 20.479 in^2 Weight = Density * t.actual * Bottom_Area = 0,2975 * 0,25 * 20.479 = 1.523 lbf (New) = 1.523 lbf (Corroded) < API-650 > Calculation of Hydrostatic Test Stress & Product Design Stress (per API-650 Section 5.5.1) t_1 : Bottom (1st) Shell Course thickness. H'= Max. Liq. Level + P(psi)/(0,433) = 26,25 + (0)/(0,433) = 26,25 ft St = Hydrostatic Test Stress in Bottom (1st) Shell Course = (2,6)(OD)(H' - 1)/t_1 = (2,6)(13,123)(26,25 - 1)/(0,1875) = 4.595 PSI. (Within 24900 PSI limit for Non-Annular Bottom) Sd = Product Design Stress in Bottom (1st) Shell Course = (2,6)(OD)(H' - 1)(G)/(t_1 - ca_1) = (2,6)(13,123)(26,25 - 1)(0,833)/(0,1875) = 3.827 PSI. (Within 23200 PSI limit for Non-Annular Bottom) -------------------------- <Non-Annular Bottom Plates> t_min = 0,1875 + CA = 0,1875 + 0 = 0,1875 in. (per Section 5.4.1) t-Calc = t_min = 0,1875 in. t-Actual = 0,25 in. < Vacuum Calculations > (per ASME Section VIII Div. 1) Weight Resisting External Vacuum (Corr. Btm. Plate + Min. Liq. « Level) P_btm = 0,2975 * 0,25 + 0,3607 = 0,4351 PSI or 12,06 IN. H2O P_ext = PV + P_btm = 0 + 0,4351 = 0,4351 PSI or 12,06 IN. H2O Since P_ext > 0, P_ext = 0

Page 20: Tk-2 Etil Hexanol

Page 20 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:57

td_ext = (t-Calc - CA) (1st course) = (0,0469 - 0) = 0,0469 in. ts = (t.actual - CA) (1st course) = (0,1875 - 0) = 0,1875 in. C = 0,33 * td_ext / ts = 0,33 * 0,0469 / 0,1875 = 0,0825 since C < 0,2, set C = 0,2 t-Vac = OD*SQRT(C*P_ext/SE) + CA = (157,48)*SQRT[(0,2)(0)/(22.253)(0,85)] + 0 = 0 in. t-Calc = MAX(t-Calc, t-Vac) = MAX(0,1875,0) = 0,1875 in. P_max_external (Vacuum limited by bottom plate thickness) = -([(t - CA)/OD]^2*(S*E/C) + P_btm) = -([(0,25 - 0)/157,48]^2*(22.253*0,85/0,2) + 0,4351) = -0,6734 PSI or -18,66 IN. H2O ------------------- < FLAT BOTTOM: NON-ANNULAR SUMMARY > Bottom Plate Material : A-240 Type 304 t.required = 0,1875 in. t.actual = 0,25 in.

Page 21: Tk-2 Etil Hexanol

Page 21 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:57

NET UPLIFT DUE TO INTERNAL PRESSURE (See roof report for calculations) Net_Uplift = -9.784 lbf Anchorage NOT required for internal pressure. WIND MOMENT (Per API-650 SECTION 5.11) vs = Wind Velocity = 120 mph vf = Velocity Factor = (vs/120)^2 = (120/120)^2 = 1 Wind_Uplift = Iw * 30 * vf = 1 * 30 * 1 = 30 lbf/ft^2 API-650 5.2.1.k Uplift Check P_F41 = WCtoPSI(0,962*Fy*A*TAN(Theta)/D^2 + 8*t_h) P_F41 = WCtoPSI(0,962*24.700*2,155*0,1667/13,123^2 + 8*0,1875) = 1,8424 PSI Limit Wind_Uplift/144+P to 1.6*P_F41 Wind_Uplift/144 + P = 0,2083 PSI 1.6*P_F41 = 2,9478 PSI Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41) Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P) Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144) = MIN(30,424,4889) = 30 lbf/ft^2 Ap_Vert = Vertical Projected Area of Roof = pt*OD^2/48 = 2*13,123^2/48 = 7,176 ft^2 Horizontal Projected Area of Roof (Per API-650 5.2.1.f) Xw = Moment Arm of UPLIFT wind force on roof = 0.5*OD = 0.5*13,123 = 6,5615 ft Ap = Projected Area of roof for wind moment = PI*R^2 = PI*6,5615^2 = 135,256 ft^2 M_roof (Moment Due to Wind Force on Roof) = (Wind_Uplift)(Ap)(Xw) = (30)(135,256)(6,5615) = 26.624 ft-lbf Xs (Moment Arm of Wind Force on Shell) = H/2 = (26,25)/2 = 13,125 ft As (Projected Area of Shell) = H*(OD + t_ins / 6) = (26,25)(13,123 + 0/6) = 344,4788 ft^2 M_shell (Moment Due to Wind Force on Shell) = (Iw)(vf)(18)(As)(Xs) = (1)(1)(18)(344,4788)(13,125) = 81.383 ft-lbf

Page 22: Tk-2 Etil Hexanol

Page 22 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:57

Mw (Wind moment) = M_roof + M_shell = 26.624 + 81.383 = 108.007 ft-lbf W = Net weight (PER API-650 5.11.3) (Force due to corroded weight of shell and shell-supported roof plates less 40% of F.1.2 Uplift force.) = W_shell + W_roof - 0,4*P*(PI/4)(144)(OD^2) = 8.683 + 1.101 - 0*(PI/4)(144)(13,123^2) = 9.784 lbf RESISTANCE TO OVERTURNING (per API-650 5.11.2) An unanchored Tank must meet these two criteria: 1) 0,6*Mw + MPi < MDL/1,5 2) Mw + 0,4MPi < (MDL + MF)/2 Mw = Destabilizing Wind Moment = 108.007 ft-lbf MPi = Destabilizing Moment about the Shell-to-Bottom Joint from « Design Pressure. = P*(PI*OD^2/4)*(144)*(OD/2) = 0*(3,1416*13,123^2/4)*(144)*(6,5615) = 0 ft-lbf MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the « Shell and Roof weight supported by the Shell. = (W_shell + W_roof)*OD/2 = (8.683 + 1.101)*6,5615 = 64.198 ft-lbf tb = Bottom Plate thickness less C.A. = 0,25 in. wl = Circumferential loading of contents along Shell-To-Bottom « Joint. = 4,67*tb*SQRT(Sy_btm*H_liq) = 4,67*0,25*SQRT(24.700*26,25) = 940,09 lbf/ft wl = 0.9 * H_liq * OD (lesser value than above) = 0,9*26,25*13,123 = 310,03 lbf/ft MF = Stabilizing Moment due to Bottom Plate and Liquid Weight. = (OD/2)*wl*PI*OD = (6,5615)(310,03)(3,1416)(13,123) = 83.867 ft-lbf Criteria 1 0,6*(108.007) + 0 < 64.198/1,5 Since 64.804 >= 42.799, Tank must be anchored. Criteria 2 108.007 + 0,4 * 0 < (64.198 + 83.867)/2 Since 108.007 >= 74.033, Tank must be anchored. RESISTANCE TO SLIDING (per API-650 5.11.4)

Page 23: Tk-2 Etil Hexanol

Page 23 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:57

F_wind = vF * 18 * As = 1 * 18 * 344,4788 = 6.201 lbf F_friction = Maximum of 40% of Weight of Tank = 0,4 * (W_Roof_Corroded + W_Shell_Corroded + W_Btm_Corroded + W_min_Liquid) = 0,4 * (1.101 + 8.683 + 1.523 + 6.994) = 7.320 lbf No anchorage needed to resist sliding since F_friction > F_wind <Anchorage Requirement> Anchorage required since Criteria 1, Criteria 2, or Sliding are NOT acceptable. Bolt Spacing = 10 ft, Min # Anchor Bolts = 6

Page 24: Tk-2 Etil Hexanol

Page 24 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:57

SEISMIC CALCULATIONS PER API-650 11TH ED., ADDENDUM 2 < Site Specific Method > WEIGHTS Ws = Weight of Shell (Incl. Shell Stiffeners & Insul.) = 8.861 lbf Wf = Weight of Floor (Incl. Annular Ring) = 1.523 lbf Wr = Weight Fixed Roof, framing and 10% of Design Live Load & Insul. = 1.375 lbf SEISMIC VARIABLES SUG = Seismic Use Group (Importance factor depends on SUG) = III Site Class = C Sa0 = 5% damped, design spectral response acceleration parameter at zero period based on site-specific procedures = 0,01 Decimal %g Sai = 5% damped, site specific MCE response spectra at the calculated impulsive period including site soil effects = 0,01 Decimal %g Sac = 5% damped, site specific MCE response spectra at the calculated convective period including site soil effects = 0,01 Decimal %g Av = Vertical Earthquake Acceleration Coefficient = 0,01 Decimal %g Q = Scaling factor from the MCE to design level spectral accelerations = 1 I = Importance factor defined by Seismic Use Group = 1,5 Rwi = Force reduction factor for the impulsive mode using allowable stress design methods. = 4 Rwc = Force reduction factor for the convective mode using allowable stress design methods. = 2 Ci = Coefficient for impulsive period of tank system (Fig E-1) = 9,1 tu = Equivalent uniform thickness of tank shell = 0,1875 in. Density = Density of tank product. SG*62.4 = 51,979 lbf/ft^3 E = Elastic modulus of tank material (bottom shell course) = 27.304.000 PSI

Page 25: Tk-2 Etil Hexanol

Page 25 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:57

E.4.5 STRUCTURAL PERIOD OF VIBRATION E.4.5.1 Impulsive Natural Period Ti = (1/27,8)*(Ci*H)/((tu/D)^0,5)*(Density^0,5/E^0,5) = 0,1 sec. E.4.5.2 Convective (Sloshing) Period Ks = 0,578/SQRT(TANH(3,68*H/D)) = 0,578/SQRT(TANH(3,68/0,5)) = 0,578 Tc = Ks*SQRT(D) = 0,578*SQRT(13,123) = 2,09 sec. E.4.6.1 Spectral Acceleration Coefficients Ai = Impulsive spectral acceleration parameter = Q*I/Rwi*Sai = 1*1,5/4*0,01 = 0,0038 decimal %g K = Coefficient to adjust spectral acceleration from 5% - 0.5% damping = 1,5 Ac = Convective spectral acceleration parameter = Q*K*I/Rwc*Sac = 1*1,5*1,5/2*0,01 = 0,0113 decimal %g E.6.1.1 EFFECTIVE WEIGHT OF PRODUCT D/H = Ratio of Tank Diameter to Design Liquid Level = 0,5 Wp = Total Weight of Tank Contents based on S.G. = 184.598 lbf Wi = Effective Impulsive Portion of the Liquid Weight = [1 - 0,218*D/H]*Wp = [1 - 0,218*0,5]*184.598 = 164.477 lbf Wc = Effective Convective (Sloshing) Portion of the Liquid Weight = 0,23*D/H*TANH(3,67*H/D)*Wp = 0,23*0,5*TANH(3,67/0,5)*184.598 = 21.229 lbf Weff = Effective Weight Contributing to Seismic Response = Wi + Wc = 185.706 lbf Wrs = Roof Load Acting on Shell, including 10% of Live Load = 1.375 lbf E.6.1 DESIGN LOADS Vi = Design base shear due to impulsive component from effective « weight of tank and contents = Ai*(Ws + Wr + Wf + Wi) = 0,0038*(8.861 + 1.375 + 1.523 + 164.477) = 661 lbf Vc = Design base shear due to convective component of the effective sloshing weight = Ac*Wc = 0,0113*21.229 = 239 lbf V = Total design base shear = SQRT(Vi^2 + Vc^2) = SQRT(661^2 + 239^2) = 703 lbf

Page 26: Tk-2 Etil Hexanol

Page 26 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

E.6.1.2 CENTER OF ACTION for EFFECTIVE LATERAL FORCES Xs = Height from Bottom to the Shell's Center of Gravity = 13,124 ft RCG = Height from Top of Shell to Roof Center of Gravity = 0,273 ft Xr = Height from Bottom of Shell to Roof Center of Gravity = h + RCG = 26,25 + 0,273 = 26,523 ft E.6.1.2.1 CENTER OF ACTION for RINGWALL OVERTURNING MOMENT Xi = Height to Center of Action of the Lateral Seismic force related « to the Impulsive Liquid Force for Ringwall Moment = (0,5 - 0,094*D/H)*H = (0,5 - 0,094*0,5)*26,25 = 11,89 ft Xc = Height to Center of Action of the Lateral Seismic force related « to the Convective Liquid Force for Ringwall Moment = (1-(COSH(3,67*H/D)-1)/((3,67*H/D)*SINH(3,67*H/D)))*H = (1-(COSH(7,34)-1)/((7,34)*SINH(7,34)))*26,25 = 22,68 ft E.6.1.2.2 CENTER OF ACTION for SLAB OVERTURNING MOMENT Xis = Height to Center of Action of the Lateral Seismic force « related to the Impulsive Liquid Force for the Slab Moment = [0,5 + 0,06*D/H]*H = [0,5 + 0,06*0,5]*26,25 = 13,91 ft Xcs = Height to Center of Action of the Lateral Seismic force « related to the Convective Liquid Force for the Slab Moment = (1-(COSH(3,67*H/D)-1,937)/((3,67*H/D)*SINH(3,67*H/D)))*H = (1-(COSH(7,34)-1,937)/((7,34)*SINH(7,34)))*26,25 = 22,68 ft E.6.1.4 Dynamic Liquid Hoop Forces 0,75 * D = 9,8423 D/H = 0,5 SHELL SUMMARY Width Y Ni Nc Nh SigT+ SigT- ft ft lbf/in lbf/in lbf lbf/in lbf/in Shell #1 5 25,25 0,75 0,002 878 4730 4636 Shell #2 5 20,25 0,75 0,006 711 3830 3754 Shell #3 5 15,25 0,75 0,022 543 2925 2867 Shell #4 5 10,25 0,75 0,089 376 2026 1985 Shell #5 5 5,25 0,58 0,363 209 1126 1103 Shell #6 1,25 0,25 0,04 1,474 42 232 216

Page 27: Tk-2 Etil Hexanol

Page 27 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

E.6.1.5 Overturning Moment Mrw = Ringwall moment—Portion of the total overturning moment that acts at the base of the tank shell perimeter Mrw = ((Ai*(Wi*Xi+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xc)^2)^0,5 = ((0,0038*(164.477*11,89+8.861*13,124+1.375*26,523))^2 + (0,0113*21.229*22,68)^2)^0,5 = 9.584 lbf-ft Ms = Slab moment (used for slab and pile cap design) Ms = ((Ai*(Wi*Xis+Ws*Xs+Wr*Xr))^2 + (Ac*Wc*Xcs)^2)^0,5 = ((0,0038*(164.477*13,91+8.861*13,124+1.375*26,523))^2 + (0,0113*21.229*22,68)^2)^0,5 = 10.635 lbf-ft E.6.2 RESISTANCE TO DESIGN LOADS E.6.2.1.1 Self-Anchored Fy = Minimum yield strength of bottom plate = 24.700 psi Ge = Effective specific gravity including vertical seismic effects = S.G.*(1 - 0,4*Av) = 0,833*(1 - 0,4*0,01) = 0,83 1,28*H*D*Ge = 366 lbf/ft wa = Force resisting uplift in annular region = 7,9*ta*(Fy*H*Ge)^0,5 <= 1,28*H*D*Ge = 7,9*0,25*(24.700*26,25*0,83)^0,5 = 1.449 lbf/ft wa = 366 lbf/ft (reduced to 1.28*H*D*Ge because that is the max allowable per E.6.2.1.1) wt = Shell and roof weight acting at base of shell = (Wrs + Ws)/(PI*D) = (1.375 + 8.861)/(PI*13,123) = 248,2832 lbf/ft wint = Uplift Load due to design pressure acting at base of shell = 0,4*P*144*(PI*D^2/4)/(PI*D) = 0,4*0*144*(PI*13,123^2/4)/(PI*13,123) = 0 lbf/ft E.6.2.1.1.1 Anchorage Ratio J = Mrw/(D^2*[wt*(1-0,4*Av)+wa-0,4*wint]) = 9.584/(13,123^2*[248,2832*(1-0,4*0,01)+366-0,4*0]) = 0,0907 The tank is self anchored. E.6.2.2 Maximum Longitudinal Shell-Membrane Compressive Stress E.6.2.2.1 Shell Compression in Self-Anchored Tanks ts1 = Thickness of bottom shell course minus C.A. = 0,1875 in. SigC = Maximum longitudinal shell compression stress = (Wt*(1+0,4*Av) + 1,273*Mrw/D^2)/(12*ts1) = (248,2832*(1+0,4*0,01) + 1,273*9.584/13,123^2)/(12*0,1875) = 142 psi

Page 28: Tk-2 Etil Hexanol

Page 28 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

E.6.2.2.3 Allowable Longitudinal Shell-Membrane Compression Stress Fty = Minimum specified yield strength of shell course = 24.700 psi G*H*D^2/ts1^2 = 107.112 Fc = Allowable longitudinal shell-membrane compressive stress = 10^6*ts1/(2,5*D) + 600*(G*H)^0,5 = 10^6*0,1875/(2,5*13,123) + 600*(0,833*26,25)^0,5 = 8.521 psi Shell Membrane Compressive Stress OK E.6.2.4 Hoop Stresses Shell Summary SigT+ Sd*1.333 Fy*.9*E Allowable t-Min Shell OK Membrane Stress Shell #1 4730 29663, 18896, 18896, 0,0469 Yes Shell #2 3830 29663, 18896, 18896, 0,038 Yes Shell #3 2925 29663, 18896, 18896, 0,029 Yes Shell #4 2026 29663, 18896, 18896, 0,0201 Yes Shell #5 1126 29663, 18896, 18896, 0,0112 Yes Shell #6 232 29663, 18896, 18896, 0,0023 Yes Shell Membrane Hoop Stress OK? Verdadero Tank Adequate with No Anchors? Verdadero E.6.2.1.2 Mechanically-Anchored Number of Anchors = 6 Max Spacing = 10 ft Actual Spacing = 6,87 ft Minimum # Anchors = 4 Wab = Design Uplift Load on Anchors per unit circumferential length = (1,273*Mrw)/D^2 - wt*(1-0,4*Av) + wint = (1,273*9.584)/13,123^2 - 248,2832*(1-0,4*0,01) + 0 = -176 lbf/ft Pab = Anchor seismic design load = Wab*PI*D/Na = -176*PI*13,123/6 = -1.209 lbf Pa = Anchorage chair design load = 3 * Pab = 3*-1.209 = -3.627 lbf E.6.2.2.2 Shell Compression in Mechanically-Anchored Tanks SigC_anchored = Maximum longitudinal shell compression stress = (Wt*(1+0,4*Av) + 1,273*Mrw/D^2)/(12*ts1) = (248,2832*(1+0,4*0,01) + 1,273*9.584/13,123^2)/(12*0,1875) = 142 psi Fc = longitudinal shell-membrane compression stress = 8.521 psi Shell Membrane Compressive Stress OK Shell Membrane Hoop Stress OK? Verdadero Tank Adequate with Anchors? Verdadero

Page 29: Tk-2 Etil Hexanol

Page 29 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

E.7 Detailing Requirements E.7.1 Anchorage SUG = III Sds = 0 decimal %g E.7.1.1 Self Anchored Annular plates not required per this section. E.7.6 Sliding Resistance mu = 0,4 Friction coefficient V = 703 lbf Vs = Resistance to sliding = mu*(Ws + Wr + Wf + Wp)*(1 - 0,4*Av) = 0,4*(8.861+1.375+1.523+184.598)*(1-0,4*0,01) = 78.229 lbf E.7.7 Local Shear Transfer Vmax = 2*V/(PI*D) = 2*703/(PI*13,123) = 34,1038 lbf/ft

Page 30: Tk-2 Etil Hexanol

Page 30 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

ANCHOR BOLT DESIGN Bolt Material : A-479 Type 304 Sy = 30.000 PSI < Uplift Load Cases, per API-650 Table 5-21b > D (tank OD) = 13,123 ft P (design pressure) = 0 INCHES H2O Pt (test pressure per F.4.4) = P = 0 INCHES H2O Pf (failure pressure per F.6) = N.A. (see Uplift Case 3 below) t_h (roof plate thickness) = 0,1875 in. Mw (Wind Moment) = 108.007 ft-lbf Mrw (Seismic Ringwall Moment) = 9.584 ft-lbf W1 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. other than Roof Plate Acting on Shell) W2 (Dead Load of Shell minus C.A. and Any Dead Load minus C.A. including Roof Plate minus C.A. Acting on Shell) W3 (Dead Load of New Shell and Any Dead Load other than Roof Plate Acting on Shell) For Tank with Self Supported Roof, W1 = Corroded Shell + Shell Insulation = 8.683 + 0 = 8.683 lbf W2 = Corroded Shell + Shell Insulation + Corroded Roof Plates + Roof Dead Load = 8.683 + 0 + 1.101 + 19.746 * -0,0025/144 = 9.784 lbf W3 = New Shell + Shell Insulation = 8.683 + 0 = 8.683 lbf Uplift Case 1: Design Pressure Only U = [(P - 8*t_h) * D^2 * 4,08] - W1 U = [(0 - 8*0,1875) * 13,123^2 * 4,08] - 8.683 = -9.737 lbf bt = U / N = -1.623 lbf Sd = 15.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero. Uplift Case 2: Test Pressure Only U = [(Pt - 8*t_h) * D^2 * 4,08] - W1 U = [(0 - 8*0,1875) * 13,123^2 * 4,08] - 8.683 = -9.737 lbf bt = U / N = -1.623 lbf Sd = 20.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

Page 31: Tk-2 Etil Hexanol

Page 31 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

Uplift Case 3: Failure Pressure Only Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A. Uplift Case 4: Wind Load Only PWR = Wind_Uplift/5,208 = 30/5,208 = 5,7604 IN. H2O PWS = vF * 18 = 1 * 18 = 18 lbf/ft^2 MWH = PWS*(D+t_ins/6)*H^2/2 = 18*(13,123+0/6)*26,25^2/2 = 81.383 ft-lbf U = PWR * D^2 * 4,08 + [4 * MWH/D] - W2 = 5,7604*13,123^2*4,08+[4*81.383/13,123]-9.784 = 19.070 lbf bt = U / N = 3.178 lbf Sd = 0,8 * 30.000 = 24.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 3.178/24.000 = 0,132 in^2 Uplift Case 5: Seismic Load Only U = [4 * Mrw / D] - W2*(1-0,4*Av) U = [4 * 9.584 / 13,123] - 9.784*(1-0,4*0,01) = -6.823 lbf bt = U / N = -1.137 lbf Sd = 0,8 * 30.000 = 24.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero. Uplift Case 6: Design Pressure + Wind Load U = [(0,4*P + PWR - 8*t_h) * D^2 * 4,08] + [4 * MWH / D] - W1 = [(0,4*0+5,7604-8*0,1875)*13,123^2 * 4,08]+[4*81.383 / « 13,123] - 8.683 = 19.117 lbf bt = U / N = 3.186 lbf Sd = 20.000 = 20.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = bt/Sd = 3.186/20.000 = 0,159 in^2 Uplift Case 7: Design Pressure + Seismic Load U = [(0,4*P - 8*t_h)*D^2 * 4,08] + [4*Mrw/D] - W1*(1-0,4*Av) = -6.781 lbf bt = U / N = -1.130 lbf Sd = 0,8 * 30.000 = 24.000 PSI A_s_r = Bolt Root Area Req'd A_s_r = N.A., since Load per Bolt is zero.

Page 32: Tk-2 Etil Hexanol

Page 32 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

Uplift Case 8: Frangibility Pressure Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A. < ANCHOR BOLT SUMMARY > Bolt Root Area Req'd = 0,159 in^2 d = Bolt Diameter = 1 in. n = Threads per inch = 8 A_s = Actual Bolt Root Area = 0,7854 * (d - 1,3 / n)^2 = 0,7854 * (1 - 1,3 / 8)^2 = 0,5509 in^2 Exclusive of Corrosion, Bolt Diameter Req'd = 0,558 in. (per ANSI B1.1) Actual Bolt Diameter = 1,000 in. Bolt Diameter Meets Requirements. <ANCHORAGE REQUIREMENTS> Wind or Uplift calculations require anchorage, Minimum # Anchor Bolts = 6 per API-650 5.12.3 Actual # Anchor Bolts = 6 Anchorage Meets Spacing Requirements.

Page 33: Tk-2 Etil Hexanol

Page 33 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

ANCHOR CHAIR DESIGN (from AISI 'Steel Plate Engr Data' Dec. 92, Vol. 2, Part VII) Entered Parameters Chair Material: A-240 Type 304 Top Plate Type: CIRC. RING Chair Style: VERT. TAPERED a : Top Plate Width = N.A. b : Top Plate Length = 2,708 in. k : Verical Plate Width = 2,000 in. m : Bottom Plate Thickness = 0,2500 in. t : Shell Course + Repad Thickness = 0,3750 in. r : Nominal Radius to Tank Centerline = 78,738 in. Design Load per Bolt: P = 4,78 KIPS (1.5 * Maximum from Uplift « Cases) d = Bolt Diameter = 1 in. n = Threads per unit length = 8 TPI A_s = Computed Bolt Root Area = 0.7854 * (d - 1.3 / n)^2 = 0.7854 * (1 - 1.3 / 8)^2 = 0,551 in^2 Bolt Yield Load = A*Sy/1000 (KIPS) = 0,551*24.700/1000 = 13,6097 KIPS Seismic Design Bolt Load = Pa = 3*Pab = -3,627 KIPS Anchor Chairs will be designed to withstand Design Load per Bolt. Anchor Chair Design Load, P = 4,779 KIPS For Anchor Chair material: A-240 Type 304 Per API-650 Table 5-2b, Sd_Chair = 20 KSI Since bottom t <= 3/8 in., Seismic Zone is a Factor, and Wind Speed is >= 100 mph, h_min is 12 in. For Continuous Top Plate Ring, since a = N.A., Max. Chair Height Recommended : N.A. h = 12 in. e_min = 0,886 * d + 0,572 = 1,458 in. e = e_min = 1,458 in. g_min = d + 1 = 2 in. g = g_min = 2 in.

Page 34: Tk-2 Etil Hexanol

Page 34 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

f_min = d/2 + 0,125 = 0,625 in. f = f_min = 0,625 in. c_min = SQRT[P / Sd_Chair / f * (0,375 * g - 0,22 * d)] = SQRT[4,779 / 20 / 0,625 * (0,375 * 2 - 0,22 * 1)] = 0,451 in. c >= c_min = 0,5 in. j_min = MAX(0,5, [0,04 * (h - c)]) = MAX(0,5, [0,04 * (12,000 - 0,500)]) = 0,5 in. j = j_min = 0,5 in. b_min = e_min + d + 1/4 = 1,458 + 1 + 1/4 = 2,708 in. <Stress due to Top Plate Thickness> S_actual_TopPlate = P / f / c^2 * (0,375 * g - 0,22 * d) = 4,78/0,625/0,5^2 * (0,375 * 2 - 0,22 * 1) = 16,21 KSI <Repad> ClearX = Minimum Clearance of Repad from Anchor Chair = MAX(2, 6*Repad_t, 6*t_Shell_1) = MAX(2, 6*0,1875, 6*0,1875) = 2 in. Minimum Height = h + ClearX = 14 in. Minimum Width = a + 2*ClearX = 4 in. <Shell Stress due to Chair Height> (For Continuous Top Plate Ring) S_actual_ChairHeight = F1 / F2 where F1 = P * e / h and F2 = (b * c + c * t + 32 * t^2) yields F1 = 4,779 * 1,458 / 12, = 0,5806 yields F2 = (2,708 * 0,5 + 0,5 * 0,375 + 32 * 0,375^2) = 6,0415 yields S_actual_ChairHeight = 0,5806 / 6,0415 = 0,0961 Maximum Recommended Stress is 25 KSI for the Shell (per API-650 E.6.2.1.2) Sd_ChairHeight = 25 KSI < ANCHOR CHAIR SUMMARY >

Page 35: Tk-2 Etil Hexanol

Page 35 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

S_actual_TopPlate Meets Design Calculations (within 105% of Sd_Chair) S_actual_TopPlate/Sd_Chair = 16,21/29,5965 = 54,8% S_actual_ChairHeight Meets Design Calculations (within 105% of Sd_ChairHeight) S_actual_ChairHeight/Sd_ChairHeight = 0,0961/25 = 0,4%

Page 36: Tk-2 Etil Hexanol

Page 36 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

NORMAL & EMERGENCY VENTING (API-2000) Contents : 2 ETIL HEXANOL Tank OD = 13,123 ft Tank Shell Height = 26,25 ft Tank Design Temp. = 212 °F <INBREATHING - VACUUM RELIEF> Q1 (Maximum Movement Out of Tank) (per Section 4.3.2.1.1) = 5,6 CFH Air per 42 GPH outflow = (5,6/42)*120*60 = 960 CFH, or 16 CFM free air Q2 (Thermal Inbreathing) (per Section 4.3.2.1.2) = 667,381 CFH, or 11, CFM free air (Table 2A Column 2) Total Vacuum Relief Required = Q1 + Q2 = 1.627 CFH, or 27, CFM <OUTBREATHING - PRESSURE RELIEF> Q1 (Maximum Movement Into Tank) (per Section 4.3.2.2.1) = 6 CFH Air per 42 GPH inflow = (6/42)*120*60 = 1.029 CFH, or 17, CFM free air Q2 (Thermal Outbreathing) (per Section 4.3.2.2.2) = 400 CFH, or 7 CFM free air (Table 2A Column 3) Total Pressure Relief Required = Q1 + Q2 = 1.429 CFH, or 24, CFM <EMERGENCY VENTING> W = 26,25 ft. For flat bottom tanks, only shell is considered for Wetted Area. Wetted Area = 1.082 ft^2 (Section 4.3.3.2.2, Design Pressure <= 1 PSI) Qe = 537.530 CFH, or 8959, CFM free air (Table 3A Column 2) x1 = 0,5 (Environment Factor for Drainage) x2 = 1 (Environment Factor for Insulation) Qe = x1*x2*Qe = (0,5)(1)(537.530) = 268.765 CFH

oguerra
Resaltado
Page 37: Tk-2 Etil Hexanol

Page 37 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

CAPACITIES and WEIGHTS Maximum Capacity (to upper TL) : 26.434 gal Design Capacity (to Max Liquid Level) : 26.433 gal Minimum Capacity (to Min Liquid Level) : 1.007 gal NetWorking Capacity (Design - Min.) : 25.426 gal New Condition Corroded ----------------------------------------------------------- Shell 8.683 lbf 8.683 lbf Roof Plates 1.101 lbf 1.101 lbf Bottom 1.523 lbf 1.523 lbf Stiffeners 178 lbf 178 lbf Nozzle Wgt 0 lbf 0 lbf Misc Roof Wgt 0 lbf 0 lbf Misc Shell Wgt 0 lbf 0 lbf Insulation 0 lbf 0 lbf ----------------------------------------------------------- Total 11.485 lbf 11.485 lbf Weight of Tank, Empty : 11.485 lbf Weight of Tank, Full of Product (SG=0,833): 195.247 lbf Weight of Tank, Full of Water : 232.087 lbf Net Working Weight, Full of Product : 188.239 lbf Net Working Weight, Full of Water : 223.675 lbf Foundation Area Req'd : 135 ft^2 Foundation Loading, Empty : 85,07 lbf/ft^2 Foundation Loading, Full of Product (SG=0,833) : 1.446 lbf/ft^2 Foundation Loading, Full of Water : 1.719 lbf/ft^2 SURFACE AREAS Roof 137 ft^2 Shell 1.082 ft^2 Bottom 135 ft^2 Wind Moment 108.007 ft-lbf Seismic Moment 10.635 ft-lbf MISCELLANEOUS ATTACHED ROOF ITEMS MISCELLANEOUS ATTACHED SHELL ITEMS

Page 38: Tk-2 Etil Hexanol

Page 38 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

MAWP & MAWV SUMMARY FOR TK-2 ETIL HEXANOL MAXIMUM CALCULATED INTERNAL PRESSURE MAWP = 2,5 PSI or 69,28 IN. H2O (per API-650 App. F.1.3 & F.7) MAWP = Maximum Calculated Internal Pressure (due to shell) = 2,5 PSI or 69,28 IN. H2O MAWP = Maximum Calculated Internal Pressure (due to roof) = 2,5 PSI or 69,28 IN. H2O TANK MAWP** = 2,5 PSI or 69,28 IN. H2O

Page 39: Tk-2 Etil Hexanol

Page 39 of 39O.G. Ingenieria Ltda . - TK-2 ETIL HEXANOLTANK REPORT: Printed - 02/12/2013 18:57:58

* This MAWP calculation assumes a minimum liquid level of 1 FT. in « the tank. MAXIMUM CALCULATED EXTERNAL PRESSURE MAWV = -1 PSI or -27,71 IN. H2O (per API-650 V.1) MAWV = Maximum Calculated External Pressure (due to shell) = -0,4663 PSI or -12,92 IN. H2O MAWV = Maximum Calculated External Pressure (due to roof) = -0,151 PSI or -4,18 IN. H2O MAWV = Maximum Calculated External Pressure (due to bottom plate) = -0,6734 PSI or -18,66 IN. H2O TANK MAWV = -0,151 PSI or -4,18 IN. H2O