thermodynamics i chapter 4 first law of thermodynamics open...

33
Thermodynamics I Chapter 4 First Law of Thermodynamics Open Systems Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia

Upload: others

Post on 01-Aug-2020

17 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Thermodynamics IChapter 4

First Law of ThermodynamicsOpen Systems

Mohsin Mohd SiesFakulti Kejuruteraan Mekanikal, Universiti Teknologi Malaysia

Page 2: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

First Law of Thermodynamics(Motivation)

A system changes due to interaction with itssurroundings.Interaction study is possible due to conservation laws.Various forms of conservation laws are studied in thischapter in the form of balance equations.

Page 3: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

1ST LAW FOR OPEN SYSTEMS

Energy and Mass can enter/leave a systemDivided into two parts:

Conservation of Mass Principle

Conservation of Energy Principle1

Qout

Wout

Qin

Win

min

mout

CV

Page 4: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Mass Conservation (Mass Balance)

min

mout

mCV

Mass Balance:

∑∑ −=∆ outinCV mmm

Net changeof mass ofCV

Total of allmass entering

Total of allmass exiting

∑∑ −=dt

dm

dt

dm

dt

dm outinCV

Rate ofchange ofmass ofCV

Total of all massflow rates for allinlet channels

Total of all massflow rates for allexit channels

Page 5: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Mass flow rates and Speed for a channel

A

Vm

,,

s

AVm

Adt

ds

dt

dm

sAm

Vm

=

=

==

VAdt

ds

VsA

=

=

v

VV

v

AVAVm

====

For flow rates;

but

Thus;

Page 6: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Flow Work

For an amount of mass to cross a boundary, it needs aforce (work) to push it; called Flow Work , wflow

F

A

L

m, ρ, V

pvw

PV

LPA

LFW

dsFW

flow

flow

==

⋅=

⋅=

⋅= ∫

The force that pushes the fluid;

PAF =

Work that is involved;

Page 7: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Conservation of Energy for Open Systems

Energy can enter/leave an open system via

Heat, Work AND Mass Flow Entering/Leaving

Qout

Wout

Qin

Win

min

mout

ECV

outinCV EEWQE −+−=∆

Netenergychange ofCV

Net energytransfer byheat/work

Totalenergy ofenteringmass

Totalenergyofexitingmass

Page 8: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Energy of a Flowing Mass

An amount of mass possesses energy, E, ee = u + ke + pe

but a flowing mass also possesses flow work, so

the Energy for a flowing mass; eflow

eflow = u + ke + pe + wflow

= u + pv + ke + pe

but u + pv = h (enthalpy)

eflow = h + ke + pe (energy for a flowing mass)

Page 9: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Energy Balance for an Open Systemcan be written as;

outflowinflowCV EEWQE −+−=∆or;

∑∑ ++−+++−=++−+++−=

−+−=∆

outin

outin

flowflowCV

pekehpekehwq

pekehpekehwq

eewqeoutin

)()(

)()(

For eachinlet

For eachoutlet

Total of all workexcept flow work

Page 10: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

∑∑ ++−+++

−=∆+∆+∆

outin

CV

pekehpekeh

wqpekeu

)()(

)(

but;CVCV pekeue )( ∆+∆+∆=∆

so;

Page 11: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Energy Balance in other forms;

∑∑ ++−+++−=∆outin

CV PEKEHPEKEHWQE )()(

Rate form;

∑∑ ++−+++−=outin

CV pekehmpekehmWQdt

dE)()(

(general form of Energy Balance for anOpen System)

Page 12: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Steady Flow ProcessCriteria;

All system properties (intensive & extensive)do not change with timemcv= constant; ∆mCV= 0VCV= constant; ∆VCV= 0ECV= constant; ∆ECV= 0

Fluid properties at all inlet/exit channels do notchange with time (Values might be differentfor different channels)

Heat and work interactions do not change withtime

.),,,( etcAVm

Q= constantW= constant

Page 13: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Implication of Criterion 1(Mass)∆mCV= 0,From Mass Conservation;

222111

11

AVAV

mm

AVAV

v

AVAVm

mm

mmm

outin

out

k

oooo

in

n

iiii

outin

CVoutin

=

=

=

==

=∴

∆=−

∑∑

∑∑∑∑

==

Recall that

so

Page 14: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

for 1 inlet/ 1 exit;

111 ,, AVmin

222 ,, AVmout

Implication of Criterion 1 (Mass) ctd.

Page 15: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Implication of Criterion 1

(Volume)∆VCV= 0,

∴ WB = 0(boundary work = 0 )

∆ECV= Q – W + ΣEflow(in) - ΣEflow(out)

W = Welectrical + Wshaft + Wboundary+ Wflow+ Wetc.

0 in h

W not necessarily 0, only WB is 0

Page 16: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Implication of Criterion 1(Energy)

∆ECV= 0,From Energy Conservation;

∑∑ ++−+++−=outin

CV pekehmpekehmWQdt

dE)()(

= 0

Rearrange to get Steady Flow Energy Equation

(SSSF)

∑∑ ++−++=−inout

pekehmpekehmWQ )()(

Page 17: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

outouthm outV

inmininVh inW

outW

inQ

outQdt

dECV

zin

zout

∑∑ ++−++=−inout

gzV

hmgzV

hmWQ )2

()2

(22

For each exitchannel

For each inletchannel

SSSF

Page 18: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

SSSF energy equation for 1 inlet / 1 exit

1 2Mass

outin mm = or 21 mm =Energy

)2

()2

( 1

21

112

22

22 gzV

hmgzV

hmWQ ++−++=−

mmm == 21

pekehwq

zzgVV

hhm

W

m

Q

zzgVV

hhmWQ

∆+∆+∆=−

−+

−+−=−

−+

−+−=−

)(2

)(

)(2

)(

12

21

22

12

12

21

22

12

( ∆ = exit – inlet )( 1 inlet / 1 exit )

Page 19: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

SSSF energy equation for multiple channels butneglecting ∆ke, ∆pe

∑∑ −=− ininoutout hmhmWQ

∑∑ = outin mm

Page 20: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

SSSF Applications

Nozzle & DiffuserTurbine & compressorThrottling valve @ porous plugMixing/Separation ChamberHeat exchanger(boiler, condenser, etc)

(a)

(b)

2 categories;

1 inlet / 1 outletMultiple inlet / outlet

Analysis starts from the general SSSF energyequation;

∑∑ ++−++=−inout

pekehmpekehmWQ )()(

For devices which are open systems

Page 21: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Nozzle & Diffuser ( ∆KE ≠ 0 ) (To change fluid velocity)

Page 22: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Nozzle & Diffuser ( ∆KE ≠ 0 ) (To change fluid velocity)

1

1

1

1

AVpTm

2

2

2

2

AVpTm

1

1

1

1

AVpTm

2

2

2

2

AVpTm

Nozzle Diffuser↑V

↓V

AssumptionsConst. volume → wB = 0No other workSmall difference in height → ∆pe = 0

wCV = 0

∑∑ ++−++=−inout

pekehmpekehmWQ )()(

pekehwq ∆+∆+∆=−1 inlet / 1 outlet

kehq ∆+∆=

Page 23: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Turbine ( wCV ≠ 0 )

Page 24: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Turbine & Compressors ( wCV ≠ 0 )

Page 25: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Compressors (Reciprocating) ( wCV ≠ 0 )

Page 26: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Turbine & Compressor ( wCV ≠ 0 )

1

1Tpm

2

2Tpm

outW

1

1Tpm

2

2Tpm

inW

Turbineproduces work (W +ve)from expansion offluid (∆P -ve)

Compressorincreases pressure (∆P+ve) using work supplied(W –ve)

AssumptionsConst. volume → wB = 0Involves other workSmall difference in height → ∆pe = 0

wCV ≠ 0

Page 27: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Turbine & Compressor ( wCV ≠ 0 )

1

1Tpm

2

2Tpm

outW

1

1Tpm

2

2Tpm

inW

TurbineCompressor

AssumptionsConst. volume → wB = 0Involves other workSmall difference in height → ∆pe = 0

wCV ≠ 0

∑∑ ++−++=−inout

pekehmpekehmWQ )()(

1 inlet / 1 outlet

)( pekehmWQ ∆+∆+∆=−

Commonly insulated (q=0), and also∆ke ≈ 0 (since ∆ke << ∆h ) 12 hhh

m

W −=∆=−

Page 28: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Throttling valve/Porous plug (const.enthalpy, h=c)

To reduce pressure without involving work

Page 29: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Throttling valve/Porous plug (const.enthalpy, h=c)

To reduce pressure without involving work

1

1Tpm

2

2Tpm

1

1Tpm

2

2Tpm

AssumptionsW = 0∆ke = 0 , ∆pe = 0Q ≈ 0 (system too small)

∑∑ ++−++=−inout

pekehmpekehmWQ )()(

1 inlet / 1 outlet pekehwq ∆+∆+∆=−

21

0

hh

h

==∆

For throttling valves

Page 30: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Mixing/Separation Chamber / T junction pipe

11

11,

,,hTpm

22

22,

,,hTpm

33

33

,

,,

hT

pm

33

33,

,,hTpm

22

22,

,,hTpm

11

11,

,,hTpm

AssumptionsWB = 0Same pressure at all channelsOther assumptions made accordingly

∑∑ ++−++=−inout

pekehmpekehmWQ )()(

∑∑ = outin mm

also

Page 31: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Heat Exchangers

Page 32: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

Heat Exchangers

1 2

34 B Q

AAm

Bm

Assumptions (System encompassesthe whole heat exchanger)

No work involved, W = 0Insulated, Q = 0∆ke = 0 , ∆pe = 0

∑∑ ++−++=−inout

pekehmpekehmWQ )()(

outoutinin hmhm ∑∑ =

∑∑ = outin mm

also

)()( 3421

4231

hhmhhm

hmhmhmhm

BA

BABA

−=−+=+

Page 33: Thermodynamics I Chapter 4 First Law of Thermodynamics Open …mohsin/sme1413/01.english/chap04/04.1st.law.pdf · Mohsin Mohd Sies Fakulti Kejuruteraan Mekanikal, Universiti Teknologi

General device (Black box analysis)

5

4

3

2

1

∑Q ∑W

Assumptions made according to situation...

∑∑ ++−++=−inout

pekehmpekehmWQ )()(

∑∑ = outin mm

also