thermodynamic properties of ammonia by molecular · pdf fileprof. dr.-ing. habil. jadran...

Download Thermodynamic properties of ammonia by molecular · PDF filePROF. DR.-ING. HABIL. JADRAN VRABEC Thermodynamic properties of ammonia by molecular simulation Jadran Vrabec, Bernhard

If you can't read please download the document

Upload: lyhanh

Post on 06-Feb-2018

229 views

Category:

Documents


2 download

TRANSCRIPT

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Thermodynamic properties of ammonia

    by molecular simulation

    Jadran Vrabec, Bernhard Eckl

    Thermodynamics and Energy Technology

    University of Paderborn, Germany

    Gabriela Guevara-Carrin, Cemal Engin, Thorsten Merker, Hans Hasse

    Laboratory of Engineering Thermodynamics

    University of Kaiserslautern, Germany

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    (fs) 10-15

    (ps) 10-12

    (ns) 10-9

    (s) 10-6

    (ms) 10-3

    (s) 100

    10-10 10-9 10-8 10-7 10-6 10-5 10-4

    (nm) (m)

    time / s

    Meso-scale

    methods

    Continuum methods

    Semi-empirical

    QM

    Ab initio

    QM

    Force field

    methods

    length / m

    Overview on numerical methods

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    N ~ 1023 N ~ 103 - 109

    cij

    ri j

    NU u( ) dV u( )

    2

    r r

    r rC

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Molecular dynamics (MD)

    deterministic system

    static and dynamic

    properties

    straightforwardly applicable

    to non-equilibria

    Molecular simulation

    Monte-Carlo (MC)

    statistical approach

    energetic acceptance criteria

    only static properties

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Thermodynamics with molecular approach

    Contain all thermodynamic properties

    Static: thermal, caloric, entropic

    Dynamic: viscosity, diffusion, thermal conductivity,

    Surface properties, e.g. surface tension

    Mixture properties well accessible

    Strong predictive and extrapolative capabilities

    Technical accuracies achievable

    Models of intermolecular interactions

    Parameters can physically be interpreted

    in geometries, e.g. adsorption, zeolites,

    in dynamic processes, e.g. condensation, flow,

    Directly applicable to investigate fluid properties

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Geometry

    Bond lengths and angles

    Electrostatics

    Magnitude of point charges

    Molecular models for intermolecular

    interactions

    +q

    +q +q

    -3q

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Geometry

    Bond lengths and angles

    Electrostatics

    Magnitude of point charges

    Dispersion and repulsion

    Parameters e.g. of

    Lennard-Jones sites

    Potentially, a large

    number of parameters

    Molecular models for intermolecular

    interactions

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Geometry

    Hartree-Fock with small basis set (e.g. 6-31G) or DFT methods

    Electrostatics from electron density distribution

    Mller-Plesset2 with medium, polarizable basis set

    (e.g. 6-311+G**)

    Embedded in a dielectric cavity (COSMO) to account

    for a liquid (dense) phase

    Dispersion and repulsion

    At least dimers have to be regarded

    CCSD(T) or Mller-Plesset2 with large basis set

    (TZV or QZV)

    Large computational effort due to large basis set

    and accurate electron correlation

    Better to be optimized to VLE data

    Molecular properties from quantum chemistry

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Temperature [K]

    200 250 300 350 400

    Pre

    ssure

    [M

    Pa]

    0

    2

    4

    6

    8

    10

    12

    Adjustment to experimental VLE data

    2 Lennard-Jones parameters optimized to

    saturated liquid density and vapor pressure

    Optimization result:

    correlations of exp. data

    simulation

    p 1.5%

    temperature / K Density [mol/l]

    0 10 20 30 40

    Tem

    pe

    ratu

    re [

    K]

    200

    250

    300

    350

    400

    density / mol/l

    tem

    pera

    ure

    / K

    0.4%

    pre

    ssure

    / M

    Pa 0.7%

    1.6%

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Site x y z /kB q

    K e

    N 0 0 0.0757 3.376 182.9 0.9993

    H(1) 0.9347 0 0.3164 0.3331

    H(2) 0.4673 0.8095 0.3164 0.3331

    H(3) 0.4673 0.8095 0.3164 0.3331

    Parameters of the ammonia model

    Five parameters

    1 angle, 1 length, 1 charge magnitude

    2 Lennard-Jones parameters

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Molecular dynamics simulation (I)

    Gas @

    393 K and 0.1 MPa

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Molecular dynamics simulation (II)

    Liquid @

    323 K and 3 MPa

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Prediction of second virial coefficient

    and enthalpy of vaporization

    Temperature [K]

    200 250 300 350 400

    Heat

    of

    va

    porization [

    kJ/m

    ol]

    0

    5

    10

    15

    20

    25

    30

    temperature / K

    enth

    alp

    y o

    f vaporization /

    kJ/m

    ol

    2n

    d v

    iria

    l coeffic

    ient

    / l/m

    ol

    temperature / K 200 300 400 500 600 700

    0.0 -0.2 -0.4 -0.6 -0.8 -1.0

    correlations of exp. data

    simulation

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Prediction of density and enthalpy

    In the homogeneous region

    T / K300 400 500 600 700

    p /

    MP

    a

    0

    20

    40

    200

    400

    600

    2 %

    5 %

    1 %

    temperature / K

    pre

    ssure

    / M

    Pa

    T / K300 400 500 600 700

    p /

    MP

    a0

    20

    40

    200

    400

    600

    2 %

    5 %

    1 %

    density enthalpy

    temperature / K

    pre

    ssure

    / M

    Pa

    Deviations with respect to the equation of state by

    Tillner-Roth, Harms-Watzenberg, Baehr: DKV-Tagungsbericht 20, 167 (1993).

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    T / K

    200 250 300 350 400 450 500

    / 1

    0-4

    Pa

    s

    0

    2

    4

    6

    8

    Prediction of shear viscosity and

    thermal conductivity

    in the homogeneous region

    T / K

    200 250 300 350 400 450 500

    / W

    m-1

    K-1

    0.00

    0.05

    0.10

    10 MPa 100 MPa

    200 MPa 10 MPa

    100 MPa

    200 MPa

    correlations of exp. data

    simulation

    temperature / K

    sh

    ear

    vis

    cosity /

    10

    -4 P

    a s

    temperature / K

    Th

    erm

    al conductivity /

    W/m

    K

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Summary

    Molecular force fields are comprehensive models for

    thermodynamic properties with a strong predictive power

    Mixture properties are well accessible

    Molecular simulation is a versatile tool to investigate the

    behavior of fluids, which is about to be transferred to industry

    Using parallel simulation codes and appropriate computing

    equipment, acceptable response times may be achieved

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    ms2: molecular simulation tool

    Molecular dynamics / Monte Carlo

    Arbitrary mixtures of rigid molecules

    Several ensembles

    Grand Equilibrium method for VLE calculations

    Many static properties (thermal, caloric, entropic)

    Transport properties (Green-Kubo)

    Consistent FORTRAN90 code

    Reasonably object oriented

    Distributed memory parallelization by MPI

    All relevant loops vectorized

    Interface to 2,5D (OpenGL) and 3D Virtual Reality visualization

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Phase equilibrium from Grand Equilibrium method @ ms2

    l l li i 0 i 0p p v p p

    Pseudo grand canonical simulation

    (Specification of ,V, T) li p

    Specs: T, x

    Result: p, y

    Liquid Vapor

    Simulation:

    Chemical potentials

    Partial molar volumes

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Assumption: pairwise additivity

    Unlike electrostatics straightforward

    Unlike dispersion a priori not known

    A A

    B B

    A, A

    B, B

    AB, AB

    Unlike

    Lennard-Jones parameters

    AB A B=

    AB A B+= /2

    Transferability to mixtures

    Prof. Dr.-Ing. Jadran Vrabec

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Binary VLE of C2H6 + R22

    + experiment

    PR-EOS, kij adjusted

    simulation, adjusted

    simulation, = 1

    simulation, = 0,95

    to 1,05

  • PROF. DR.-ING. HABIL. JADRAN VRABEC

    Vapor-liquid equilibria of binary mixtures

    Strategy applied to >350 binary mixtures regarding different types