thermo-optical vacuum testing of irnss lra …...‡ indian space research organisation - laboratory...

43
Thermo-optical vacuum testing of IRNSS LRA qualification model L. Porcelli*†, S. Dell’Agnello†, R. Venkateswaran‡, P. Chakraborty‡, C. V. Ramana Reddy‡, K. V. Sriram‡, A. Boni†, C. Cantone†, E. Ciocci†, S. Contessa†, G. Delle Monache†, N. Intaglietta†, L. Salvatori†, C. Lops†, M. Martini†, G. Patrizi†, M. Tibuzzi†, C. Mondaini†, P. Tuscano†, M. Maiello† † Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Rome, Italy. ‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate, Bangalore - 560 058, India. * Corresponding author: [email protected] 2015 ILRS Technical Workshop 1 L. Porcelli for The SCF_Lab Group INFNISRO Contract No. LEAO 2011 000 261 0101FE

Upload: others

Post on 29-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

Thermo-optical vacuum testing of IRNSS LRA qualification model  

L. Porcelli*†, S. Dell’Agnello†, R. Venkateswaran‡, P. Chakraborty‡, C. V. Ramana Reddy‡, K. V. Sriram‡, A. Boni†, C. Cantone†, E. Ciocci†, S. Contessa†, G. Delle Monache†, N. Intaglietta†, L. Salvatori†, C. Lops†, M. Martini†, G. Patrizi†, M. Tibuzzi†, C. Mondaini†, P. Tuscano†, M. Maiello† † Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Rome, Italy. ‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate, Bangalore - 560 058, India. * Corresponding author: [email protected]

2015  ILRS  Technical  Workshop   1  L.  Porcelli  for  The  SCF_Lab  Group  

INFN-­‐ISRO  Contract  No.  LEAO  2011  000  261  0101FE  

Page 2: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

Introduc*on  

2  2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 3: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

Introduc*on  

3  2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 4: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

LRA  in-­‐air  and  isothermal  FFDP  measurements  

4  

Test  structure:  •  Measurements  in  Air  and  isothermal  condiMon  of  all  the  CCRRs  of  the  IRNSS  

LRA.  •  Three  different  inclinaMon  angles:  with  array  in  front  of  the  laser  window,  

namely  0  degrees,  and  ±9  degrees  laser  incidence  (posiMve  =  clockwise  rotaMon  as  seen  from  above).  

•  We  acquire  the  CCRR  energy  distribuMon  of  both  the  polarizaMon  components,  horizontal  and  verMcal.  

Analysis:  •  Analysis  of  raw  opMcal  measured  data  with  a  dedicated  MATLAB  program.  •  For  each  tested  CCRR  and  laser  incidence  angle  the  program  computes:  

−  The  Field  DiffracMon  Pa_ern  (FFDP)  in  OpMcal  Cross  SecMon  (OCS)  unit.  −  OCS  intensity  distribuMon  versus  velocity  aberraMon.  −  OCS  intensity  distribuMon  in  annulus  at  18  μrad  velocity  aberraMon.  −  Average  OCS  intensity  at  18  μrad  velocity  aberraMon  a  total  CCRR  FFDP.  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 5: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

LRA  in-­‐air  and  isothermal  FFDP  measurements  

5  

0°  Laser  incidence  

FFDP  and  the  intensity  versus  VA  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 6: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

LRA  in-­‐air  and  isothermal  FFDP  measurements  

6  

+9°  Laser  incidence  

FFDP  and  the  intensity  versus  VA  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 7: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

LRA  in-­‐air  and  isothermal  FFDP  measurements  

7  

-­‐9°  Laser  incidence  

FFDP  and  the  intensity  versus  VA  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 8: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

LRA  in-­‐air  and  isothermal  FFDP  measurements  

8  

0°  Laser  incidence  

Array  intensity:  118.7  x  106  m2  

We  computed  the  intensity  along  a  circumference  at  18  μrad  velocity  aberraMon  angle.  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 9: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

LRA  in-­‐air  and  isothermal  FFDP  measurements  

9  

+9°  Laser  incidence  

Array  intensity:  82.6  x  106  m2  

We  computed  the  intensity  along  a  circumference  at  18  μrad  velocity  aberraMon  angle.  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 10: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

LRA  in-­‐air  and  isothermal  FFDP  measurements  

10  

-­‐9°  Laser  incidence  

Array  intensity:  76.6  x  106  m2  

We  computed  the  intensity  along  a  circumference  at  18  μrad  velocity  aberraMon  angle.  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 11: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

11  

LRA  in-­‐air  and  isothermal  FFDP  measurements  

Average  intensity  at  18μrad  for  0°,  +9°,  -­‐9°  inclinaMon  angle  together,  using  the  values    The  error  bars  (20%  of  the  relaMve  intensity  value),  take  into  account  the  opMcal  circuit  aberraMons.  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 12: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  -­‐85°C  

12  

Test  structure:  •  FFDP  measurements  of  all   the  CCRRs  of   the   IRNSS  LRA  done  at   -­‐85°C   in  space  condiMons  

without  Sun  Simulator.  •  Measurements  on  the  40  CCRRs  have  been  repeated  for  three  different  inclinaMon  angles:  

with  array  in  front  of  the  laser  window,  namely  0  degrees,  and  ±9  degrees  laser  incidence  (same  sign  convenMon  as  previously  stated).  

•  We   set   up   the   starMng   condiMon   defined   in   [AD-­‐2]:   array   was   kept   in   the   space  environment   of   the   SCF   with   the   temperature   of   the   plate   kept   at   -­‐85°C.   As   the  temperatures  of  the  different  parts  reached  a  steady  state  we  started  the  measurement.  

•  We  acquire  the  CCRR  energy  distribuMon  of  both  the  polarizaMon  components,  horizontal  and  verMcal.  

Analysis:  •  Analysis  of  raw  opMcal  measured  data  with  a  dedicated  MATLAB  program.  •  For  each  tested  CCRR  and  laser  incidence  angle  the  program  computes:  

−  The  Field  DiffracMon  Pa_ern  (FFDP)  in  OpMcal  Cross  SecMon  (OCS)  unit.  −  OCS  intensity  distribuMon  versus  velocity  aberraMon.  −  OCS  intensity  distribuMon  in  annulus  at  18  μrad  velocity  aberraMon.  −  Average  OCS  intensity  at  18  μrad  velocity  aberraMon  a  total  CCRR  FFDP.  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 13: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

13  

0°  Laser  incidence  

FFDP  and  the  intensity  versus  VA.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  -­‐85°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 14: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

14  

+9°  Laser  incidence  

FFDP  and  the  intensity  versus  VA.  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  -­‐85°C  

Page 15: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

15  

-­‐9°  Laser  incidence  

FFDP  and  the  intensity  versus  VA.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  -­‐85°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 16: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

16  

0°  Laser  incidence  We  computed  the  intensity  along  a  circumference  at  18  μrad  velocity  aberraMon  angle.  

Array  intensity:  132.4  x  106  m2  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  -­‐85°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 17: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

17  

+9°  Laser  incidence  We  computed  the  intensity  along  a  circumference  at  18  μrad  velocity  aberraMon  angle.  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  -­‐85°C  

Array  intensity:  95.2  x  106  m2  

Page 18: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

18  

-­‐9°  Laser  incidence  We  computed  the  intensity  along  a  circumference  at  18  μrad  velocity  aberraMon  angle.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  -­‐85°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Array  intensity:  84.3  x  106  m2  

Page 19: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

19  

Average  intensity  at  18μrad  for  0°,  +9°,  -­‐9°  inclinaMon  angle  together,  using  the  values    The  error  bars  (20%  of  the  relaMve  intensity  value),  take  into  account  the  opMcal  circuit  aberraMons.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  -­‐85°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 20: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

20  

Conclusion:  FFDPs  in  a  staMonary  space  environment  (no  Sun  Simulator)  do  not  differ  too  much  from  those  in  air  and  isothermal  condiMons.  All  FFDP  intensiMes  are  slightly  increased  (by  about  10%,  wrt  in-­‐air/stp  conds),  due  to  different  (though  staMonary)  environment  condiMons.  In  both  cases  we  have  that:  •  FFDPs  at  +9°  and  -­‐9°  have  the  same  level  of  intensity,  within  errors.  •  FFDP  intensiMes  at  0°  are  ~30%  more  intense  than  those  at  ±9°.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  -­‐85°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 21: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

21  

Test  structure:  •  FFDP  measurements  of  all   the  CCRRs  of  the  IRNSS  LRA  done  at  105°C   in  space  condiMons  

without  Sun  Simulator.  •  Measurements  on  the  40  CCRRs  have  been  repeated  for  three  different  inclinaMon  angles:  

with  array  in  front  of  the  laser  window,  namely  0  degrees,  and  ±9  degrees  laser  incidence  (plus  sign  counter  clockwise  rotaMon).  

•  We   set   up   the   starMng   condiMon   defined   in   [AD-­‐2]:   array   was   kept   in   the   space  environment   of   the   SCF   with   the   temperature   of   the   plate   kept   at   105°C.   As   the  temperatures  of  the  different  parts  reached  a  steady  state  we  started  the  measurement.  

•  We  acquire  the  CCRR  energy  distribuMon  of  both  the  polarizaMon  components,  horizontal  and  verMcal.  

Analysis:  •  Analysis  of  raw  opMcal  measured  data  with  a  dedicated  MATLAB  program.  •  For  each  tested  CCRR  and  laser  incidence  angle  the  program  computes:  

−  The  Field  DiffracMon  Pa_ern  (FFDP)  in  OpMcal  Cross  SecMon  (OCS)  unit.  −  OCS  intensity  distribuMon  versus  velocity  aberraMon.  −  OCS  intensity  distribuMon  in  annulus  at  18  μrad  velocity  aberraMon.  −  Average  OCS  intensity  at  18  μrad  velocity  aberraMon  a  total  CCRR  FFDP.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  105°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 22: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

22  

0°  Laser  incidence  

FFDP  and  the  intensity  versus  VA.  

Figure  183:  Lem:  FFDP;  right:  average  intensity  versus  velocity  aberraMon  of  CCRR  n.01.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  105°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 23: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

23  

+9°  Laser  incidence  

FFDP  and  the  intensity  versus  VA.  

Figure  224:  Lem:  FFDP;  right:  average  intensity  versus  velocity  aberraMon  of  CCRR  n.01.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  105°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 24: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

24  

-­‐9°  Laser  incidence  

FFDP  and  the  intensity  versus  VA.  

Figure  264:  Lem:  FFDP;  right:  average  intensity  versus  velocity  aberraMon  of  CCRR  n.01.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  105°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 25: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

25  

0°  Laser  incidence  We  computed  the  intensity  along  a  circumference  at  18  μrad  velocity  aberraMon  angle.  

Figure  304:  Lem  CCRR  01;  right  CCRR  02.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  105°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Array  intensity:  31.7  x  106  m2  

Page 26: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

26  

+9°  Laser  incidence  We  computed  the  intensity  along  a  circumference  at  18  μrad  velocity  aberraMon  angle.  

Figure  324:  Lem  CCRR  01;  right  CCRR  02.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  105°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Array  intensity:  27.6  x  106  m2  

Page 27: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

27  

-­‐9°  Laser  incidence  We  computed  the  intensity  along  a  circumference  at  18  μrad  velocity  aberraMon  angle.  

Figure  344:  Lem  CCRR  01;  right  CCRR  02.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  105°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Array  intensity:  29.9  x  106  m2  

Page 28: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

28  

Average  intensity  at  18μrad  for  0°,  +9°,  -­‐9°  inclinaMon  angle  together,  using  the  values    The  error  bars  (20%  of  the  relaMve  intensity  value),  take  into  account  the  opMcal  circuit  aberraMons.  

Figure  364:  average  intensity  at  18μrad  for  0  degrees  (blue  diamond),  +9  degrees  (red  square)  ,  -­‐9  degrees  (red  triangle)  inclinaMon  angle.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  105°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 29: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

29  

Conclusion:  CCRRs  show  clearly  two  disMnct  behaviors  at  the  two  temperatures,  caused  by  the    temperature  difference  between  the  array  tray  and  the  chamber  environment.  In  fact  as  the  tray  is  kept  at  -­‐85°C,  the  temperature  gradient  inside  the  CCRRs  is  contained,  thus  resulMng  in  FFDPs  rather  similar  with  respect  to  in  air  FFDP  measurements;  on  the  contrary  keeping  the  tray  at  105°C  with  the  environment  at  -­‐175°C,  inside  the  CCRRs  a  high  temperature  gradient  arises,  modifying  considerably  the  opMcal  return  of  the  CCRRs.    With  the  temperature  of  the  tray  set  at  105°C,  FFDPs  change  dramaMcally;  the  majority  of  the  intensity  is  moved  away  from  the  center  and  the  overall  intensity  is  decreased.  Average  intensiMes  at  high  temp  is  2.5-­‐3  Mmes  lower  than  the  case  at  low  temperature  and,  there  seems  to  be  no  difference  among  average  intensity  of  FFDPs  with  the  array  orthogonal  to  the  laser  and  those  with  the  array  kept  at  9°  and  -­‐9°,  as  shown  in  Figure  364.  

LRA  SCF-­‐Test  n.1:  fixed  temperature  and  no  Sun  Simulator  @  105°C  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 30: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

LRA  SCF-­‐Test  n.2:  Sun  Simulator  at  varying  angles  

30  

Test  Structure:  •  Sun   Simulator   illuminaMng   the   array   at   changing   angles,   exploiMng   the   rotaMon  

system  of  the  SCF,  with  a  rate  of  about  15˚/hour.  •  Waited   unMl   the   payload   and   the   surrounding   environment   reached   the   starMng  

equilibrium  condiMons  (cold/vacuum  and  LRA  tray  at  Ti=20˚C).  •  Start  with  an  automaMc  procedure  which  lasted  6  hours.  •  FFDPs  and  IR  pictures  of  each  measured  CCRR  (x5).  •  Extra   valuable   data   and   deliverables   (not   foreseen   by   [AD-­‐1])   in   order   to   be_er  

understand  the  opMcal  and  thermal  behaviour  of  the  array:  1.  Two  FFDPs  more  than  what  planned  in  [AD-­‐1]  (one  FFDP  at  the  beginning  and  

one  at  the  end  of  the  orbit).  2.  Thermal  analysis  based  on  IR  pictures  taken  together  with  FFDPs.  

Op*cal    Analysis:  •  Analysis  of  raw  opMcal  measured  data  with  a  dedicated  MATLAB  program.  •  For  each  tested  CCRR  and  laser  incidence  angle  the  program  computes:  

−  The  Field  DiffracMon  Pa_ern  (FFDP)  in  OpMcal  Cross  SecMon  (OCS)  unit.  −  OCS  intensity  distribuMon  versus  velocity  aberraMon.  −  OCS  intensity  distribuMon  in  annulus  at  18  μrad  velocity  aberraMon.  −  Average  OCS  intensity  at  18  μrad  velocity  aberraMon  a  total  CCRR  FFDP.  2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 31: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

31  

FFDPs  of  CCR8  during  the  orbit.  

IntensiMes  vs  velocity  aberraMons  of  CCR8  during  the  orbit.  

LRA  SCF-­‐Test  n.2:  Sun  Simulator  at  varying  angles  -­‐  op*cal  analysis  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 32: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

32  

LRA  SCF-­‐Test  n.2:  Sun  Simulator  at  varying  angles  -­‐  op*cal  analysis  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 33: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

33  

Same things done also for CCRs n. 9, 12, 13, 21, 22, 28, 29.  

LRA  SCF-­‐Test  n.2:  Sun  Simulator  at  varying  angles  -­‐  thermal  analysis  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 34: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

34  2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

LRA  SCF-­‐Test  n.2:  Sun  Simulator  at  varying  angles  -­‐  op*cal  analysis  for  all  8  CCRs  

Page 35: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

35  2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

LRA  SCF-­‐Test  n.2:  Sun  Simulator  at  varying  angles  -­‐  op*cal  analysis  for  all  8  CCRs  

Page 36: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

LRA  SCF-­‐Test  n.3:  Sun  Simulator  at  varying  angles  

36  

Test  Structure:  •  Sun   Simulator   illuminaMng   the   array   with   cover   installed   at   changing   angles,  

exploiMng  the  rotaMon  system  of  the  SCF,  with  a  rate  of  about  15˚/hour.  •  Waited   unMl   the   payload   and   the   surrounding   environment   reached   the   starMng  

equilibrium  condiMons  (cold/vacuum  and  LRA  tray  at  Ti=20˚C).  •  Start  with  an  automaMc  procedure  which  lasted  6  hours.  •  FFDPs  and  IR  pictures  of  each  measured  CCRR  (x5).  •  Extra   valuable   data   and   deliverables   (not   foreseen   by   [AD-­‐1])   in   order   to   be_er  

understand  the  opMcal  and  thermal  behaviour  of  the  array:  1.  Two  FFDPs  more  than  what  planned  in  [AD-­‐1]  (one  FFDP  at  the  beginning  and  

one  at  the  end  of  the  orbit).  2.  Thermal  analysis  based  on  IR  pictures  taken  together  with  FFDPs.  

Op*cal    Analysis:  •  Analysis  of  raw  opMcal  measured  data  with  a  dedicated  MATLAB  program.  •  For  each  tested  CCRR  and  laser  incidence  angle  the  program  computes:  

−  The  Field  DiffracMon  Pa_ern  (FFDP)  in  OpMcal  Cross  SecMon  (OCS)  unit.  −  OCS  intensity  distribuMon  versus  velocity  aberraMon.  −  OCS  intensity  distribuMon  in  annulus  at  18  μrad  velocity  aberraMon.  −  Average  OCS  intensity  at  18  μrad  velocity  aberraMon  a  total  CCRR  FFDP.  2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 37: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

37  

LRA  SCF-­‐Test  n.3:  Sun  Simulator  at  varying  angles  -­‐  op*cal  analysis  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Same tests and analyses as per SCF-Test n.2 for each of the CCRs n. 8, 9, 12, 13, 21, 22, 28, 29.  

Page 38: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

38  2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

LRA  SCF-­‐Test  n.3:  Sun  Simulator  at  varying  angles  -­‐  op*cal  analysis  for  all  8  CCRs  

Page 39: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

39  2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

LRA  SCF-­‐Test  n.3:  Sun  Simulator  at  varying  angles  -­‐  op*cal  analysis  for  all  8  CCRs  

Page 40: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

LRA  SCF-­‐Tests  n.2  and  n.3:  Sun  Simulator  at  varying  angles  -­‐  comparison  

40  2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 41: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

IRNSS  comparison  with  GRA  

41  2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 42: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

42  

There  is  a  characterisMc  triangular  temperature  distribuMon  with  three  hot  spots  corresponding  to  the  posiMons  where  the  CCRR  is  connected  to  the  supporMng  structure.    

LRA  SCF-­‐Test  n.2:  Sun  Simulator  at  varying  angles  -­‐  thermal  analysis  

2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group  

Page 43: Thermo-optical vacuum testing of IRNSS LRA …...‡ Indian Space Research Organisation - Laboratory for Electro-Optics Systems, First Cross, First Phase, Peenya Industrial Estate,

Thanks!

43  2015  ILRS  Technical  Workshop   L.  Porcelli  for  The  SCF_Lab  Group