the thermodynamics of surfacesweb.mit.edu/course/3/3.069/www/files/lecture1.pdf · 2003-09-08 · 3...

15
1

Upload: others

Post on 07-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

1

Page 2: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

2

THE THERMODYNAMICS OF SURFACES

PVnonrev WSdTVdPdG −δ−−=

dAAGdG

PT ,

∂∂

=

PTAG

,

∂∂

Non pressure-volume work done by the system

Surface energy

Page 3: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

3

THE SURFACE ENERGY OF ICE

• Calculate the number of bonds broken per unit area of new surface• Multiply by the energy per bond

( )( ) 322323

cmmolecules/ 100.3g/mol 18

g/cm 9.0molmolecules/ 1002.6ˆ ×=×

( ) 2153/2 cmmolecules/ 1097.0ˆ ×=ρ=Γ

[ ]b

sub EH 4ˆ

senergy/mas =

ρρ∆

( )( )( ) ( )ergs/cal 102.4

cmmolecules/ 103.04g/cm 9.0cal/g 677 7

322

3

×⋅×

=bE

ergs 101.2 13−×=bE

Related to the number of bonds per unit areaGood number to remember

Energy per bond

Page 4: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

4

( )surfacenewof cm 2

area bonds/unit bonds of cm 12

2bE⋅Γ

≅γ

( )( )( )surfacenewofcm2

ergs 101.2cmmolecules/ 1097.0bonds of cm 12

132152 −××≅γ

2ergs/cm 103≅γ

2exp ergs/cm 109≅γ

THE SURFACE ENERGY OF ICE (cont.) Assume breaking a 1 cm2 cube in half

SURFACE TENSION AND SURFACE ENERGY

LF τ= 2( ) xFxxF ∆=−= 12work

xL∆τ= 2work

1212 22 LxLxAA −=−

xLAA ∆=− 212

( )12work AA −τ=

( ) ( )12work AA γ−γ=

( ) ( ) ( )1212 AAAA γ−γ=−τ

( )PTA

A

,

∂γ∂

PTAA

,

∂γ∂

+γ=τ

From the definition of surface energy

Page 5: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

5

PTAA

,

∂γ∂

+γ=τ

• Surface tension and surface energy have the same units

• They are not numerically equal in general

• The surface energy will change with area for an elastic solid

• Surface energy will not be a function of area for a perfect fluid

( )dndAVdPSdTdG Pµ+γ++−=

APT

P

nG

,,

)(

∂∂

≡µ

pTAPT nG

nG

,,,

∂∂

∂∂

SURFACES AND CHEMICAL POTENTIAL

change in Gibbs Energy when we add dn moles of material to the system

Note that

PTnG

,

∂∂

≡µ

reflects the fact that one cannot add matter to a system without, in general, changing its surface area

Page 6: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

6

Vapor pressure over a sphere

dnVdV =

3

34 rV π=

drrdV 24π=

24 rA π=

rdrdA π= 8

rdVdA 2

=

dVr

dA 2=

dnrVdA 2

=

In general, the surface area and the amount of material in an object are related.The relationship for a sphere of radius r, and n is easy to derive

( )dndAVdPSdTdG Pµ+γ++−= dnrVdA 2

sphere =

( )dndnrVVdPSdTdG Pµγ +++−=

2

( ) dnrVVdPSdTdG P

µ+

γ++−=

2

( )P

PTsphere r

VnG

µ+γ

=

∂∂

=µ2

,

Note that the µ(P) is the chemical potential when r is very large

µ(P) is identified with the chemical potential of a material when it occupies a semi infinite medium and when it has a flat (planar) surface.

r

Page 7: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

7

rVP

sphereγ

=µ−µ2)(

o

vapO P

PRT ln=µ−µ

( )( ) r

VPP

RT PsphereP

sphereγ

==µ−µ2ln

( ) RTrV

PP

Psphere γ

=2ln

moleccV

P/P(P)

Material γ(erg/cm2 10µm 1µm 0.1µm

Water (298K) 72.8 18 1.00 1.01 1.11

Hg(298K) 480 14.7 1.01 1.06 1.77

Cu(1000K)TMp=1083°C

1670 7.12 1.00 1.03 1.33

( ) RTrV

PP

Psphere γ

=2ln

Page 8: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

8

Effect of Drop Size (r) on Vapor pressure

Material γ(erg/cm2) Vm(cc/mole) r(µm) p/poWater 72.8 18 0.1 1.11T = 298 K 1 1.01

Mercury 480 14.7 0.1 1.77T = 298 K 1 1.06

10 1.01

Cu (Solid) 1670 7.12 0.1 1.33T = 1000 K 1 1.03Tm = 1350 K

γ

=RTr

V2exppp m

o

rdVdA 2

=

dnVdV −=

( )

RTrVP

bubbleγ

−=µ−µ2

( ) RTrV

PP

Pbubble γ

−=2ln

r

Vapor pressure within a bubble

Page 9: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

9

21

11rr

K +=

rKsphere

2=

rKbubble

2−=

( ) RTKV

PPPK =ln

Curvature and vapor pressure

Principle radii

r1

r2

Surface topology and chemical potential

r r

r > 0 (+)

µ > µo

P > Po

r =

µ = µo

P = Po

r < 0 (-)

µ < µo

P < Po

convexconcave

Convex – surface normals diverge.

γ

=RTr

V2exppp m

o rV2 m

=µ∆=µ−µ

Page 10: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

10

Surface topology and matter transport

flat surface (r = )

valley (r < 0)

hill (r > 0)

pore (r < 0)

particle (r > 0)

Hydrostatic Pressure across an Interface

• Consider sphere (radius = r) of material suspended in media of pressure Po.

P

Po

+γ=∆

γ=∆

21 r1

r1P

r2P

Young-La Place Equation

Page 11: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

11

liquid

solid

vapor

θ

∆A

γSV

γLV

γSL

Wetting and Contact Angle

• Liquid (or solid) drop on a solid surface.• Usually, does not spontaneously “wet” (spread across) the

surface.• Instead, remains a drop with definite contact angle (θ).• Contact angle dictated by balance of interfacial energies.

LV

SLSVcosγ

γ−γ=θ

Young-Dupre Eq.

Drop

Solid surface

θ

ΔA

Contact angle

Page 12: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

12

θ ΔA

SVγSLγ

LVγ

θγ∆+γ∆−γ∆=∆ cosLVSVSL AAAG

θγ+γ−γ= cos0 LVSVSL

LV

SLSV

γγ−γ

=θcos

At equilibrium ∆G = 0

LV

SLSV

γγ−γ

=θcos

1≥γ

γ−γ

LV

SLSV

1−≤γ

γ−γ

LV

SLSV

Completely wetting (θ = 0)

Nonwetting (θ = 180º)

Page 13: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

13

Pb on Cu{111}Pb(Ni) on C(graphite)

Au on SiC

Acta mater. 48 (2000) 4439–4447THE EFFECTS OF INTERFACIAL SEGREGATION ON WETTING

IN SOLID METAL-ON-METAL AND METAL-ON-CERAMICSYSTEMS

P. WYNBLATT*Department of Materials Science and Engineering, Carnegie Mellon University,

Pittsburgh, PA 15213,USA

Work of adhesion

cermetmetceradW −γ−γ+γ=

metal

ceramic

Definition of contact angle θγ+γ=γ − cosmetcermetcer

( )θ+γ= cos1metadW

Page 14: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

14

Purified Ar

As-received Ar

Air

Molten Cu on BaTiO3 at 1100C

Wettability of electrode metals on barium titanate substrate, J. Mat. Sci. 36(2001) 825

Liquid metals on Barium Titanate

Page 15: THE THERMODYNAMICS OF SURFACESweb.mit.edu/course/3/3.069/www/Files/Lecture1.pdf · 2003-09-08 · 3 THE SURFACE ENERGY OF ICE • Calculate the number of bonds broken per unit area

15

Capillarity (Capillary Rise)

• Capillary tube submerged into a liquid. If liquid, at least, partially wets the capillary (θ < 90), then liquid will rise up the capillary.

hPoθ

R

r

θ

0h0cos900h0cos90

<<θ>θ>>θ<θ

o

o Capillary riseCapillary depression

rcos2gh θγ

=ρ∆

Capillarity (Liquid Phase Sintering)

• Wetting liquid phase between two solid particles.• Pressure difference tends to “pull” the particles together.

δr

liquid R

Po

x

Po

o

o

PP

rPPP

r1

x1P

<

γ−≅−=∆

−γ=∆

Since pressure pushing spheres together (Po) is greater than that in the liquid (P), spheres will be pulled closer together.