the study of the performance in ieee 802.11e edca

44
Student :Fu-Yuan Chuang Advisor : Ho-Ting Wu Date : 2008.1.14 The Study of the performance in IEEE 802.11e EDCA

Upload: colette-myers

Post on 02-Jan-2016

63 views

Category:

Documents


8 download

DESCRIPTION

The Study of the performance in IEEE 802.11e EDCA. Student :Fu-Yuan Chuang Advisor : Ho-Ting Wu Date : 2008.1.14. Outline. Introduction to IEEE 802.11e Proposed Contention Window Adjustment Algorithm Introduction to Fuzzy Control Method Simulation result Conclusion and Future Work. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The Study of the performance in IEEE 802.11e EDCA

Student :Fu-Yuan ChuangAdvisor : Ho-Ting WuDate : 2008.1.14

The Study of the performance in IEEE 802.11e EDCA

Page 2: The Study of the performance in IEEE 802.11e EDCA

• Introduction to IEEE 802.11e

• Proposed Contention Window Adjustment Algorithm

• Introduction to Fuzzy Control Method

• Simulation result

• Conclusion and Future Work

Outline

Page 3: The Study of the performance in IEEE 802.11e EDCA

New terminology QAP – QoS Access Point QSTA – QoS Station HC – Hybrid Coordinator

A new mechanism defined in IEEE 802.11e – Hybrid Coordination Function (HCF)

HCF has two access mechanisms Contention based

Enhanced distributed channel access (EDCA) Controlled channel access

HCF Controlled Channel Access (HCCA)

Introduction of IEEE 802.11e

Page 4: The Study of the performance in IEEE 802.11e EDCA

IEEE 802.11 MAC architecture

DistributedCoordination Function

(DCF)

PointCoordinati

on Function

(PCF)MACExtent

Required for Contention Free Services

Required for Contention Free Services

Used for Contention Servicesand basis for PCFUsed for Contention Servicesand basis for PCF

Page 5: The Study of the performance in IEEE 802.11e EDCA

IEEE 802.11e MAC architecture

DistributedCoordination Function

(DCF)

PointCoordinati

on Function

(PCF)MACExtent

Required for Contention Free Services for non-QosSTA, optional otherwise

Required for Contention Free Services for non-QosSTA, optional otherwise

Used for Contention Services and basis for PCF

Used for Contention Services and basis for PCFHCF

Contention

Access(EDCA)

HCFContentio

nAccess(EDCA)

HCFControlle

dAccess(HCCA)

HCFControlle

dAccess(HCCA)

Required for Parameterized Qos Services

Required for Parameterized Qos Services

Required for Prioritized QoS Services

Required for Prioritized QoS Services

Page 6: The Study of the performance in IEEE 802.11e EDCA

• EDCA defines four Access Categories (AC)– Voice– Video– Best Effort– Background

• An AC is an enhanced variant of the DCF which contends for TXOP using the following parameters: CWmin[AC], CWmax[AC], AIFS[AC]

• The QAP announces the EDCA parameters in selected Beacon frames and in all Probe Response and (Re)Association Response frames

Enhanced Distributed Channel Access (EDCA)

Page 7: The Study of the performance in IEEE 802.11e EDCA

Priority

UP(Same as 802.11D

user priority)

802.11Ddesignatio

nAC

Designation

(informative)

Lowest

Highest

1 BK AC_BK Background

2 -- AC_BK Background

0 BE AC_BE Best Effort

3 EE AC_BE Best Effort

4 CL AC_VI Video

5 VI AC_VI Video

6 VO AC_VO Voice

7 NC AC_VO Voice

UP-to-AC mappings

Page 8: The Study of the performance in IEEE 802.11e EDCA

8 UPs mapping to 4 Access Category(AC)

8 User Prioritys per QSTA

Higher PriorityLower Priority

AC [0] AC [1] AC [2] AC [3]

BackoffAIFS[0]

CWmin[0]CWmax[0]

BackoffAIFS[1]

CWmin[1]CWmax[1]

BackoffAIFS[2]

CWmin[2]CWmax[2]

BackoffAIFS[3]

CWmin[3]CWmax[3]

Virtual Collision Handler

Transmissoin Attemp

Page 9: The Study of the performance in IEEE 802.11e EDCA

• BackoffTime = Random() * aSlotTime• Random() = [0, CW]• aCWmin ≤ CW ≤ aCWmax• If successful transmission then

CW = aCWminelse

CW = (CW + 1) * 2 - 1

IEEE 802.11 DCF

DIFSBusy

MediumBusy

Medium Next FrameNext FrameBackoff-WindowSIFS

PIFS

DIFSContention Window

Page 10: The Study of the performance in IEEE 802.11e EDCA

Contentions among Different ACs in EDCA

DIFS/AIFSBusy

MediumBusy

Medium Next FrameNext FrameHigh Priority AC

Medium Priority AC

Low Priority AC

SIFS

PIFS

AIFS[2,3]=DIFS

AIFS[1]

AIFS[0]

Backoff Slots

Contention among EDCAFs (AC, AIFS, CWmin , CWmax ) to win a TXOP

Page 11: The Study of the performance in IEEE 802.11e EDCA

EDCA Parameter Set elementElement ID

(12)Length

(18)QoSInfo Reserved

AC_BEParameter

Record

AC_BKParameter

Record

AC_VIParameter

Record

AC_VOParameter

Record

1 1 1 1 4 4 4 4

ACI / AIFSN ECWmin /ECWmax

TXOP Limit

1 1 2

AIFSN ACM ACI Reserved

B0 B3 B4 B5 B6 B7

ECWmin ECWmax

B0 B3 B4 B7

ACM : admission control mandatory

ACI : Access category identify0 ≤ CWmin = 2ECWmin – 1 ≤ 32767

0 ≤ CWmax = 2ECWmax - 1 ≤ 32767

Page 12: The Study of the performance in IEEE 802.11e EDCA

Default EDCA Parameter Set element parameter

AIFS[AC] = AIFSN[AC] × aSlotTime + aSIFSTimeaCWmin = 15aCWmax = 1023aSlotTime = 9 usaSIFSTime = 16 us

Page 13: The Study of the performance in IEEE 802.11e EDCA

• Using the default CWmin is not always adaptive under various situations of network– Only a few of QSTAs

• Waste the waiting time

– Many QSTAs• High collision probability

Problem description

Page 14: The Study of the performance in IEEE 802.11e EDCA

• In order to solve the problem, we make QAP dynamically adjust the contention window size of each AC and broadcast the result to all QSTAs every beacon interval

• The contention window size of each kind of AC should be adaptive to system loading

Idea

Page 15: The Study of the performance in IEEE 802.11e EDCA

• CWmini : new CWmin for each ACs• CWmin_oldi : announced by QAP in the last time• αi : the degree of the effect of ACi, 0 ≤ αi ≤ 1• defaultCWmin ≤ CWmin ≤ 32767• Use Fuzzy control method to obtain the αi

Proposed Algorithm

iii oldCWCW min_2min

Page 16: The Study of the performance in IEEE 802.11e EDCA

Fuzzy Control architecture

模糊化Fuzzification

解模糊化Defuzzificatio

n

模糊規則庫Fuzzy Rule

模糊推論Fuzzy

Inference

input output

Page 17: The Study of the performance in IEEE 802.11e EDCA

• 找出有意義之狀態加以觀測當作是控制器的輸入變數,同時也找出所需的控制系統的參數當作輸出變數。

• 例如:希望藉由氣溫來判斷該穿多少件衣服則氣溫為輸入變數,穿衣服的量為輸出變數

• In our algorithm:– 輸入變數: (1.) 碰撞所佔的時間比例

(2.)ACi 對網路系統效能的影響程度– 輸出變數: ACi 影響網路狀況的程度

(1.) 定義輸入輸出變數

Page 18: The Study of the performance in IEEE 802.11e EDCA

• 模糊集合 (Fuzzy set) :– 將一個集合的特性函數 ΦA(x) 是介於 0 與 1 之間,也

就是說, x 屬於集合 A 之程度有輕重大小之分。如此這個集合 A 就是一個不明確的元素隸屬關係,這樣的集合稱之為「模糊集合」。

• 歸屬函數 (Membership function) :– 模糊集合的特性函數通常稱之為「歸屬函數」。– 常見的歸屬函數的形狀有梯形、三角形和高斯函數圖

形。

(2.) 定義歸屬函數

Page 19: The Study of the performance in IEEE 802.11e EDCA

• 範例:– 若輸入變數為年齡,將年齡分成三個模糊集合分別為

A1( 年輕人 ) 、 A2( 中年人 ) 和 A3( 老年人 ) ,其年齡的歸屬函數定義如下圖。

(2.) 定義歸屬函數 (cont.)

Page 20: The Study of the performance in IEEE 802.11e EDCA

• 輸出變數: – ACi 影響網路狀況的程度,所以我們將影響的程度區分

成五類,語句變數 (Linguistic Variable) 分別為” VL( 很低 )” 、” L( 低 )” 、 ” M( 適中 )” 、 ” H( 高 )” 與” VH( 很高 )” ,其歸屬函數如下圖

(2.) 定義歸屬函數 (cont.) – in our algorithm

Page 21: The Study of the performance in IEEE 802.11e EDCA

• 輸入變數:– (1.) 碰撞所佔的時間比例

• 定義了三個模糊集合,分別為” L( 碰撞機率低 )” 、” M( 碰撞機率適中 )” 與” H( 碰撞機率高 )” 。

(2.) 定義歸屬函數 (cont.) – in our algorithm

Page 22: The Study of the performance in IEEE 802.11e EDCA

• 輸入變數:– (2.) ACi 對網路系統效能的影響程度

• AC 的連線數目• 比自己高優先權的 CWmin• 自己本身的 CWmin• 定義了三個模糊集合,分別為” L( 影響低 )” 、

” M( 影響適中 )” 與” H( 影響高 )”

(2.) 定義歸屬函數 (cont.) – in our algorithm

Page 23: The Study of the performance in IEEE 802.11e EDCA

AC0 AC1

AC2 AC3

Page 24: The Study of the performance in IEEE 802.11e EDCA

• 有一個宇集合 X ,其中一個元素,假使經過一個程序成為一個以 X 為宇集合之模糊集合 A ,這個程序就稱為”模糊化 (Fuzzification)” 。

• 範例:– 以上一個例子為例,若輸入年齡為 25 歲,經由模糊化

可得:

(3.) 模糊化

μ A1(25) = 0.75 (表示年齡 25歲屬於年輕人的程度是0.75)μ A2(25) = 0.25 (表示年齡 25歲屬於中年人的程度是0.25)μ A3(25) = 0 (表示年齡 25歲屬於老年人的程度是 0)

Page 25: The Study of the performance in IEEE 802.11e EDCA

• 設計者可依據過去的經驗、控制知識與系統的特性,擬定適合的控制策略。一個模糊規則庫是由多個模糊推理句,” if…...then…...” 組合而成。

• In our algorithm– X1 : 碰撞所佔的時間比例– X2 : AC 對網路系統效能的影響程度

(4.) 模糊規則庫

L M H

L VL L M

M L M H

H M H VH

X1X2

Page 26: The Study of the performance in IEEE 802.11e EDCA

• 將輸入的模糊變數轉換成模糊輸出變數,這可說是模糊控制的核心。

• 利用歸屬函數取得各規則的適合程度,然後綜各則的適合程度得到適當的推論,即使規則條件部分的命題不完全一致,也能一句一致的高低比較得到合適的推論

• Minimum Inference Engine

(5.) 模糊推論

Page 27: The Study of the performance in IEEE 802.11e EDCA

• ( 碰撞所佔的時間比例 , AC3 對網路系統效能的影響程度 ) = (0.1, 0.04)

• 模糊化:– 碰撞所佔的時間比例 (X1) :

• μL (0.1) = 0.5• μM (0.1) = 0.5

– AC3 對網路系統效能的影響程度 (X2) :• μL (0.04) = 2/3• μM (0.04) = 1/3

Minimum Inference Engine - ex

L M H

L VL L M

M L M H

H M H VH

X1X

2

Page 28: The Study of the performance in IEEE 802.11e EDCA

Minimum Inference Engine - ex碰撞所佔的時間比例 AC3 對網路系統效能的影響程度 輸出

0

1

0.2 0

1

0.02 0.08 0

1

0.25

L L VL

0.1 0.04

0.5 0.52/3

0

1

0.2 0.02 0.08 0

1

0.25

L M L

0.10.04

0.51/3 1/3

0.14

Page 29: The Study of the performance in IEEE 802.11e EDCA

碰撞所佔的時間比例 AC3 對網路系統效能的影響程度 輸出

L

0

1

0.2 0

1

0.25

M L

0.1

0.5 0.5

0.4 0.6 0

1

0.02 0.080.04

2/3

0

1

0.2

M

0.1

0.5

0.4 0.6 0.02 0.08

M

0.04

1/3

0.14 0.75

M

0.25 0.5

1/3

0

1

M

0.5

VL L

Page 30: The Study of the performance in IEEE 802.11e EDCA

• 將模糊推論所獲得的結果一個模糊集合 B(y) , y Y ,轉換至一個明確值 y* 的動作。也就是說找一個最適合代表模糊集合 B(y) 的明確點 y* Y 。

• 重心解模糊化法 (Center of Gravity Defuzzification, CGD)

(6.) 解模糊化

Page 31: The Study of the performance in IEEE 802.11e EDCA

Physical Rate 36Mbps

aSlotTime 9us

SIFS 16us

DIFS 34us

ACK frame Size 14bytes

Beacon Interval 100ms

Simulation – parameter setting

Voice Video Best Effort Background

AIFSN 2 2 3 7

Packet Size 160 bytes 660 bytes 1280 bytes 1600 bytes

Packet Interval 20 ms 18 ms 16 ms 12.5 ms

Mean Data Rate 8 KB/s 36 KB/s 80 KB/s 128 KB/s

Voice Video Best Effort Background

CWmin 7 15 31 31

CWmax 15 31 1023 1023

CSMA/CA 相關模擬參數設定

EDCA 相關參數設定

IEEE 802.11e CWmin 、 CWmax 預設值設定

Page 32: The Study of the performance in IEEE 802.11e EDCA

• Traffic generation– Connection arrival:

• Exponential random variable with λ– Connection duration

• Exponential random variable with 0.2• Environment

– Simulation time : 200s– Number of QSTAs : 30– QAP announce EDCA Parameter Set : 3 beacon

interval

Simulation – parameter setting(cont.)

Page 33: The Study of the performance in IEEE 802.11e EDCA

• There are 4 ACs in a QSTA

Simulation-1

Page 34: The Study of the performance in IEEE 802.11e EDCA

Simulation-1 AC throughput

Page 35: The Study of the performance in IEEE 802.11e EDCA

Simulation-1 AC throughput

Page 36: The Study of the performance in IEEE 802.11e EDCA

Simulation-1 AC delay

Page 37: The Study of the performance in IEEE 802.11e EDCA

Simulation-1 AC delay

Page 38: The Study of the performance in IEEE 802.11e EDCA

• There are 2 ACs in a QSTA : AC2, AC3

Simulation-2

Page 39: The Study of the performance in IEEE 802.11e EDCA

Simulation-2 AC throughput

Page 40: The Study of the performance in IEEE 802.11e EDCA

Simulation-2 AC delay

Page 41: The Study of the performance in IEEE 802.11e EDCA

• There is only one AC in a QSTA : AC3

Simulation-3

Page 42: The Study of the performance in IEEE 802.11e EDCA

Simulation-3 AC delay

Page 43: The Study of the performance in IEEE 802.11e EDCA

• 所提出模糊控制動態調整競爭窗口的演算法是可以比標準 IEEE 802.11e 獲得更高的效能。– Light loading:

• CWmin 最小值為原本標準的預設值,因此整體的效能就與標準 IEEE 802.11e 相當。

– High loading:• 有效的提升系統的 throughput 、降低系統碰撞的

機率,降低各個 AC 的 delay 時間。

Conclusion

Page 44: The Study of the performance in IEEE 802.11e EDCA

• Fuzzy control system:– 因為模糊控制系統的設計,導致於必須在網路輕負載

的情況做犧牲,只有辦法與原本標準 IEEE 802.11e的效能相當。

• Other QoS control:– Admission control

Future work