the role of wave height, period, slope, tide range and ... · cro-tidal model into areas of...

16
Revista Chilena de Historia Natural 69: 589-604, 1996 The role of wave height, period, slope, tide range and embaymentisation in beach classifications: a review El rol de la altura y período de la ola, pendiente, rango mareal y grado de protección en clasificaciones de playa: una revisión ANDREW D. SHORT Coastal Studies Unit, Department of Geography, University of Sydney Sydney, NSW 2006, Australia E-mail: [email protected] ABSTRACT This paper reviews recent developments in the classification of beach systems and in particular the contribution of wave height and period, sand size, beach slope, tide range and embaymentisation to beach type and morphodynamics. The review begins with the micro-tidal, single bar, beach model of Wright and Short (1984) which is solely dependent on wave height, period and grain size (sediment fall velocity). More recent research has modified this model to accommodate a wider range of beach environments including multiple bars, high tide ranges and embayed beaches. In multi-bar beach systems beach slope and wave period are critical to determining bar number. In areas of increasing tide range the ratio of tide range to wave height, the relative tide range, can be used to classify tide dominated beach types and the transition to tide flats. When beaches are bounded by headlands or structures, the ratio of the shoreline to embayment chord length, can be used of classify three beach systems ranging from normal to topographically dominated beaches. The original single bar beach model, together with these modifications now make it possible to classify all open coast beach systems, and to predict beach type based on the relevant wave, sand, slope, tide and embayment parameters. Key words: Sandy beaches, waves, tides, sediment, embayment. RESUMEN Se revisan Ios desarrollos recientes en la clasificación de Ios sistemas de playas y la contribución de la altura y período de las olas, tamaño de la partícula, pendiente, rango mareal y protección al tipo de playa y morfodinámica. La revisión comienza con el modelo de playa micromareal con barra única de Wright and Short (1984) el cual depende sólo de la altura y período de la ola y tamaño del grano (velocidad de sedimentación). Investigaciones más recientes han modificado este modelo a fin de acomodar uii rango más amplio de playas incluyendo barras múltiples, rangos maréales altos y playas protegidas (en bahías). En playas con barras múltiples la pendiente y el período de la ola son críticos en la determinación del número de barras. En áreas con mayor rango mareal la proporción rango mareal: altura de la ola (rango mareal relativo) puede ser usada para clasificar playas dominadas por mareas y áreas transicionales a planicies maréales. Cuando las playas están limitadas por promontorios o estructuras, la proporción línea de costa: longitud de la cuerda de la bahía puede ser usada para clasificar tres sistemas de playas, desde normales a aquellas dominadas por la topografía. El modelo original de playa con barra única, junto con estas modificaciones, hacen ahora posible clasificar todas las playas expuestas y predecir el tipo de playa basado en olas relevantes, arena, pendiente mareas y parámetros relacionados a protección topográfica. Palabras clave: Playas arenosas, olas, mareas. INTRODUCTION Sandy beaches are accumulations of sand lying between modal wave base and the swash limit. They are deposited primarily by waves, but also influenced by tides and topo graphy. Their morphology and dynamics should therefore be a function of their sand size, the breaker wave climate, including height and period, tide range, and major topographic features. Each of these variables, however, has considerable spatial and tempo ral variation, resulting in a range of beach types. At the level of an individual beach where sediment size may be assumed constant, temporal changes in wave height (Received I January 1995: accepted 28 July 1996)

Upload: others

Post on 08-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

R e v i s t a C h i l e n a d e H i s to r i a N a tu ra l 69: 5 8 9 - 6 0 4 , 1996

The role of wave height, period, slope, tide range and embaymentisation in beach

classifications: a review

El rol de la altura y período de la ola, pendiente, rango mareal y grado de protección en clasificaciones de playa: una revisión

A N D R E W D. S H O R T

Coasta l Studies Unit, Depar tm ent o f Geography , Univers ity o f Sydney Sydney, N S W 2006, Austra lia

E-mail : A .S hor t@ csu .usyd .edu .au

A B S T R A C T

This paper rev iew s recent deve lopm en ts in the c lass if ication o f beach systems and in par t icu la r the con tr ibu t ion o f w av e height and period , sand size, beach s lope, tide range and em baym en t i sa t ion to beach type and m orphodynam ics . T he rev iew begins w ith the micro- t idal , s ingle bar, beach model o f W righ t and Short (1984) which is so le ly dependen t on w ave height, period and g ra in size (sed im en t fall velocity). M ore recent research has m odif ied this m odel to a cc om m oda te a w id e r range o f beach en v iro n m en ts in c lud ing mult ip le bars, h igh tide ranges and e m bayed beaches. In m ult i -bar beach systems beach s lope and wave pe r iod are cri tical to de te rm in ing bar number. In areas o f increas ing tide range the ratio o f tide range to w ave height, the re la tive tide range, can be used to c la ss ify tide dom ina ted beach types and the transit ion to tide flats. W h en beaches are bounded by head lands or s tructu res, the rat io o f the shore line to em b ay m en t chord length, can be used o f c lass ify th ree beach system s rang ing from normal to topograph ica l ly dom inated beaches. T he original single ba r beach m odel , toge the r w ith these m od if ica t ions now m ake it possib le to c la ss ify all open coast beach sys tems, and to predic t beach type based on the re levant w ave, sand, s lope, tide and e m b a y m e n t parameters.

K e y w o r d s : Sandy beaches , w aves , tides, sedim ent, em baym ent .

R E S U M E N

Se revisan Ios de sa rro l los rec ientes en la c lasif icac ión de Ios s is temas de playas y la contr ibuc ión de la a l tu ra y pe r íodo de las olas, t a m a ñ o de la part ícula , pend ien te , rango mareal y pro tecc ión al tipo de p laya y morfod inám ica . L a revis ión co m ien za con el m ode lo de p laya m icrom area l con barra única de W righ t and Short (1984) el cual depende sólo de la a ltura y pe r íodo de la o la y tam a ño del g rano (ve loc idad de sedim entac ión) . Investigaciones más recientes han m od if icado este m ode lo a fin de a co m o d a r uii rango más am plio de playas inc luyendo barras múlt ip les , rangos maréa les al tos y p layas p ro teg idas (en bahías). En p layas con barras m últ ip les la pend ien te y el período de la o la son crít icos en la de te rm inac ión del n ú m e ro de barras. En áreas con m a y o r rango mareal la p roporc ión rango mareal: a ltura de la ola (rango marea l re la tivo) puede ser usada para c las if icar p layas d om inadas p o r m areas y áreas t ransic ionales a planic ies maréales . C uando las p layas e s tán limitadas por p rom on to r io s o es tructuras , la proporc ión l ínea de costa: longitud de la cuerda de la bah ía puede ser usada para c las if icar tres s is tem as de p layas, desde norm ales a aquel la s dom inadas por la topogra fía. El m ode lo original de p laya con ba rra única , ju n to con estas m odif icac iones , hacen aho ra posib le c lasif icar todas las playas expues tas y p redeci r el tipo de p laya basado en olas re levan tes , arena, pend ien te m areas y pa rám etros re lac ionados a p ro tecc ión topográ fica .

P a l a b r a s c lav e : Playas a renosas , olas, mareas.

IN T R O D U C T IO N

Sandy beaches are accum ula tions o f sand ly ing b e tw een m odal w ave base and the swash limit. They are deposited primarily by waves, but also influenced by tides and topo­g ra p h y . T h e i r m o rp h o lo g y an d d y n a m ic s should therefore be a function o f their sand

size, the b reak er w ave c lim ate , inc lud ing height and period , t ide range , and m a jo r topographic features. Each o f these variables, however, has considerable spatial and tem po­ral variation, resulting in a range o f beach types. At the level o f an individual beach w h e r e s e d i m e n t s iz e m a y b e a s s u m e d constant, temporal changes in wave height

(R ece ived I January 1995: accep ted 28 Ju ly 1996)

Page 2: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

5 9 0 SHORT

and p e r io d an d lu n a r tidal cyc les induce beach response and change. At a regional level, changes in both sedim ent and breaker w ave height induce further spatial and tem ­poral changes, w hile at a global level a wide range o f variab le com bina tions and beach re s p o n s e o c c u rs . A ll th e se b e a c h e s w ill , how ever, possess three dynam ic zones - a z o n e o f w a v e s h o a l in g s e a w a rd o f the b reaker point, a surf zone o f breaking waves, and a swash zone o f final wave dissipation on the subaerial beach. The nature and extent o f each o f these zones will u ltimately deter­m ine the beach m orphodynam ics. The width o f the shoaling, surf and swash zones will depend on w ave height and beach gradient (a function o f sedim ent size and wave height), w hile tide range will determ ine the vertical s tab i l i ty or d a ily m o v e m e n t o f all th ree zones.

The aim o f this review is to exam ine the m ajor param eters that determ ine the shape and nature of beach and surf zone m orpho­dynam ics, using readily obtainable variables o f b reaker w ave height, w ave period, tide range, sedim ent size, beach slope and em bay­m ent shape. The rev iew will first exam ine beach m orphodynam ics in areas o f micro- tidal range (< 2m), where the swash, surf and shoaling zones are assum ed to be stationary. S e c o n d , it w ill look at the in f lu e n c e o f decreasing beach gradient (primarily caused by decreasing grain size) which can lead to the form ation o f m ultip le bars in micro-tidal environm ents. Third, it will extend the m i­cro-tidal m odel into areas o f increasing tide range when all three zones are daily translat­ed to and fro across the inter- and sub-tidal beach. F inally it will incorporate the addi­tional variab les o f em baym en t length and chord to exam ine the role of em baym ents ( h e a d la n d s , g ro y n e s , e tc ) in in f lu e n c in g beach m orphodynam ics .

M icro -tid a l sing le b ar beaches

M icro-tidal beach systems are assum ed to be wave dom inated , with a low tide range that has a m inor to negligible role in determining beach m orphology. T ide is therefore largely ignored in assessing general beach m orpho­dynam ics. The three zones o f shoaling, surf an d sw a sh a re th e re fo re a s s u m e d to be

stationary.W right & Short (1984) used the dim en-

sionless fall velocity ( D , G ourlay 1968) to quantify single bar, micro-tidal beaches and to c la ss ify th ree d is t in c t iv e b each types , where

H = H b / W s T

where Hb is b reaker w ave height (m), W s is sedim ent fall velocity (m/sec) and T is wave period (sec). The three beach types consist o f two end m em bers, d issipative and reflective, linked by an intermediate state.

D iss ip a t iv e b e a c h e s (F ig u re s 1 and 2) occur where Q > 6 and are characterised by fine sand, high wave energy, and preferably short wave periods. For this reason, on open swell coasts, they are only found in areas o f fine to very fine sand with persistent high swell (> 2 m), such as parts o f the southern A u s t r a l i a n ( W r ig h t e t al. 1 9 8 2 ) , so u th African (M cLachlan et al. 1993) and east and w est South A m erican coas ts (S u h a y d a et al. 1975).They are m ore com m on in storm dom inated sea environments, w here high, but short period storm waves act on a fine sand beach, such as parts o f the North Sea (Short 1992), A rctic O cean (Short 1975), Baltic (Aagaard 1990) and M editerranean (Bow m an & G oldsm ith 1983). They also occur in some large lakes (A agaard & G reenw ood 1995) and coastal bays (Short 1996). In between the storms the d issipative m orpho logy usua lly remains inactive under calms and low waves.

Dissipative beaches are characterised by a w ide, low g rad ien t sw ash zone, a w ide surf zone, containing two (swell coast) to five (sea coast) subdued shore parallel bars and troughs, extending up to hundreds of meters seaward. Their dynamics is driven by spilling breakers, which dissipate their energy across the wide surf zone. In doing so the incident wave energy in increasingly transferred to infragravity frequencies which manifests itself as wave set-up and set-down at the shoreline. Surf zone circulation is predominantly at low in fragrav ity frequenc ies , and is ver tica lly segregated with onshore flows tow ard the surface, and seaward toward the bed (W right et al. 1982). The bar/s location is a function of standing w aves (Short 1975), which are a p ro d u c t o f the g roup b o u n d long w av es

Page 3: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

BEACH CLASSIFICATIONS 591

Q

>6 200

1 BAR 2 BAR 3 BAR

600m

. 400

■ 2001 T R O U G H

BEACH

D S S PAT VE

T R O U G H

S h o re lin e

LO N G SH O R E BAR & TRO U G H600m

T H O U G H

T R O U G H

RHYTHM C BA R & B EA C H 600m

TR A N SV E R S E B A R & R IPR i p s

600m

2 0 0 —

LOW TIDE TE R R A C E 600m

R I D G ERU NNEL

R EFLE C TIV E 600mB <20

S T E E P B E A C H FA CE r m1 0 0 — BERM

RUNNEL

1 0 0 0 2000 mO 1000 2000 m

<1

1000 2000 mA S 9 1 9 4 m g K 6 = 7 1 0 2 7 / 9 / 9 4 I

Fig. 1 : Beach types observed in one, two and three bar beach systems. The single bar system s contains the six beach types described by W right & Short 1984. In the double and m ulti-bar system s, rip presence and spacing, and the sequencing of hierarchical bar types will vary depending on form ative m echanism s and the degree of bar activity/inactivity. Arrows indicate active rips. (M odified from Short & A agaard 1993).Tipos de p layas que ocurren en s is tem as de playas con una, dos y tres barras. Los s is temas con una barra con t ienen Ios seis tipos de p layas descri tos po r W rig h t & Shor t 1984. E n Ios s is temas con barras dobles o múlt ip les , la p resenc ia de re sacas y e sp ac iam ien to y la s ecuencia de t ipos je rá rq u ico s de barras varia rá según Ios m ecan ism os de fo rm ación y el g ra do de ac t iv idad / in ac t iv idad de las barras. L as f lechas indican corr ien tes act ivas de resaca. (M odif icado de Short & A agaard 1993).

associa ted with w ave groupiness (Aagaard 1990), which in turn can be amplified by the s h o re w a rd g ro w th o f in f rag rav i ty energy produced by the incident waves.

Rip dom inated intermediate beaches occur when 1 > Q. > 6, which is p roduced by m odera te to h igh w aves , fine to m ed iu m sand, and longer w ave periods (F igure 2).

Page 4: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

5 9 2 SHORT

DISSIPATIVE

Fine sandHigher w avesShorter periods

INTERMEDIATE 0 = 1-6

Fine • medium sand Moderate - high waves Short - long periods

C oarser sand Lower w aves

* Longer periods

-1 0 1 2 3 4 00.182 0.11 0.066 0.0405 0.024 0.0145 m sec '1

G RA IN DIAM ETER AND FALL VELOCITY

Fig. 2: A plot o f breaker wave height versus sedim ent size, together with wave period that can be used to determ ine approxim ate W and beach type. To use the chart determ ine the breaker height, period and grain size/fall velocity (phi or cm /sec). Read o ff the wave height and grain size, then use the period to determ ine where the boundary o f reflective/in term ediate , or interm ediate/ d issipative beaches lie. Q = 1 along solid T lines, and 6 along dashed T lines. Below the solid lines £2 < 1 the beach is reflective, above the dashed lines £2 > 6 the beach is dissipative, between the solid and dashed lines £2 is betw een 1 and 6 and the beach is interm ediate. (M odified from Short 1986).G ráf ico de a l tu ra de la ola versus ta m año de sedim ento; ju n to al pe r íodo de la o la puede ser usado pa ra la de te rm inac ión ap ro x im ad a de £2 y tipo de playa. Para usar el gráf ico , de te rm ine la a l tu ra y pe r íodo de la ola y t am año /ve loc idad de sed im entac ión de la a rena (phi o cm /sec) . L ea a l tu ra de la o la y tam año de la a rena; luego use el pe ríodo pa ra de te rm inar d ónde se ubican Ios l ím ites en tre p layas re f le c tivas e in te rm edias o entre in te rmedias y dis ipativas . £2 = 1 a lo largo de líneas con t inuas para el pe r íodo y 6 a lo largo de líneas a trazo para el período. B ajo las líneas con t inuas de £2 < 1 la p laya es reflectiva , sobre las líneas a trazo de £2 6 la p laya es disi- pativa . La p laya es in te rm ed ia entre Q 1 y 6 (l íneas cont inuas y a trazos) . (M od if icado de Short 1986).

These are the m ost com m on beach type and o c c u r b o th as s in g le -b a r re d in te rm e d ia te beaches, and com m only as the lower energy inner bar o r bars o f m ulti-barred beaches. T he ir m o rphodynam ics is characterised by re g u la r lo n g sh o re va r ia t ions in su rf zone m orpho logy and dynam ics. The m orphology

alternates longshore betw een shallow er bars and deeper rip channels, while the su rf zone circulation is cellular and horizontally segre­gated. W aves tend to break more on the bars with the water moving shoreward as wave bo­res. W ater then m oves sideways as rip feeder currents to collect in the rip em baym ents b e ­

Page 5: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

BEACH CLASSIFICATIONS 5 9 3

tw een the bars, and pulses seaward as narrow rip currents in the deeper rip channels.

T h e re a re fo u r s ta te s o f in te rm e d ia te beaches (Figure 1). At the h igher energy end is the longshore bar and trough state (LBT), w hich form s a transition from the dissipative beach type. The LB T, however, has a more p ronounced bar and deeper trough. W aves break heavily on the outer bar and reform in the t ro u g h , r e a c h in g the sh o re as lo w er waves. D epend ing on the sand size the shore­line m any be a low tide terrace to reflective, and is straight a longshore. W ithin the trough circulation is both vertically segregated (on- o ffshore) and horizon ta l ly segregated into cellu lar rip c irculation. R hythm ic rip topo­graphy is, however, poorly developed.

The rhythm ic bar and beach state (RBB) has w ell d e v e lo p e d rip to p o g rap h y , with highly rhythm ic or crescentic bars, separated by d eep rip channe ls , feed by rip feeder c h a n n e ls w h ich are pa r t o f a c o n t in u o u s th o u g h r h y th m ic l o n g s h o r e t ro u g h . T h e s h o r e l i n e is r h y th m ic , w i th m e g a c u s p s deve loping in the lee o f the bars, and scour form ing scarped em baym ents in lee o f the rips. C e llu la r rip c irculation dom inates the surf zone.

The transverse bar and rip state (TBR) is s im ilar to the R BB except the bars are a t­tached to the m egacusp horns, thereby fully segregating the rip feeder and rip channels, particularly at low tide, when rip currents will also intensify (Short & Hogan, 1994). The beach face is highly rhythmic. As the rip ch an n e ls infills the low tide te rrace state (LTT) is reached. This consists o f a conti­nuous bar attached to the beach and exposed at spring low tide, hence the name. It may the crossed by small transverse rips, feed by narrow feeder channels/runnels at the base o f the beach . The shore line s tra ightens as the rips and em baym ents infill. At low tide w aves p lunge heavily on the outer terrace, while at high tide they m ay pass across the terrace unbroken to surge up the beach face p roducing a reflective high tide beach.

The low energy end m em ber o f the beach types is the reflective beach, which occurs when Q < 1. This requires m ed ium to coarse sand, low wave energy and is favoured by long w ave periods (Figure 2). It therefore com m only occurs on protected (low wave)

swell coasts, and on all beaches com posed o f coarse sand and cobbles, no m atter w hat the w ave height. Reflective beaches consist o f a re la t ive ly s teep, sw ash d o m in a te d , b each face. If there is a mixture o f sed im ent size, then the coarsest material accum ulates at the base of the swash zone (at around low tide level) and forms a coarse steep step, up to s e v e r a l d e c i m e t e r s h ig h . I m m e d i a t e l y seaward o f the step is a low gradient near­shore (w ave shoaling) zone co m p o sed o f finer sediment (Figure 1). There is no bar or surf zone, rather waves break by surging or collapsing over the step. The strong swash in turn builds the steep, high beach face.

The role o f the three param eters Hb, T and grain size in influencing beach type is illustrated in Figure 2, which plots Hb versus grain size, with selected wave period lines. It is critical to understand that beach type and change is a function of all three param eters Hb, T and Ws. Dissipative beaches are fa­voured by high waves and fine sand, h o w ­ever with decreasing period they can occur in waves as low as 1 m. L ikew ise reflective b each es are fa v o u red by low w av es and coarse sand, how ever on long period swell coasts, and with coarse sand, beaches will stay reflective with waves up to 3 m. F igu ­re 2 therefore indicates the sensitivity o f each o f the beach types to variation in the three param eters . It m ust be stressed, how ever , that Figure 2 merely predicts the beach type when it has fully responded to the conditions and reached an equilibrium state. In nature W right et al. (1984, 1985) have shown that beach response lags behind changing wave conditions by days to weeks, and that the an teceden t beach state will de te rm ine the am ount o f change required to reach an equ i­lib rium situation. C onsequen tly , as w aves co n d i t io n s rap id ly c h a n g e the im p a c t o f antecedent state, coupled with the inherent lagged response , m eans than b each es are often is d isequilibrium with the prevailing w a v e c o n d i t io n s . T h is d i s e q u i l ib r iu m is m anifest by beach change, e i ther erosion, when attempting to respond to h igher waves and becom e more dissipative, or accretion, when lower waves induce beach accretion and a more reflective profile.

Table 1 lists the modal Q and wave height for the range o f beach types observed on

Page 6: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

5 9 4 SHORT

T A B L E 1

Beach type, Q. and wave height on N arrabeen Beach, A ustralia (Source:

W right et al. 1984 1985, Short 1993)Tipo de playa, £2 y a ltura de la o la en

N a r rabeen B each . Aust ra l ia (F uen te de origen: W righ t et al. 1984 1985, Short 1993)

B ea ch type /s ta te Q mean* Q sd W ave height (m)

Dissipa t ive > 5.5 > 2.5L ongsho re bar & trough 4 .70 2.0-2 .5R hy thm ic bar & beach 3.50 ■ 1.5-2.0T ransverse b a r & rip 3.15 0.64 1.0-1.5Low tide te rrace 2 .40 0.19 0.5-1 .0Ref lective < 1.5 - < 0 . 5

*m ean W s = 0 .04 m/s : T = 10 s.

N arrab een beach . A ustra lia . H ow ever, the w ave height in particular, should only be taken as a guide for beaches with similar w ave period and sedim ent size.

Th is sequence o f beach types was d e ­ve loped for essen tia lly single bar beaches in m ic ro - t id a l e n v iro n m e n ts and does not directly apply to m ulti-bar beaches and those in h igher tide ranges, or in some estuarine e n v iro n m e n ts . T o inco rp o ra te these beach env ironm ents two additional param eters have been in troduced , first beach gradient, and then tide range.

M icro-tida l, m u lti-bar beaches

M any m icro-tidal beaches have m ore than one bar. T w o bars are co m m o n on swell coasts (Short 1993), while in seas three to fives bars are m ore com m on (Short 1975, A agaard 1990; Short & Aagaard 1992). In order to accom m odate multi-bar beaches in a general sequence of beach types, two ad­ditions to the single bar model are required. F irs t , the e n v i r o n m e n ta l c o n d i t io n s tha t favour multiple bars, (not covered in Figure 2), and second, the impact on beach/bar type and change in m ulti-bar systems.

Short & A agaard ( 1993) developed the bar param eter (B*), to help explain the presence and num ber of bars in a wide range o f micro- tidal beach environm ents, where:

B" = X / g tanß T 2

and X is the d istance offshore (m) to w here ß tends to zero, g is gravity (m/sec), and ß the beach-nearshore slope (degrees). They found that

• no bars (reflective beaches) occur w here B* < 20;• one bar when B * is 20 - 50,• two bars when B* is 50 - 100;• three bars when B* is 100 - 400;• and four or m ore bars when B* > 400

In other words, bar num ber increases as gradient and/or wave period decreases. This re la tionship is a p roduc t o f the su rf zone dynam ics that con tro ls bar fo rm ation and spacing. Infragravity standing waves will in­duce residual flows such that bars tend to fo rm un d er the s tan d in g w av e an t inodes , w hile troughs will occu r u n d e r the nodes (Short 1975).T he spac ing o f the stand ing waves is positively related to w ave period and inversely related beach gradient. In other words the bars are m ost likely to be form ed w here period is short, hence the bars are c losely spaced and therefo re in sha llow er water, and gradient low, hence the bars are closer to the surface. They are least likely to occur where wave period is long which p ro ­duces m ore widely spaced bars, that extend into deeper water, and w here gradients are s t e e p a n d th e w a te r to o d e e p f o r b a r formation.

Figure 1 illustrates a generalised m odel o f one, two and th ree bar beach system s. The two and three bar systems have several important characteristics not p resent on the single bar m odel. First, there is a lw ays a hierarchy o f bar types, with the outer bar being the highest energy type, and the inner bar/s the lower energy type. This is a result o f wave breaking leading to decreasing wave height across the bar system, which in turn reduced Q. , and thereby beach/bar type (F igu­re 2). Second, the outer bar/s may becom e inactive and stagnate, particularly in sea en­vironments, as wave height decreases below a certa in th resho ld (A agaard 1989, Short1992). Third , w hile m os t m u lt i -b a r beach types have a d iss ipa tive h igh energy end mem ber, at the low energy end only the inner bar may becom e reflective. R arely do the outer bar/s reach the beach owing to their inactivity during low waves.

Page 7: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

BEACH CLASSIFICATIONS 5 9 5

In m ulti-bar systems, the inner bar can be assum ed to behave like a lower energy single bar beach, m oving through a range o f usually lo w er en e rg y b each types (T B R -L T T -R ) , w h ile the ou te r bar/s usua lly rem ain d is ­sipative, or at best move through the higher e n e rg y b e a c h ty p e s (D -L B T -R B B ) . T h is outer bar m ovem ent is m ore likely to occur in swell environm ents , while stagnation is m ore likely in storm dom inated sea environ­m ents , w here ca lm s m ay prevail betw een s torms. F igure 3 illustrates the nature and f r e q u e n c y o f o c c u r r e n c e o f d o u b le b a r sy s tem s a long the open, swell dom ina ted N ew South W ales coast. Note that the inner ba r ra re ly m o v e s b eyond the T B R state.

while the outer bar only reaches the T B R state 5% o f the time. In addition m ovem ent horizon ta l ly across the char t ind ica tes an inactive outer, but active inner bar, w hile m ovem en t dow n or d iagona lly across the cha r t in d ica tes bo th b a rs are a c t iv e and changing. The modal double bar situation for the N S W beaches are accom m odated in the com bination of outer L B T or RBB, and inner TB R or LTT, which account for 83% o f the observations. Care m ust be taken is applying Figure .3 to other regions and environm ents, as changing wave and sed im ent c o m b in a ­tions may produce additional bar com bina­tions and certainly different frequencies o f occurrence.

L B T R B BINNER BAR

TBR LTT

DC

OQ

DCUjKSo

KOQ

TROUGH

TROUGH

MODAL N SW BEACH STATES

Shoreward migration and intensifiée rhythmic relief produced by incident waves and topographically induced cellular circulation. % OBSERVED

, (n=1001 )

OQOQOC

TROUGH

BEACH CUSPS

TROUGH

M — Fin er C o a r s eI N N E R B A R S E D I M E N T S

Fig. 3: O bserved outer and inner bar com binations on the New South W ales coast. N um ber indicates frequency o f occurrence, based on 1 001 observations. M odified from Short & A agaard 1993.C o m b in ac io n es observadas de barras externas e inte rnas en la costa de N ew South Wales . Los núm eros indican frecuencia de o cu rrenc ia basados en I 001 observac iones . M odif ied from Short & A agaard 1993.

Page 8: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

5 9 6 SHORT

Im p a ct o f tide range

T h e s in g le - and m u l t i -b a r b each m o d e ls p resen ted above do not consider tide range in their developm ent. H ow ever, it has been long recognised that tide is important in influenc­ing beach m orphodynam ics (Davis & Hayes 1984; C arte r 1988; Short 1991). In order to accom m oda te increasing tide range, M asse- link and Short (1993) in troduced the relative tide range param eter

R T R = TR / Hb

w here T R is m ean spring tide range (m). By using both R T R and £2 they classified sand beaches into eight types. F or simplicity these have been reduced to six in Figure 4.

W hen R T R < 3 the three single bar, m i­cro-tidal beach types (reflective, intermediate and dissipative) o f W right & Short (1984) apply. These are identical to the single bar o f F igure 1 described in the previous section. L a n d w a r d o f the b r e a k e r zo n e they are dom ina ted by surf and swash zone processes. As tide range increases the impact o f both the swash and surf zone processes decreases

as shoaling waves increase in m orphological dom inance. The swash zone is restricted in impact to the high tide beach, while the surf zone is initially de tached from the sw ash zone by an intertidal zone and located at the low tide level. W ith increasing tide d o m i­nance shoaling wave override the transient surf zone and dom inate the inter- and sub- tidal morphology.

W hen R TR is betw een 3 and 15, the tide is 3 to 15 times the w ave height. T hree beach types can be identified, nam ely the reflective plus low tide terrace (RLT), the low tide bar and rip (LBR) and the u ltradissipative (UD). W h e n Q, < 2 and re la t iv e ly low w a v e s prevail, the beach face is steep and reflective, like its low er t ide co u n te rp a r t . H o w ev e r , the lower beach face, ra ther than a step, has a low tide terrace which m ay be continuous, or cut by rips. This is called the reflective plus low tide terrace type. R ips will only occur when the R T R < 7 and w aves exceed 1 m. Also as R T R increases so to does the width of the low tide terrace.

As wave height increases caus ing Í2 to be between 2 and 5. the low tide bar and rip

______________ D IM EN SIO N LES S FALL V ELO C ITY £2= H |/w _______q REFLECTIVE INTERMEDIATE ^ DISSIPATIVE

X■—, XMS

II

XHX

tíOz2aomHtí>H<títíX

m

m

reflective

c u sp sK re fle c tiv e b e a c h fa c e

■ LT

low tide terrace

re fle c tiv e h ig h tid e b e a c h

_ d is s ip a tiv e lo w tid e te rra

LT

(c u sp s ) barreds te ep b e a c h fa c e h t

- L Tde ep tro u g h , ,

/ — < p ro n o u n c e d b a r

steep b e a ch fa c e

su b d u e d b a r -m o rp h o lo g y

LT

_ 0_ _______ 1Q0________2D Q .__________

low tide bar/riprcpX .f l g g p i r b e a c h fa c e ___________ h t

b w tid e

( m a s k b a r ) a n d r ip^ m o rp h o lo g y LT

barred dissipative

- 2 ^ _____ su b d u e d m u ltip le bar-

b a r n ^ ~ ~ f rouH^ m o rp h o lo g y

100 200

(cu sp s)ultra-dissipative

f l a t a n d fe a tu r e le s s

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

transition to tide-dominated tidal flats

a s 9 4 5 9 m b H S = 1 2 3 /8 /9 5 B A .S h o r t B o o k P u b l ic a t io n

Fig. 4: C onceptual beach model based on Q. and the relative tide range (RTR). W hen RTR < 3 and £2 < 2, the m icro tidal beach types dom inate. W hen RTR is between 3 and 15, tide range increasingly dom inates the w ide intertidal beach, with cusps restricted to high tide, and bars and rips, when present, to low tide. W hen RTR > 15 the transition to tidal flats is entered. (M odified from M asselink & Short1993).M odelo concep tua l de p laya basado en £2 y rango mareal re la tivo (RTR). C u ando R T R < 3 y £2 < 2, d o m in a el t ipo de p laya m ic rom area l . C u an d o RTR es tá entre 3 y 15, el rango mareal dom ina en fo rm a c recien te la am p l ia p laya in te rm area l . con cúsp ides re s tr ing idas a pe r íodo de m a rea a lta y barras y re sacas (cuando presentes) durante la m a rea baja . C u ando R T R > 15 se e n t ra a la t rans ic ión h ac ia p lanic ies de marea. (M odif icado de M asse l ink & Short 1993).

Page 9: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

BEACH CLASSIFICATIONS 5 9 7

type dom inates. It consists o f a steeper high tide reflective beach face, fronted by a wide low g ra d ie n t in te r t id a l zone , w h ich may contain a low swash bar (ridge and runnel). Only at low tide does a bar form, and this may be a con tinuous a ttached bar cu t by transverse rips or rhythm ic with alternating bars and r ips , the la t te r req u ir in g h ig h er waves. W hen R T R > 7 increasingly higher waves (> 2 m) are required to maintain the b a r / r ip type , o th e rw ise it b eco m es u ltra - dissipative.

W hen Q. > 5 due to h igher waves and/or f in e r sand, the en tire inter- and sub-tidal profile becom e flat and relatively featureless, called ultra-dissipative (after M cLachlan et al. 1993). Cusps m ay be present in the spring high tide zone, and very subdued swash bars m ay fo rm the in in te r t ida l zone , bu t the overall profile is a low gradient and concave, with no distinct bars o r rips at low tide. As tide range increases, so to does the width of these beaches, which may reaches several hundred meters.

A nother characteristic o f beaches in areas o f high tide range is often a distinct break in slope betw een the dry high tide beach, and perm anen tly saturated low er tide beach. It is diagnostic of the reflective/low tide terrace beach, but becom es less p rom inent on more d is s ip a t iv e b each es . W h e re the h igh tide beaches is steep the break in slope is often sharp and m arked by an abrupt change to finer sediment. At this point a low gradient low tide d iss ipa tive beach is formed. The elevation of the break in slope is related to grain size, increasing with finer sand and decreasing with coarser sand (Turner 1993). The break also usually coincides with the point o f low tide water d ischarge from the beach, the effluent point.

W h e n R T R > 15, beach es b eco m e in ­c r e a s in g ly t id e d o m in a te d and b e g in to tend tow ard tidal flats. As beaches exist in all tide ranges, up to the m ax im um of 15 m, this implies that to have tidal flats, the increase in R T R beyond 15, m ust be induced by a substantial decrease in wave height. As tidal flats occur on all m icro-tidal coasts, clearly it is the low er w ave height, rather than high tide range, that is m ost critical in reaching this dom ain . W here som e waves do prevail the beaches initially tend to have a steep high

tide beach fronted by intertidal sand flats. As R TR » 1 5 then the dom ain o f true tidal flats is approached with no high tide beach and low gradient intertidal flats that m ay contain increas ing p ro p o r t io n s o f f in e r sed im en ts (silts and mud).

The R T R param eter can also be used to classify wave dom inated estuarine beaches. All the above types can be found in estuaries, but there are three problem s in classifying and identifying these beaches in estuaries. First, is ob tain ing an accura te m easu re o f dom inant wave height. This is d ifficult in estuaries w here calm s usua lly prevail and ep isod ic s trong w ind w aves or even low ocean swell are likely to dom inate any wave form ed features. For m uch o f the time the estuarine beaches m ay lie inactive, with the m o rp h o lo g y or b each ty p e b e in g fo rm ed during the infrequent periods o f h igher wave activity. It is therefore essential to obtain a m easure of the waves that form the beaches, not necessarily the prevailing low er waves. Second, during periods o f h igher estuarine waves, they may not have sufficient energy to develop the infragravity dom inated c ircu­lation required to p roduce rhythm ic to p o ­graphy, including bars, rips and cusps. H ence while the estuarine may develop the tw o d i­mensional profile o f the above beach types, they m ay not have su ff ic ien t in fragrav ity wave energy to develop three d im ensional rh y th m ic fea tu re s . F in a l ly , in m ic ro t id a l estuaries, small changes in w ave height will produce a large change in R T R (Figure 5). Consequently rapid spatial changes in beach type may occur in micro-tidal estuaries due to longsho re var ia tion in fo rm a tiv e w ave height in a fixed tide range.

O verall, the im pac t o f tide range is to increase the dom inance o f w ave shoaling, particularly at the expense o f the su rf zone, and thereby restrict swash dom inance to the narrow high tide zone. Hence, increasing tide r a n g e p ro d u c e s b e a c h e s w ith a s te e p e r , s w a s h -d o m in a te d h ig h t id e sw a s h zone , usually com posed o f coarser sediment. The surf zone shifts with the tide, and can only imprint itself on the m orphology at low tide, during the turn of the tide, o therwise not at all. The intertidal profile is low in gradient and c o n c a v e up in p ro f i le . T h e e x p o se d surface is a p laner surface at low tide, but

Page 10: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

5 9 8 SHORT

W a v e p e r io d = 8 s e c ; s e d im e n t ta il v e lo c i ty = 0 .0 4 m /s

1°1------------------------ 7---------------------------- 7-----------------------------------------1/ // // /T r a n s i t io n to / '

8 - t id a l f la t / / U ltr a d is s i p a t i v e

ia / / --°> / /1 6-.g / / lo w t id e b a r /r ip

en / w i t h o u t /

'I 4 - / fiPs/™ / / /

2 / / l i t b a r r e d d is s i p a t i v e

2 . / / w i t h r ip s <-̂ - ' ' "

i '/ // // / R e f le c t iv e

0 - t T ---------------------- ,-------------------------- ,---------------------------,-------------------------- ,-------------------------- 10 .0 0 .5 1 .0 1 .5 2 .0 2 .5

B r e a k e r h e ig h t (m )

Fig. 5: This plot shows the location o f the beach types presented in Figure 4, based on tide range and breaker w ave height, in the case of a wave period o f 8 sec. and grain size (W s) of 0.04 ml sec. The boundaries are indicated by dotted lines, as their position will shift with changes in T and W s. N ote how, in areas o f low waves or low tides, small changes in tide range and/or wave height will produce large shifts in beach type. (M odified front M asselink & Short 1993).L oca l izac ión de Ios tipos de p layas p re sen tados en la Fig. 4; g rá f ico basado en rango marea l y a ltura de la olas (período de la o la = 8 segundos , ve loc idad de sed im entac ión = 0.04 m/seg .) . Los l ím ites se seña lan con líneas punteadas; sus p os ic iones varia rán acorde Ios cam bios de T y velocidad de s ed im en tac ión . Nótese , c ó m o en áreas con olas o m areas ba ja s, c am bios p e queños en el rango mareal y/o a ltura de las olas p roduc i rán cam b io s signif ica t ivos en el tipo de p laya (M od if ic ad o de M asse l ink & Short 1993).

covered by shoaling w ave ripples at high tide (M asselink, 1993).

F ig u re 5 i l lu s t ra te s the e n v iro n m e n ta l range o f macro- to micro-tidal beaches. It is in teresting to note the convergence o f the b o u n d a r ie s in a re a s on b o th low w aves and low tide. This implies that ‘m acro-tida l’ beach types can exist in areas of low tide range, if w aves are low enough; and that small changes in w ave height and tide range will h ave a p ro n o u n ced im pac t on beach m orphology in these low wave-tide environ­m ents, such as in estuaries. However, this im p a c t is m o re l ike ly to m a n ife s t i t se l f spatia lly , ra ther than tem porally , m ean ing that e s tuar ine beaches are unlike ly to ex ­perience rapid temporal change in response to changing w ave conditions, rather they are episodically rew orked by infrequent higher form ative waves, and inactive in between. L o n g sh o re c h a n g e s in the level o f w ave

T r a n s i t io n to / 't id a l f la t / / u , t r a d is s i p a t i v e

/ |T T / lo w t id e b a r /r ip / LI I / ^ '

/ w i t h o u t /

/ "ps// /

/ / \ _ j j b a r r e d d is s i p a t i v e

/ / w i t h r i p s ^ - ’ ' ”

/ / , - '■ 'R e f le c t iv e

1 .0 1 .5

B r e a k e r h e ig h t (m )

exposure , how ever , can and does lead to rapid spatial changes in beach and/or tidal flat morphology.

In summary, it is the relative range o f the tide versus waves that is im portan t in d e ­termining beach types. W hen R T R < 3 the wave dom inated surf zone largely controls beach m orphology , but as R T R increases, it is the w ave d o m in a te d , w a v e sh o a l in g zone, as it is transferred horizontally b ack ­wards and forwards across the sub- and in ­tertidal zone, tha t inc reas ing ly d o m in a te s and determines beach and intertidal m orpho­logy.

H eadland im pacts (and m egarips)

All the above apply to long beaches with no boundary effects . H o w ev e r , head lands , rocks, reef and structures will all impact the beach and surf zone through their influence on wave refraction and attenuation, and by limiting the developm ent o f longshore cur­rents, rips and rip feeder currents. M artens et al. (in press) found that as wave height (Hb) increases and shoreline length (SI) decreases, a critical threshold is reached where the single bar beach m odel is increasingly m odified . On beaches with no headlands ‘no rm a l’ surf zone circulation prevails . W hen headlands are present and are w idely spaced and /o r the beach rece ives low w aves , the beach becom es sub-intermediate, as the headlands impact surf zone circulation only adjacent to the headlands, with norm al circulation b e ­tween. As wave height increases and/or the headland are c loser together, the entire beach circulation may eventually becom es im pact­ed by the head lands . A t th is s tage to p o ­g raph ica lly con tro lled ce l lu la r c ircu la t ion , called megarips, prevail (F igu re '6). M egarips are defined as large scale, topographically con tro lled rip sys tem s (S hort 1985). T he degree o f headland impact can be predicted using S ’ where

S ’ = S 12/100C1 Hb

and Sj is the shoreline length betw een the h e a d la n d s , an d C l is th e c h o rd le n g th directly betw een headlands. The im pact o f Ô’ on beach circulation is indicated in Figure 7. W hen

Page 11: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

BEACH CLASSIFICATIONS 5 9 9

H ead land 1

Ls-

L e

SI = S ho re line leng th C l = C hord leng th betw een

headlands Le = M ega rip leng th Ls = M ega rip s tream line

H eadland 2

Fig. 6: Schem atic diagram and param eterisationof an em bayed m egarip. (M odified from M artens et al. in press).Diagram a esquemático y purametrización de una megairesaca incluida en una bahia (modificado de Marrtens et al., en prensa ).

S 2 4

In te rm ed ia te

T ransitional

: 4) EQ—C

à f ------ ►

C ellu larJS c =

ô i f

QFig. 7: The dim ensionless fall velocity (Í2 ) is p lo tted aga inst the d im ension less em baym ent scaling param eter (5 ’). The m icro-tidal beach model applies when 5 ’ > 19. As 8 ’ m oves be­tween 19 and 8 a transitional stage is reached as em baym ent ends begin to increasingly influence circulation, while when 5 ’ < 8, the em baym ent size and shape dom inates the entire surf zone circulation, usually producing m egarips. (From M artens et al. in press).Gráf ico de re lac ión entre el pa rá m e tro no d im ens iona l de p ro tecc ión topográ f ica (“e m b a y m en t sca l ing pa ra m e te r” ) y la v e lo c id a d de s e d im en ta c ió n (p a rá m e tro a d im e ns iona l ) ( Q ) . C u an d o Ios va lores del p r im er parám etro son >19 se apl ica el m ode lo de p laya microm area l . A m ed ida que Ios va lo res del m ism o se m ueven entre 19 y 8 se a lcanza un es tad io trans ic ional . donde Ios ex t rem os de la bahía e m p ie ­zan a in f luenc ia r en fo rm a c recien te la c irculación. Cuando el va lor del pa rá m e tro de p ro tecc ión topográfica es < 8, el tam año y fo rm a de la ba h ía d o m in a la c ircu lación de toda la z o n a de r o m p i e n t e , u s u a l m e n t e p r o d u c i e n d o m e g a - rresacas . (D e M artens e t al., en prensa) .

8 ’ > 19 normal beach circulation8 ’ = 8 - 19 transitional circulation8 ’ < 8 cellular beach circulation

N o rm a l b e a c h c i r c u l a t i o n is w h a t is described above for micro- and m acro-tidal beaches (Figures 1 and 4).

Transitional circulation occurs when the e m b a y m e n t size and shape b eg in s to in ­creasingly influence the surf zone circulation, by in itia lly caus ing longshore curren ts to turn and flow seaward against each headland, while still m aintaining som e normal beach circulation away from the headlands.

Cellular circulation occurs when the topo ­graphy (headlands) control the c ircu la tion w ith in the e n t i re em b a y m e n t . L o n g sh o re flow dom inate within the em baym ent, with strong, seaward flowing m egarips occurring at one o f both ends o f the em baym ent, and in longer em baym ents also aw ay f rom the headlands.

Figure 8 can be used as a guide to the com bination o f em baym ent d im ensions and breaker wave height that p roduce transitional and cellular circulation, together with the ap­proximate spacing for the megarips. W hereas small em b ay m en ts (< 2 km ) will sh ift to cellular circulation w hen waves exceed 3 m, long em baym ents(> 5 km) require w aves to ex c e e d 6 m to reach c e l lu la r c i r c u la t io n with rips spaced 2 km apart. The largest rip spacing observed on long straight beaches, is on the order o f 3 km on the high energy C o o ro n g coas t o f S ou th A u s tra l ia (S hort 1985).

In add it ion to the above im pac ts , e m ­baym ents and particularly the m egarips they produce also influence beach e ros ion and the seaward extent o f surf zone circulation. W hereas normal beach rips usually begin to d i s s ip a te s e a w a r d o f th e b r e a k e r z o n e , megarips have been m easured to flow at high velocity (~ 2 m/s) up to 1 km seaw ard o f the breakers . This has im por tan t im p lica t ions for beach erosion, and seaward transport o f se d im e n ts , n u t r ie n ts and o rg a n ism s . B a ­sically because the ce l lu la r c i rcu la t ion is constra ined by the headlands, in o rder to d is c h a rg e w a te r f ro m the su r f zo n e , r ip ve loc it ies are h igher, reach in g 2 m /s and more. This in turn leads to g rea ter beach erosion, with erosion greatest in lee o f the rip

Page 12: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

6 0 0 SHORT

8=8 8=197

6

5

O)4

3

2i Existing B each Model

1

o0 2 4 6 8 10 12 14 16

Effective Shoreline Length, Se (km)

Fig. 8: B reak er w ave he ig h t p lo tted against shoreline length to indicate both the range o f the existing, transitional and cellular beach models (Fig. 5), and the p red ic ted m egarip shoreline spacing. The largest m egarips are produced in the longer em baym ents by the higher waves, whereas sm a ll e m b a y m e n ts w ill s h if t to c e llu la r circulation under relatively small waves. (From M artens et al. in press).A ltu ra de la o la en la zona de rom pien te versus longitud de la costa ; se ind ican Ios rangos de Ios m ode los existentes de playas , Ios de Ios t rans ic iona les y celu la res (Fig. S). adem ás del e sp ac ia m ien to a lo largo de la costa de las m egarresacas p red ichas . L as m ega rre sacas más g randes son orig inadas por las olas m ás altas en las bah ías más largas, mientras que las bahías pe queñas m os tra rán una c ircu lación celu lar en c o n d i ­c iones de olas re la t ivam en te pequeñas (De M artens et al., en prensa) .

(Short 1979). As the velocities are higher the rip cu rren ts can carry m ore m ateria l and c o a r s e r m a te r ia l , a n d as th ey p e n e t r a te further out to sea, they can carry this material a grea ter d istance from the shore. The net result is m ore rapid and severe beach erosion on such beaches, with the eroded sediment taking longer to return to shore, com m only 2 to 5 years fo llowing severe erosion (Short et al 1995), and perhaps even lost from the system, to longshore or inner shelf deposits.

D IS C U S S IO N

S a n d y b e a c h e s ex is t in a w ide ran g e o f coastal environm ents . Their grain size can

range from fine sand to gravel, w aves from calm to gigantic, and tide from zero to 15 m. All these beaches are, however, fo rm ed by the three wave processes o f shoaling, b reak ­ing and swash, with the three w aves zones increasingly shifted by increasing tide range. This paper has briefly rev iew ed the m ajor param eters that con tr ibu te to b each shape and change. The role and range o f each pa ra ­m eter is sum m arised in Table 2.

In micro-tidal systems only w ave height, period and grain size are required to classify beach systems. These are incorporated in £2 to classify the three beach types -reflective, intermediate and dissipative (Table 2a). As tide range increases, it con tinuously shifts the position o f the three wave zones, and th e re b y , m o d i f ie s the b e a c h m o r p h o d y ­namics. To incorporate tide the R T R utilises both spring tide range and wave height. This is used together with £2 to c lassify beaches by their R T R and £2 into the three micro-tidal plus three tide dominated beach systems. It can a lso be u sed to de f ine the boun d ary between beaches and tidal flats (Table 2a).

O n em b a y e d b each es , less than a few k ilom etres long, the e m b a y m e n t size and shape will obstruct normal beach circulation. As e m b a y m e n t leng th d ec reases , and Hb increases, the em baym ent becom es too small to accom m odate norm al su rf zone circulation and will shift to trans it iona l and ce l lu la r c i rcu la t io n lead in g to m e g a r ip fo rm a t io n (Table 2b).

F in a l ly , th e s e a w a r d e x t e n t o f th e s e beaches and the num ber o f bars is, however, dependen t on additional variables, nam ely beach gradient (tan ß), and this can be in­corporated in the bar param eter B* to de te r­mine the num ber o f bars, with the bar n u m ­ber increasing in micro-tidal systems as T and/or tan ß decrease (Table 2c).

The foregoing classification o f beach types is required for a num ber o f reasons. First it p rovides an understanding o f the dom inant processes acting on and controlling the mor- phodyanm ics o f the w o r ld ’s various beach systems, in all wave, tide and em bayed loca­tions. Secondly, as beach m orphodynam ics changes so too will the w hole range o f as­soc ia ted beach sy s tem s and su b -sy s tem s , in c lu d in g b e a c h m o r p h o s t r a t i g a p h y (eg . G re e n w o o d & D av is 1984; S h o r t 1984);

Page 13: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

BEACH CLASSIFICATIONS 6 0 1

T A B L E 2

Im pact o f salient environm ental param eters on beach type (a), circulation (b) and bar num ber (c).Shaded indicates a rea o f tidal effects

Im pacto de pa rám etros am b ien ta les sobresa l ien tes sobre lipo de p laya (a), c irculación (b) y n úm ero de barras (c). S om breadosindican áreas con efectos maréa les

a. T ide range W avehe ightW aveperiodSed im ent

b. E m b a y m e n t geom etry

c. (Grad ien t)*

TR (m) Hb (m)T (s)W s (m/s)

SI (m) Cl (m)

tan ß

RTR £2 = 5 ’ = S,2/1 00 C, B* = Xs/ tan ß T ,2= T R /H b H b/W sT Hb

Beach type & circula tion b ar n um berabbrevia t ion

< 3 £2 < 1 re flective RLT T

6 ’ > 19 norm al < 2 0 = 0 bar

£ 2 = 2 - i in te rm edia te TBR,R B B , L B T

6 ’= 8-19 sub 20-50 = I bat-

£2 > 6 dis sipative D 5 ’< 8 cel lu lar 5 0 - 100 = 2 bars 100-400 = 3 bars > 40 0 = 4 + bars

= 3 - 7 £2 < 2 reflec t ive & L T T RLT 8 ' > 19 normal£ 2 = 2 - 5 L T b a r & rips LBR S ’ = 8-19 sub£2 > 5 ul t rad isss ipa t ive L O • 8 ' < 8 cel lu la r

'T,

r--11 £2 < 2 beach & L T T : BLT 8 ' > 19 normal£2 > 2 ul tradis s ipative L O ■ . 8 ’ = 8-19 sub

8* < 8 cel lu lar> i s > tidal flats - t f ,)

beach ecology (eg. M cL ach lan & Erasm us 1983; this volume); and beach erosion (eg. W righ t 1980, Short 1985). These in turn will impact beach safety (eg. Short 1993; Short & H ogan 1995); long term barr ie r evolution (eg. Short & Hesp 1982); and beach m ana­gem ent (Short & Hogan 1995).

It is therefore critical to understand the type and nature o f beach systems wherever they occur. Each beach system is the product o f a certain com bination of waves, sediment and tide, and may also be influenced by the overall g radient and topography, if present (such as headlands, reefs, rivers). The cha­racter o f a beach is often predeterm ined or i n h e r i t e d f r o m th e a v a i l a b l e s e d im e n t , p revailing tide range and the wave climate. A s t id e s a n d s e d im e n t can be a s su m e d co n s tan t w ith in an ind iv idual beach , then tem poral beach changes are largely driven by changing w ave conditions. At a regional lev e l b e a c h s y s te m s w il l no t o n ly vary tem pora lly in response to waves, but also

spatially in response to regional changes in sediment size, gradient and headlands.

To il lus tra te the tem p o ra l v a r ia t io n in beach type Short (1979) introduced the beach state curve, that simply plots the frequency of occurrence o f beach types on a particular beach. Short & W right (1984) e laborated on this by expanding the concept to a range of beaches a round the south eas t A ustra l ian coast. The results shown in Figure 9, indicate both temporal change in a range o f micro- tidal beach types (reflective to dissipative) based on changes in wave height, together w ith the c h a n g e in b e a c h ty p e b e tw e e n various beaches. Finally, Short (1993) in a survey o f all 721 N S W beaches was able to classify all beaches as to their modal beach type and bar num ber (Figure 10). In this way individual and regional beach characteristics can be presented in a simple and s tandardis­ed format.

Beaches can and do change dramatically bo th in space and in t im e. A ll o f these

Page 14: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

6 0 2 SHORT

INTERMEDIATE%

100

0.1 1 6 2 0 0 .1 , Fisherman’s Beach

Í t í \n i t b a l a i di Ebe dillii

20 0.1 1 6 20 0.1 1 6 200.1 1 6 20 0.1 1 6 20 0.1 1 6 20 Collaroy Narrabeen Eastern Mid Seven Nth Seven GoolwavenBeach Beach Beach Mile Beach Mile Beach Beach

RB Di i i

BR BT

LT

I b r

C iBT

BRLT r

RBBT

RBBTBR

o n

REFLECTIV ELOW TIDE TE R R A C E /R ID G E • RUNNEL T R A N SV E R S E BAR & RIP

BEACH STATE * MODAL STATE

BT

D

BRBR

_ | _ _ L

RBBTD

LT RB

RHYTHMIC BAR & BEACH LO N G SH O R E BA R-TRO UG H

DISSIPATIVE & R IP

DISSIPATIVE

lon gsh o re bar-trough rhythmic bar & beach tran sv erse bar & rip ridge-runnel low -tide terrace

REFLECTIVE

REFLECTIVE <■

0.2

INTERMEDIATE 4

DISSIPATIVE

threshold

O M odal S ta teB EACH KEY

G G o o lw aNS N th S e v e n M ileMS Mid S e v e n M ileE E a s te rnM M o ru y aN N a r ra b e e nP P almC C o lla ro yB B ra c k e nF F is h e r m a n 's

Hb / w s T

Fig. 9: A plot o f beach state curves for selected representative south east A ustralian beaches. The top graphs plot annual distribution of Í2 based on the beach’s Hb, T and W s. The bar graphs plot the frequency of occurrence of each beach type in response to the Í2 distribution, while the low er graph plots the modal beach state, together with the tem poral range in Í2 and beach type for each beach. (Source: Short & W right 1984).G ráf ico de curvas de estadios de playas de sitios representa t ivos del su r este de Aust ra lia . Los gráf icos super iores represen tan la dis tr ibución anual de Í2 basado en a l tu ra de la olas (Hb), pe r íodo de las m ism as (T) y ve loc idad de sed im entac ión de la partícu la (Ws). Los gráf icos de barras represen tan la frecuencia de o cu rrenc ia de cada tipo de p laya en respues ta a la dis tr ibución de Q , mientras que Ios gráf icos in fe riores represen tan el estado modal de p layas, ju n to con el rango tempora l en Q y t ipo de p laya pa ra c a d a sitio (Fuente de origen: Shor t & W righ t 1984).

changes are predictable, as all are related to changes in the regional and/or temporal con­tribution, o f the wave, tide, sediment, slope and em baym en t param eters that control all beach systems.

Using the two parameters, ñ , and R TR , all o p e n c o a s t (an d m a n y e s tu a r in e ) s a n d y beaches, dom inated by waves and influenced by tides, can be classified as to their three d im e n s io n a l m o r p h o lo g y a n d d y n a m ic s ;

Page 15: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

BEACH CLASSIFICATIONS 6 0 3

a. BEACH NUMBER b. BEACH LENGTH PERCENTAGE

Ujo

2OQ

CO

U -O

ttU jCQS=3

200

150

100

50

□Single bar

Outer (double) bar

Inner (double) bar

.42

meanNumber o f Beacheslength

of beaches

o

Xo<LUCQ

5CO

<o

o<c

oGC

LTT TBRFig. IO: O ccurrence o f single and double bar beach types/states on the m icro-tidal New South W ales coast, (a) plots the num ber o f each beach type, its average length, and w hether it is part o f a single or double bar system, (b) plots the total length of each beach type along the coast. (Based on Short 1993).O c u rre n c ia de e s tad ios / t ipos de p layas con s is temas de barras s imples y dobles en la cos ta m ic rom area l de N ew South W ales , (a) se rep resen ta el núm ero de cada tipo de playa , su longitud p rom edio y si son parte de un s is tem a de barras s imples o dob les , (b) se rep resen ta la longitud total de cada tipo de p laya a lo la rgo de la costa (D e Short 1993).

while the bar param eter B* will indicate the num ber o f bars; and the 8 ’ param eter the potential im pact o f headlands. The three para­meters, using five variables (wave height and period, sand size, beach slope, em baym ent d im ensions) , can provide the key elements in a globally applicable sandy beach classifi­cation.

Beaches in micro-tidal environm ents may be reflective, in term ediate or dissipative and have from none (reflective) to several bars, with one or tw o favoured by open coast swell e n v iro n m en ts , w h ile m u lt i-ba rred beaches are favoured by storm effected, short period, s e a e n v i r o n m e n t s , w i th lo w n e a r s h o r e gradients. W here multi-barred beaches exist they alw ays have an hierarchy of bar types, with m ore dissipative outer bars and more in term ediate to reflective inner bar/s. E m bay­ed beaches have c irculation dom inated by strong rip currents (megarips) at the em bay­m ent ends, with normal circulation between. As Hb increases and/or em baym ent length decreases , the headland controlled c ircu la­tion grow s to dom ina te the entire em b ay ­ment.

Increasing absolute or relative tide range will increase the role o f tide induced shore­line excursion, which leads to the increasing dom inance o f wave shoaling, over the surf and sw ash zone p ro cesse s . T h is in i t ia l ly results in a disassociation of the surf zone from the swash zone, then a plantation o f the surf zone with no bars or rips, and finally, with high RTR, a shift from beach to tidal flat environments.

All beach systems can be therefore c las­sified according to the above parameters . As parameters change in time and space so to do beaches. C onsequently by understanding the role o f each param eter in beach type, spatial and temporal changes in beach type, includ­ing erosion and accretion, can be predicted if the change in the form ative param eter/s is known.

A C K N O W L E D G M E N T S

This paper presents a synthesis for research funded by the Australian Research Council. M y c o l l e a g u e s G e rd M a s s e l in k , T r o e l s

Page 16: The role of wave height, period, slope, tide range and ... · cro-tidal model into areas of increasing tide range when all three zones are daily translat ed to and fro across the

6 0 4 SHORT

A agaard and D anny M artens assisted with m any o f the ideas presented here, while John Roberts drafted all figures.

L I T E R A T U R E C IT E D

A A G A A R D T ( 1990) In fragravity w aves and nearshore bars in p ro tected , s to rm -dom inated coasta l environments . M ar ine G eo logy 94 181-203.

A A G A A R D T & B G R E E N W O O D (1995) Suspended sed i­ment transport and m orpho log ica l response on a d is ­s ipat ive beach. C ontinen tal S h e l f Research 15 1061- 1086.

B O W M A N D & V G O L D S M IT H (1983) B ar m orpho logy o f diss ipa t ive beaches: an empir ica l model. M arine G eo logy 51 15-33.

C A R T E R R W G (1988) C oas ta l E n v i ro n m en ts . L ondon . A c ad em ic Press 617 pp.

D A V IS , R A, JR & M O H A Y E S (1984) W hat is a wave do m in a te d coas t? M arine G eo logy 60 313-329.

G R E E N W O O D B & RA D A V IS Jr." eds (1984) H y d ro ­d y n a m ic s and s e d im e n ta t io n in w a v e d o m in a te d coas ta l env ironm en ts . M ar ine G eology 60 473 pp.

G O U R L A Y , M. 1968. B each and dune erosion tests. Delft H ydrau l ics Labora to ry Report N° M 935/M 936 .

M A R T E N S DM . D T W IL L IA M S & PJ C O W E L L in press. M ega-r ip d im ens iona l analyses on the Sydney coast. Austra lia , and im plica t ions for beach-s ta te recogn i­tion and pred ic t ion . Journal o f Coasta l Research.

M A S S E L IN K G (1993) S im ula t ing the effects o f tides on beach m orphodynam ics . Journal o f Coasta l Research 15 180-197.

M A S S E L IN K G & A D S H O R T (1993) The effect o f tide range on beach m o rp h o d y n a m ic s and m orphology: A c oncep tua l beach model Journal o f Coasta] research 9 785-800.

M C L A C H L A N A & T E R A S M U S ed s . ( 1 9 8 3 ) S a n d y B eac hes as E c o s y s te m s . Dr. Junk Publishers , The H ague. 757 pp.

M C L A C H L A N A, E J A R A M 1 L L O , T E D O N N . & F W E S S E L S (1993) Sandy beach m acro fauna l c o m ­m unit ies and the ir control by the physical en v i ro n ­ment: a geograph ica l com par ison . Journal o f Coasta l R esearch Si" 15 27-38.

S H O R T A D (1975) M ult ip le off shore bars and s tanding waves . Journa l o f G eophysica l R esearch 80 3838- 3840.

S H O R T A D ( 1 9 8 5 ) R ip ty pe , s p a c in g and p e rs is ten ce , N arrabeen Beach. Aust ra lia . M arine G eology 65 47- 71.

S H O R T A D (1983) A no te on the contro ls o f beach type and c h an g e , w i th e x a m p le s from s o u th ea s t A ust ra l ia . J ourna l o f Coasta l R esearch 3 387-395.

S H O R T A D ( 19 9 1 ) M a c r o - m e s o t ida l b e ac h m o r p h o ­dynam ics - an overview . Journal o f Coasta l Research 7 4 17-436.

S H O R T AD (1992) B each sys tem s o f the centra l N e th e r ­lands coast: P rocesses , m o rp h o lo g y and s truc tu ra l im pacts in a s to rm dr iven m u l t i -bar system. M ar ine G eo logy 107 103-137.

S H O R T AD (1993) B eaches o f the N ew Sou th W ales Coast. Aust ra l ian B each Safe ty and M an a g e m e n t Program, Sydney, 358 pp.

S H O R T A D (1996) B eaches o f the V ic torian C oas t and Port P h i l l ip B ay. A u s t r a l i a n B e a c h S a fe ty and M a n a ­gem en t Program, Sydney. 298 pp.

S H O R T AD & A agaard T 1993 S ingle and m u l t i -b a r beach change models . Journal o f Coasta l R esearch , Specia l Issue 15, 141-157.

S H O R T AD, PJ C O W E L L M C A D E E , W H A L L & B V A N D1JCK (1995) B each ro ta tion and poss ib le re la tion to the Sou the rn Oscil lation . O cean and A tm osphere Pacific In te rna tiona l Confe rence , Adelaide, abstract, 329-334.

SHORT, AD & PA H ES P (1982) W ave, beach and dune inter­actions in south eastern Australia. Mar ine G eo logy 48 259-284.

S H O R T , A D & C L H O G A N (1995) Rip currents and beach hazards , the ir im pac t on public safety and im p l ic a ­t ions fo r coas ta l m a n a g e m e n t . Jou rna l o f C oas ta l Research Specia l Is sue 12 197-209.

SH O R T . A D & L D W R I G H t (1984) M o rp h o d y n a m ic s o f high energy beaches and su r f zones: A n Aust ra l ian p e r s p e c t iv e . In T h o m , B G ed , C o a s t a l g e o m o r ­phology in Aust ra lia , A c adem ic Press, Sydney . 43- 6 8 .

S U H A Y D A JN, SA H S U , R O B E R T S HH, A D S H O R T ( 1 9 7 7 ) D o c u m e n t a t i o n a n d a n a l y s i s o f c o a s t a l processes, northeast coast o f Brazi l. Coasta l Studies Institute , Lou is iana Sta te Univers ity , Baton Rouge, Louisiana , Technical Repor t N° 238, 98 pp.

T U R N E R IL (1993) W ater tab le ou tc ropp ing on macro-t ida l beaches. M arine G eo logy 115 227-238.

W R I G H T L D (1980) B each cut in re la t ion to s u r f zone m o rp h o d y n a m ic s . P ro cee d in g s 17 th In te rn a t io n a l Coasta] E ng inee r ing Confe rence , A m eric an Socie ty Civil Engineers , 978-996.

W R I G H T LD, RT G U Z A & A D S H O R T (1982) M o rp h o ­dynam ics o f a h igh energy d is s ipa t ive su r f zone. M a ­rine G eo logy 45 41-62.

W R I G H T L D , SK M A Y , A D S H O R T & M O G R E E N (1984) B each and surf zone equ i l ib r ia and response time. Proc. 19th In te rnational. Conf. Coasta l E n g i n e ­ering, H ouston , 2150-2164 .

W R I G H T L D & A D S H O R T (1984) M o rp h o d y n am ic va ­riability o f surf zones and beaches: a synthesis. M ar ine G eology 56 93-118.

W R I G H T LD" A D S H O R T , JD B O O N III, B H A Y D E N , SK K IM B A L L & JH L IS T (1987) The m o rp h o d y n a m ic effects o f incident wave g roup iness and tide range on an energet ic beach. M ar ine G eo logy 74 1-20.

W R I G H T L D , " a D S H O R T & M O G R E E N (1985) Shor t te rm changes in the m o rp h o d y n am ic s tates o f beaches and s u r f z o n es : An e m p i r i c a l p r e d i c t i v e m o d e l . M arine G eology 62 339-364.