tide analysis

Upload: aditya-rana

Post on 16-Oct-2015

41 views

Category:

Documents


1 download

TRANSCRIPT

Slide 1

TIDE ANALYSISLooking at water level records in coastal waterways, the most obvious clue confirming the presence of the tide is a characteristic, sinusoidal oscillation containing :two main cycles per day (semidiurnal tides), one cycle per day (diurnal tides), or a combination of the two (mixed tides).

The underlying principle of tide analysis is that, no matter how complex they may appear, tidal oscillations can be broken down into a collection of simple sinusoids (sinusoids usually represented by the cosine function). Each cosine wave will have the same period of oscillation as the celestial forcing that gives rise to it.

The purpose of tide analysis is to determine :the amplitude and the phase (the so-called tidal harmonic constants) of the individual cosine waves, each of which represents a tidal constituent identified by its period in mean solar hours or, alternately, its speed in degrees per mean solar hour (speed = 360/T where T = period). Finding the tidal harmonic constants at a place allows one to predict tides at that place. Tidal constituent amplitudes are usually given in feet or meters, and phase is usually expressed in degrees.single tidal constituent is represented by the following equation :

h(t) is the height of the partial tide calculated for time t, R is the constituent amplitude (equal to one-half the constituent range).

Notice that we could express the phase in hours instead of degrees. Calculating h for a series of times ranging from 0 to 36 hours yields the following tide graph using R = 1 meter and N = 5 hours:

The term phase lag is used when the phase is expressed in hours. If the phase had been zero, the cosine wave shown in red would peak at the zero hour; Instead, it peaks 5 hours later since N = 5. Although the amplitude and the phase are arbitrary numbers picked for this example, the period of 12 solar hours uniquely identifies this wave as the principal solar semidiurnal constituent with a speed of 30 degrees per mean solar hour. This constituent is represented by the symbol S2 (the subscript 2 means that two of these cycles occur each day).Suppose the red curve shown above was a record of the actual water level measured at a certain tide station. We wouldnt really need analysis to come up with the amplitude and phase for a single cosine wave. But what if the curve happened to be the result of several cosine waves added together, all with different amplitude, phase and period. How could we find the amplitude and phase for S2 as well as the other constituents? The answer depends on :1. the length of the record, 2. measurement error, 3. and the analytical technique used An estimated amplitude and phase for any set of tidal constituents whose period we know can be obtained by harmonic analysis, method of least squares (HAMELS). In this method, a set of cosine terms is used as a model. The complete set is made to fit the data according to the least squares criterion simply picking the combination of R and N that causes the sum of the squared differences between observed and model-predicted water levels to be as small as possible.Major tidal constituents contributing to the astronomical tide: M2 : Principal lunar semidiurnal (speed: 28.984 degrees / mean solar hour)S2 : Principal solar semidiurnal (speed: 30.000 degrees / mean solar hour)N2 : Larger Lunar elliptic semidiurnal (speed: 28.440 degrees / mean solar hour)K1 : Luni-solar declinational diurnal (speed: 15.041 degrees / mean solar hour)O1 : Lunar declinational diurnal (speed: 13.943 degrees / mean solar hour)

M4 : First overtide of M2 constituent (speed: 2 x M2 speed)M6 : Second overtide of M2 constituent (speed: 3 x M2 speed)S4 : First overtide of S2 constituent (speed: 2 x S2 speed)MS4 :A compound tide of M2 and S2 (speed: M2 + S2 speed)

The first five constituents are the main players that determine the type of tide that a region experiences. If the amplitudes for M2, S2, and N2 are large compared to the amplitudes for K1 and O1, then tides in the region will be of the semidiurnal type (two highs and two lows each day); if K1 and O1 amplitudes are large compared to the others, then the tides will be of the diurnal type (one high and one low tide each day).The last four tidal constituents shown above are called shallow-water tides. Tides entering waters where the tidal range is no longer insignificant compared to the depth undergo a transformation that yields additional waves called overtides. The frequency (speed) of an overtide is always an exact multiple of the fundamental frequency the frequency of the parent wave that underwent transformation.

Tidal type stems from amplitude differences among the major tidal constituents. Tidal range cycles (height difference between successive high and low tides) depend on differences in speed. The spring-neap cycle is due to the speed difference between M2 and S2. S2 completes 30 of that cycle in an hour while M2 completes only 28.984, a speed difference of a little more than a degree per hour. At that rate, S2 will gain on M2 by a full 360 cycle a spring-neap cycle every 14 and days (two cycles every 29 days, a lunar month). As the M2 wave continues to lag behind the S2 wave, the two waveforms pass in and out of phase. We get spring tides when M2 and S2 are in phase so that both waves peak at the same time causing tides of greater range. Neap tides occur when M2 and S2 are out of phase and tend to cancel one another, reducing tidal range. But if you are interested in tides of maximum range, consider what happens when M2, S2, and N2 all peak at about the same time. This results in the so-called perigean-spring tides of maximal range that occur several times a yearExamples from the Middle East

29-day analysis of a tide record from Ras Tanura, Saudi Arabia. The red curve is the measured water level, The blue curve is the predicted tide based on a tide model using the harmonic constants obtained from the analysis, The green curve is the residual or the difference between the two.

Since the green curve shows some pretty strong deviations from zero, does this mean the predictive model is flawed? Not really. We should expect to see some non-tidal variation in water level showing up in the green curve; in fact, the strongest oscillations that appear there have a period of about 5 days way longer than tidal. Still, since the analysis used only nine tidal constituents to fit the data, its possible that the green curve also contains some minor tidal variation not accounted for in the predictive model. In statistical terms, the tide model appearing above accounts for more than 90 percent of the total variation in water level (r2 = 0.91).

At Safaniya, the tide is mixed, mainly diurnal. In contrast to Ras Tanura, which has a large spring tide on Julian day 97, the tide range is near a minimum on the same day at Safaniya. Thats because the tropic-equatorial cycle takes precedence over the spring-neap cycle at places where the tide type is mainly diurnal. Just as the phasing in-and-out of the principal semidiurnal constituents M2 and S2 produces the spring-neap cycle, the in-and-out phasing of the principal diurnal constituents, K1 and O1, results in the tropic-equatorial cycle.

A quick glance at the residual curve for Safaniya shows that it is almost identical to the one at Ras Tanura. Thus we see that two tide stations with completely different tidal types can experience the same meteorological tide. In fact, the oscillations shown in the green curve coincided with a Shamal, a desert wind that can reach 60 miles per hour and blow for several days, causing periodic water level oscillations in the Northern Persian Gulf basin.

Note that the range of the astronomical tide at Safaniya is smaller than that at Ras Tanura while the meteorological tide range is about the same at both stations. This is reflected in the percent of total variance accounted for by the tide model, which is only 76 percent (r2 = 0.76) at Safaniya as opposed to 90 percent at Ras Tanura. Clearly the meteorological tide has to be taken into account before evaluating the success of the astronomical tide model