the role of thermochemical conversion in biorefinery ... · the role of thermochemical conversion...

30
www.ecn.nl The role of thermochemical conversion in biorefinery concepts – not just combustion Biorefineries – Science, Technology and Innova9on for the Bioeconomy Jaap Kiel Concepción, Chile November 23 rd , 2015 ECN Biomass R&D in a biorefinery perspec6ve

Upload: dodan

Post on 23-Aug-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

www.ecn.nl

The role of thermochemical conversion in biorefinery concepts – not just combustion

Biorefineries–Science,TechnologyandInnova9onfortheBioeconomyJaapKielConcepción,ChileNovember23rd,2015

ECNBiomassR&Dinabiorefineryperspec6ve

Energy research Centre of the Netherlands (ECN) Bridge between science and corporate innovation

MissionWedevelopknowledgeandtechnologiesthatenableatransi9ontoasustainableenergysystem

Not-for-profitresearchins9tuteFoundedin19555Commerciallicensingdeals/year500Employees+/-20patentsayear€80Mannualturnover

2

ECN Biomass R&D programme Biomass for chemicals, fuels, power and heat

• Characteriza9on• Propertydatabases

• Torrefac9on• TORWASH• Pyrolysis• Frac9ona9on

• Combus9on• Gasifica9on• Biorefinery

• Gascleaning• Tarremoval• Gascondi9oning• Separa9on

• Biofuels(incl.Synthe9cNaturalGas(SNG)

• Biochemicals&-materials

• Power&Heat

Feedstock Pre-treatment Conversion SeparaBon Product

Synthesis

» Higherefficiencies,higheravailability,lowerenvironmentalimpact,higherpublicacceptance,lowerCAPEX/OPEX,newapplica9ons

Focus on thermochemical processing

Policyandstrategystudies,feasibilitystudies,techno-economicevalua9ons,LCA,sustainabilityassessments

3

Biomass use – markets and preferred options

•  Shi]fromfocusonbioenergytofocusonbiobasedeconomy

•  UseCandmolecularcapital•  Aimformaximumaddedvalue

•  But:–  Energysectormorethananorderofmagnitudelargerthanchemicalsector–  Weneedallrenewableenergyop9ons,wecannotexcludemajorones–  Thereisenoughsustainablebiomasstomakebiomassamajorrenewableenergy

op9on(1/4–1/3offutureglobalenergyuse)–  Somepartsoftheenergysectordifficulttocoverwithotherrenewables(e.g.,HT

processheat,biofuelsforheavyvehicles,avia9onandmarineapplica9ons)–  Notallbiomassqualifiesforhigh-valueapplica9ons(e.g.,heterogeneousand/or

contaminatedstreams) 4

Renewables cost comparison For bioenergy, feedstock cost is a major cost factor

VGBsurvey2012,Investmentandopera6oncostfigures,September2012

Op9onstodecreasebioenergycost:•  (DecreaseCAPEX

andOPEX)•  Maximiseenergy

efficiency/heatu9lisa9on(CHP)

•  Uselessexpensivebiomass(residues)

•  Co-producehighaddedvalueproducts

5

Biorefinery concepts The traditional approach

•  Twomainconversionroutes:–  Sugarplaform:(bio)chemical–  Syngasplaform:thermochemical

•  Sugarplaform:–  Naturalmonomerstructurelargelypreserved–  Savingenergyinproduc9onofheterogeneous

chemicals(containinge.g.O)–  Small-to-mediumscale(biochemicalprocessing)

•  Syngasplaform:–  Naturalmonomerstructurefullydestroyed(H2,CO)–  Robustprocess,buildoncoalexperience–  Largescale(economy-of-scaleingasifica9onandgasprocessing)–  Biomassneedspretreatmentbecauseoflogis9csandgasifierrequirements

(torrefac9on,pyrolysis)

National Renewable Energy Laboratory (NREL)

6

Biorefinery concepts The role of thermochemical conversion

•  Biorefineriesresiduescombus9onnotstraighforward

•  Other(moreahrac9ve)thermochemicalop9onsforbiorefineryresidues–  Gasifica9on–  Pyrolysis

•  Syngasplaformnotrestrictedtohigh-temperatureentrained-flowgasifica9on–  Highreac9vityofbiomassallowsmildercondi9ons

National Renewable Energy Laboratory (NREL) 7

Energy island in biorefineries

•  Theenergyislando]enisthesinglelargestinvestment–  UsuallyaCHPunit

•  Biomassresiduesfromproduc9onprocessesareburntintheenergyislandatsignificantquan99es–  Lignintypically15-25%oftotalbiomass

composi9on

•  Residuesproper9escanvarysubstan9ally

•  Technologyprovidersareo]ennotwillingtoguaranteeperformanceoftheirboiler

Capital costs Lignocellulosic ethanol plant

1%

1%

10%

3%

0%

6%

47%

1%

6%

6%

2%

7%5%7%

Unit-100 Mechanicalpretreatment

Unit-200aPretreatment&pre-Hydrolys is

Unit-200bEnzymeproduction

Unit-300aY eastproduction

Unit-300bHydrolys is &F ermentation

Unit-400 D istillation&Dehydration

Unit-500 Heat&power

Unit-600 Watertreatment

Unit-700 Offg as cleaning

Unit-800 C ooling system

Unit-900 R awmaterials s torag e

Unit-1000 Products torag e

Working C apital

S tart-upcosts

Largest investment: CHP unit

2nd Largest investment: Pre-treatment and pre-hydrolysis unit

1%

1%

10%

3%

0%

6%

47%

1%

6%

6%

2%

7%5%7%

Unit-100 Mechanicalpretreatment

Unit-200aPretreatment&pre-Hydrolys is

Unit-200bEnzymeproduction

Unit-300aY eastproduction

Unit-300bHydrolys is &F ermentation

Unit-400 D istillation&Dehydration

Unit-500 Heat&power

Unit-600 Watertreatment

Unit-700 Offg as cleaning

Unit-800 C ooling system

Unit-900 R awmaterials s torag e

Unit-1000 Products torag e

Working C apital

S tart-upcosts

1%

1%

10%

3%

0%

6%

47%

1%

6%

6%

2%

7%5%7%

Unit-100 Mechanicalpretreatment

Unit-200aPretreatment&pre-Hydrolys is

Unit-200bEnzymeproduction

Unit-300aY eastproduction

Unit-300bHydrolys is &F ermentation

Unit-400 D istillation&Dehydration

Unit-500 Heat&power

Unit-600 Watertreatment

Unit-700 Offg as cleaning

Unit-800 C ooling system

Unit-900 R awmaterials s torag e

Unit-1000 Products torag e

Working C apital

S tart-upcosts

Source:Finalreport,EETprojectK01116,2007 8

Residues for heat and power Large differences in (inorganics) composition

0

5000

10000

15000

20000

25000

30000

lignin1 lignin2 lignin3

mg/kgd.b.

S

Na

Zn

Pb

P

Mn

Mg

K

Fe

From:Beisetal.(2010),Bioresources5(3),1408-1424 9

Residues for heat and power Technical challenges

Residues

Physicalproper6es

•  Highwatercontent•  Fibrous/tenacious/bulky•  Finelydispersed/viscous

Pressing/evapora9on

Energydensity

Pumping/conveying

(intra-process)Storage

Sizereduc9on(grinding)

Thermo-andBio-chemicalproper6es

•  (earth-)Alkali(Na,K,Ca)•  NH3/Cl/S•  SiandAl(sandorclays)•  Microbiologicalcontent•  Highlybiodegradable

Slagging/fouling

Corrosion

Mineralresiduesu9lisa9on

Microbiologicalrisk

Emissionstoairandwater

10

Lab-scale Combustion Simulators (LCS) Mimic pulverised-fuel and liquid fuel combustion conditions

Special reactor design: 1-2s residence times with only limited total reactor length

Staged gas burner: high heating rate + proper gas atmosphere

Particle sampling probe

Fouling probe 11

Lignin

Frac9onatedproductrecovery:combus9bleoff-gas,liquidphenolicfrac9onsandsolidchar

LIBRA – pyrolysis-based lignin biorefinery •  LIBRAinvolves:

•  Condi9oningoflignintoprepareitforconversionbypyrolysis•  Feedingthecondi9onedligninintoabubblingfluidizedbedpyrolyserviaappropriatefeedingprotocols•  Pyrolysisofligninintogaseousandsolidproducts•  Recoveryofproductsbyfrac9onatedcondensa9onofpyrolysisvaporsandac9veremovalofsolidchar•  Primaryproductupgrading(filtra9on,dis9lla9on,etc.)

•  LIBRAlab-scaledevelopment

12

•  Gasifica9onconvertsbiomassintogaseousfuel

•  Largefeedstockflexibility(e.g.woodybiomass,agriculturalresidues,butalsowastesandwaste-derivedfuel)

•  Opensthedoortoexis9ngenergysystems:–  Boilers–  Engines–  Turbines–  Chemistry

–  Fuels–  Refineries–  Steelindustry

Syngas platform – gasification

13

National Renewable Energy Laboratory (NREL)

Entrained-flow gasification of biomass Produce syngas as chemical feedstock

Gas

& SteamOxygen

Slag

Fuel•  Pressurizedopera9on,steam/oxygenblown•  Typical1300°C•  Syngas(mainlyH2,CO),notarsandotherhydrocarbons

•  Inorganicmaterialmelts,becomesslag•  Completefuelconversion•  Scale>100MWth

•  Pulverizedfuelrequired(~50micrometer)orliquidorslurry;biomassneedspretreatment:torrefac9onorliquefac9on(e.g.pyrolysis)

•  Complexdesign(membranewall)•  Examples:Shell,Siemens,Chemrec(BlackLiquor),a.o.

14

Conversion vs. temperature Biomass and waste do not need severe conditions

100%

Gasifiertemperatureà

Conversio

Biom

ass,waste

700-900°C 1400-1600°C

Coal:temperaturesneedtobehightohaveacceptableconversion

Biomass/wasteiseasiertoconvert

thancoal

Moreefficient,noneedforASU,and

greatopportunityforchemistry

Devola9liza9on

Gasifica9on

15

Gasification for chemicals Two main options

chemicalsbysynthesis

chemicalsbysynthesis

chemicalsbysepara9on

Likenaphthacracking(toethylene,propylene,BTX,…)

Likemostmethanolplants(naturalgas“gasifica9on”tosyngas)andmanycoal-to-chemicalsplantsinChina

(methanol,DME,NH3,SNG,…MtO)

Energyfrac9oninthegas

Gasification for chemicals (2) Two main options

•  Chemicalsbysynthesis:–  H2+CO(syngas)àchemicalslikemethanol,

ammonia,SNG,diesel–  Matureandavailabletechnology–  Syngas-to-chemicals~80%energyefficient

•  Chemicalsbysepara9on:–  Separatealreadyexis9ngmoleculesfromgas–  Requiresmildgasifiercondi9ons(<1000°C)tokeephydrocarbonsalive–  Concernsmainlybenzene,ethylene,methane–  Matchesverywellwithbiomass/waste:lowtemperaturesuffices–  Doubleenergybenefit:notbrokendowningasifierandnothavingtosynthesize

fromsyngas–  ButmayalsoincludeH2andCO2

17

Indirect fluidized-bed gasification Coupled fluidized-bed reactors

•  Energyproduc9onandenergyconsump9onprocessesinseparatereactors

•  Charservesasfuelforcombus9onreactor•  Completeconversion•  Air-blown,yetessen9allyN2-freegas•  5-200MWth•  Mediumtar(10-50g/Nm3)•  Examples:Batelle/Rentech/SilvaGas(US),FICFB/Repotec(A),ECN/MILENA(NL)

www.milenatechnology.com 18

Biomass indirect gasification Gas composition: small concentrations, high value

19

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

[volume%]

[energy%], LHV-basis

[income%], low-price scenario

Wood

Bioenergy Biochemicals 19

Biomass indirect gasification economics Impact of feedstock cost and chemicals co-production (low-price = based on fossil prices; high-price = 100% premium on syngas, 200% premium on methane, 30% premium on biochemicals)

20

0 2 4 6 8 10 12 14 16 18 20

wood input

wood output(low-price)

wood output(high-price)

SRF input

SRF output(low-price)

SRF output(high-price)

value [$/GJ input]

CO H2 CH4 ethylene ethane benzene toluene

Bioenergy Biochemicals

SRF=SolidRecoveredFuel=standardisedpaper-plas6cresidue 20

Gasification-based biorefinery “harvesting the chemicals”

Biomassgasifica9onisthebasisofabio-refinery,similartothebiochemical(sugar-based)approach:•  Asequenceofharves9ng“instantchemicals”andsyngas-basedproducts•  Butwiththeabilitytoconvertallkindof(contaminated)low-qualityfeedstocktohigh-valuechemicals•  Alterna9vefeedstock:residuesfrombiochemicalbio-refineries,o]enlow-valueligninsandhumins•  Chemicalsfitcurrentpetro-chemistry

•  So,biomassgasifica9onbecomesawayofproducingchemicals,ratherthanonlybeingapre-treatmenttoproduceaneasy-to-usegaseousfuelfromadifficult-to-usesolidfuel•  Biomassgasifica9onoffersanewwayofproducinggreenchemicals

21

Example: (ECN) Green Gas production

ForpowerFor(high-T)heatForchemistryFortransport

Usingexis9nginfraIncludinggasstorageWithqualitysystemAndsecurityofsupply

GreenGas=bio-SNG=RenewableNaturalGas=bio-Methane

22

Gasification: not too hot Instant methane is good for efficiency

70%

53%

0% 20% 40% 60% 80%

FluidizedBedgasification(~800°C)

EntrainedFlowgasification(~1300°C)

methaneyield(energy%)

SNGyield(energy%)

Source:C.M.vanderMeijdenet.al.,BiomassandBioenergy34,pp302-311,2010 23

ECN Green Gas process Base case: everything converted into methane

Smartcombina9onofendothermalreformingandexothermalmethana9on

Gasifier Tarremoval Up-

grading

Metha-na9on

CO2removal

SremovalHDS Pre-

reformer Metha-na9onMetha-

na9on

Gasifier: FluidizedBedGasifieropera6ngat~800°CHDS: HydroDeSulphuriza6on(conver6ngorganicSmoleculesintoH2S)BTX: Benzene,Toluene,Xylene(~90%/9%/1%incaseoffluidizedbedgasifica6onat~800°C)

BTXisconverted

Neededtoprotectreformercatalyst

Lihleorganic-S,buttoomuchforreformer

NicatalystisnotabletotreatBTXnorethylene

HDSalsotakescareofC2H4àC2H6

MILENA OLGA ESME

24

… but the Green Gas business case can be further improved!

MorevaluablethanCH4

Canbeconverted

intomethanol,

“Instant”naturalgas

ValueinEOR,P2G,bioCCS 25

Gasification-based green gas production Potential cost reductions

•  Bio-BTXco-produc9on•  Bio-ethyleneco-produc9on(eitherseparatedorconvertedintoaroma9cs)•  Bio-CO2captureandstorage•  Andmore:

–  H2/COforbio-chemicals–  Increasingbio-BTXyield–  Increasingbio-ethyleneyield–  Accommodateexcess(renewable)H2tomakemethaneand

solvetherenewablepowerintermihencyissue(P2G)

26

GreenGascanbecomecheaperthannaturalgas!

ECN BTX separation process Benzene, toluene, xylenes

•  Firststepa]erOLGAtarremoval•  LiquidBTXproduct:firstliterin2014•  >95%separa9on•  B/T/X=90/9/1•  SimplifiesdownstreamprocesstoSNG

27

Co-production has potential In view of product prices, energy efficiency and process complexity

SNG:Synthe9cNaturalGas;BTX:mainlybenzene;C2H4:ethylene;MeOH:methanol

0

5

10

15

20

25

50%

60%

70%

80%

90%

100%

SNG BTX+SNG BTX+C2H4+SNG

BTX+C2H4+MeOH+SNG

prod

uct(s)value

[Eur/G

J]

energyefficien

cy

energyefficiency[%]

product(s)value[Eur/GJproduct]

28

Summary

•  Aclearsplitbetween(thedevelopmentof)biochemicalandthermochemicalbiorefineryconceptsleadstosubop9malsolu9ons–joinforces

•  Theenergyislandofabiorefineryisamajorpartofthetotalinvestmentandbiorefineryresiduesu9lisa9onforCHPisnotstraighforward

•  Otherthermochemicalconversionop9ons(gasifica9on,pyrolysis)maycreatehigheraddedvaluefrombiorefineryresidues

•  Proper(mild)gasifica9ontechnologiesallowforahrac9veco-produc9onschemesincludingchemicalsco-produc9onbysepara9on

•  Example:GreenGascanbecomecheaperthannaturalgas

29

Thank you for your attention!

30

Formoreinforma9on,pleasecontact:

JaapKielProgrammeDevelopmentManagerBiomassT+31885154590 P.O.Box1,1755ZGPETTENF+31885158488 [email protected] www.ecn.nl

Publica9ons:www.ecn.nl/publica9onsFuelcomposi9ondatabase:www.phyllis.nlTardewpointcalculator:www.thersites.nlIEAbioenergy/gasifica9on:www.ieatask33.orgMilenaindirectgasifier:www.milenatechnology.comOLGA:www.olgatechnology.com/www.renewableenergy.nlSNG:www.bioSNG.com/www.bioCNG.comBTX:www.bioBTX.com

30ECN800kWthMILENAgasifier