the non commutative geometrypeople.math.gatech.edu/~jeanbel/talkse/qhe.pdf · non commutative...

50
QHE Adelaide August 16-20 1999 1 The NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD 12 Universit´ e Paul Sabatier, Toulouse & Institut Universitaire de France Collaborations: H. SCHULZ-BALDES (Technische Universit¨ at, Berlin) D. SPEHNER (IRSAMC, Toulouse) A. Van ELST (Toulouse) 1 I.R.S.A.M.C., Universit´ e Paul Sabatier, 118, route de Narbonne, Toulouse Cedex 04, France 2 e-mail: [email protected]

Upload: others

Post on 10-Aug-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 1

The

NON COMMUTATIVE GEOMETRYof the

INTEGER QUANTUM HALL EFFECT

Jean BELLISSARD 1 2

Universite Paul Sabatier, Toulouse&

Institut Universitaire de France

Collaborations:

H. SCHULZ-BALDES (Technische Universitat, Berlin)

D. SPEHNER (IRSAMC, Toulouse)

A. Van ELST (Toulouse)

1I.R.S.A.M.C., Universite Paul Sabatier, 118, route de Narbonne, Toulouse Cedex 04, France2e-mail: [email protected]

Page 2: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 2

I - INTRODUCTION to the IQHE

J. Bellissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471.

Page 3: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 3

j

B

E

+ + + + + + + + + + + + + + + + + + +

B = magnetic field

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

j = current density

E Hall electric fieldcharge carrier densityn =

=

I.1)- The Classical Hall Effect:

In the stationnary state: e n ~E +~j × ~B = 0

⇒ ~j =

(

0 σH−σH 0

)

~E , σH =ne

B.

Units :n

B=

[

1

flux

]

,h

e= [flux] ⇒ ν = [1] .

where : ν =nh

eB= filling factor .

Hall’s formula

σH =ν

RH

, RH =h

e2= 25 812.80 Ω .

Page 4: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 4

I.2)- The (Integer) Quantum Hall Effect:

→ Conditions of observation:

1. Low temperatures (≤ few Kelvins)

2. Large sample size (≥ few µm)

3. High mobility together with large enough quencheddisorder.

4. 2D fermion fluid.

→ Experiments show that:

1. Very flat plateaux at ν close to integers, namely if:

σH =i

RH

i = 1, 2, 3, · · · quantization (Von Klitzing et al.)

2. On plateaux δσH/σH and σ///σH ≤ 10−8.This indicates localization(Prange, Thouless, Halperin).

3. For i ≥ 2, Coulomb interaction becomes negligible.

→ Questions:

1. Why is σH quantized ?

2. What is the role of localization ?

Page 5: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 5

I.3)- Earlier Works:R.B. Laughlin, Phys. Rev. B23, 5632 (1981).

• Piercing the plane at x with a flux tube adiabaticallyvarying from 0 to φ0 = h/e forces 1 charge per filledLandau level to transfer from x to ∞.

• This adiabatic change induces a unitary tranforma-tion on the Landau Hamiltonian (gauge transforma-tion).

• This gives the quantization of the Hall conductance.

R.E. Prange, Phys. Rev. B23, 4802 (1981).D.J. Thouless, J. Phys. C14, 3475 (1981).R. Joynt, R.E. Prange, Phys. Rev. B29, 3303 (1984).

• Localized states do not see the adiabatic change !

φ

B

j

(t)

E C

Page 6: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 6

D. Thouless, M. Kohmoto, M. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).J.E. Avron, R. Seiler, B. Simon, Phys. Rev. Lett. 51, 51 (1983).

Harper’s model: one electron on a square lattice in auniform magnetic field. Magnetic translations U1, U2,satisfy:

U1U2 = e2ıπαU2U1 , α =φ

φ0

=Ba2

h/e.

Harper’s Hamiltonian:

HH = U1 + U−11 + U2 + U−1

2 .

a

U

UU

U

2

1

1

2

φa =

flux through unit cellφ =

lattice spacing

-1-1

Page 7: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 7

• If α = p/q then HH is q-periodic;

• Bloch theory ⇒ wave function Ψ depends onquasimomenta ~k = (k1, k2).

• ~k ∈ B where B ≈ T2 is the Brillouin zone.

• Ψ defines a line bundle over B.

• Non triviality controlled by the Chern class

Ch(Ψ) =1

π

∫ 2π

0dk1

∫ 2π

0dk2=m <

∂Ψ

∂k1|∂Ψ

∂k2>

• Ch(Ψ) ∈ Z and is homotopy invariant.

k

Brillouin zone

k

Ψ

Page 8: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 8

• Assume Fermi level EF lies in a gap.

• Assume N bands E1(~k) < · · · < EN(~k) < EF <

EN + 1(~k) below Fermi level.

• Set PF =∑

i≤N |Ψi >< Ψi| (Fermi projection).

• Set Ch(PF) =∑

i≤N Ch(Ψi).

• The following holds true:

Ch(PF ) = 2ıπ

T2

d2~k

4π2Tr(

PF (~k) [∂1PF (~k), ∂2PF (~k)])

• Then Hall conductance is given by the Chern-Kuboformula

σH =e2

hCh(PF)

• ⇒ Hall conductivity is quantized from topologicalorigin.

Page 9: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 9

I.4)- Difficulties with Earlier Works

1. If the magnetic flux is irrational⇒ no Bloch theory !

2. Disorder destroys also periodicity⇒ no Bloch theory !

3. Robustness against small disorder suggested fromthe Kubo-Chern formula,(see H. Kunz, Commun. Math. Phys. 112, 121 (1987). ).But a general proof is needed.

4. How does one understand localization in this con-text ?

→ Proposal

1)- J. Bellissard, in Lecture Notes in Phys., n153, Springer Verlag, Berlin, Heidelberg, New York, (1982).

2)- J. Bellissard, in Lecture Notes in Physics 257, Springer-Verlag, Berlin, Heidelberg, New York, (1986).

Use C∗-algebras and theirNon Commutative Geometry !

Page 10: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 10

II - The NON COMMUTATIVE

BRILLOUIN ZONE

J. Bellissard, in From Number Theory to Physics, Springer-Verlag, Berlin, (1992).

Page 11: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 11

II.1)- The Hull of Aperiodic MediaII.1.1- A typical Hamiltonian

The Schrodinger Hamiltonian for an electron submittedto atomic forces is given by (ignoring interactions):

H =1

2m

(

~P − q ~A( . ))2

+

K∑

r=1

y∈Lr

vr( .− y) .

acting on H = L2(Rd) .

• d : physical space dimension

• r = 1, . . . ,K labels the atomic species,

• Lr : set of positions of atoms of type r,

• vr : effective potential for valence electrons near anatom of type r,

•m and q : mass and charge of the carrier,

• ~P = −ı~~∇ : momentum operator,

• ~A : magnetic vector potential.

Page 12: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 12

II.1.2- Magnetic translations

• In d = 2, uniform magnetic field B = ∂1A2 − ∂2A1.

• Magnetic translations

U (~a) = eı~

∮ ~a0d~s(

~P−q ~A(~s ))

• Weyl’s commutations relations

U (~a) U (~b) = eıq~B~a×~b U (~b) U (~a)

• Translation invariance of the kinetic part.

U (~a)(

~P − q ~A( . ))2

U (~a)−1 =(

~P − q ~A( . ))2

• Translation of the potential

U (~a) V ( . ) U (~a)−1 = V ( . − ~a)

Page 13: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 13

II.1.3- The Hull

• The set Ha = U (a)HU (a)−1; a ∈ R2 of trans-

lated of H , is endowed with the strong-resolventtopology.

• Let Ω be its closure and ω(0) be the representativeof H .

Definition 1 The operator H is homogeneous if Ωis compact.

• (Ω,R2) becomes a dynamical system, the Hull of H.It is topologically transitive (one dense orbit). Theaction is denoted by ω 7→ τaω (a ∈ R

2).

• If the potential V is continuous, there is a continu-ous function v on Ω such that if ω ∈ Ω the corres-ponding operatorHω is a Schrodinger operator withpotential Vω(x) = v(τ−xω).

• Covariance U (a)HωU (a)−1 = Hτaω

• The observable algebra AH is the C∗-algebra gener-ated by bounded functions of the Ha’s. It is relatedto the twisted crossed product C∗(Ω o R

2, B).

Page 14: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 14

II.2)- The C∗-algebra C∗(Ω o R2, B)II.2.1- Definition

Endow A0 = Cc(Ω × R2) with (here A,A′ ∈ A0):

1. Product

A · A′(ω, ~x) =

~y∈R2d2~yA(ω, ~y)A′(τ−~yω, ~x− ~y)e

ıqB2~~x∧~x

2. Involution

A∗(ω, ~x) = A(τ−~xω,−~x)

3. A faithfull family of representations in H = L2(R2)

πω(A)ψ(~x) =

R2d2~yA(τ−~xω, ~y − ~x)e

ıqB2~~y∧~xψ(~y) .

if A ∈ A0, ψ ∈ H.

4. C∗-norm‖A‖ = sup

ω∈Ω‖πω(A)‖ .

Definition 2 The C∗-algebra A = C∗(ΩoR2, B) is

the completion of A0 under this norm.

Page 15: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 15

II.2.2- Tight-Binding Representation

J. Bellissard, in Lecture Notes in Physics 257, Springer-Verlag, Berlin, Heidelberg, New York, (1986).

1. If L is the original set of atomic positions, let Σ bethe closure of the set τ−~xω(0) ∈ Ω; ~x ∈ L.Σ is a transversal.

2. Replace Ω × R2 by Γ = (ω, ~x) ∈ Ω × R

2 ; ω ∈Σ , τ−~xω ∈ Σ . Γ is a groupoid.

3. Replace integral over R2 by discrete sum over ~x.

4. Replace A0 by Cc(Γ), the space of continuous func-tion with compact support on Γ. Then proceed asbefore to get C∗(Γ, B).

5. C∗(Γ, B) is unital.

6. One can restrict the original Hamiltonian H to aspectral bounded interval (in practice near the Fermilevel), so as to get an effective Hamiltonian Heff inC∗(Γ, B). Thus Heff is bounded.

Page 16: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 16

II.2.3- Calculus

• Let P be an R2-invariant ergodic probability

measure on Ω. Then set (for A ∈ A0)):

T (A) =

ΩdPA(ω, 0) = < 0|πω(A)0 >

dis.

Then T extends as a positive trace on A.

• T is a trace per unit volume, thanks to Birkhoff’stheorem:

T (A) = limΛ↑R2

1

|Λ|Tr(πω(A) Λ) a.e. ω

• A commuting set of ∗-derivations is given by

∂iA(ω, ~x) = ıxiA(ω, ~x)

defined on A0. It satisfies πω(∂iA) = −ı[Xi, πω(A)]

where ~X = (X1, X2) are the coordinates of the po-sition operator.

Page 17: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 17

II.2.4- Properties of A

Theorem 1 Let L be a periodic lattice in R2. If H

is L-invariant, A is isomorphic to C(B)⊗K, whereB is the Brillouin zone and K is the C∗-algebra ofcompact operators.

A is the non commutative analog of the space of contin-uous functions on the Brillouin zone : it will be calledthe Non Commutative Brillouin zone.

Theorem 2 Let H be a homogeneous Schrodingeroperator with hull Ω. Then for any z ∈ C\σ(H)there is an element R(z) ∈ A (which is C∞), suchthat

πω(R(z)) = (z1 −Hω)−1

for all ω ∈ Ω.

Moreover, the spectrum of R(z) is given by

σ(R(z)) = (z − ζ)−1; ζ ∈ Σ, Σ = ∪ω∈Ωσ(Hω)

Page 18: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 18

II.2.5- IDoS and Shubin’s formula

• Let P be an invariant ergodic probability on Ω. Let

N (E) = limΛ↑R2

1

|Λ|# eigenvalues of Hω Λ≤ E

It is the Integrated Density of states or IDoS.

• The limit above exists P-almost surely and

N (E) = T (χ(H ≤ E)) (Shubin, 1976)

χ(H ≤ E) is the eigenprojector of H in L∞(A).

• N is non decreasing, non negative and constant ongaps. N (E) = 0 for E < inf Σ. For E → ∞N (E) ∼ N0(E) where N0 is the IDoS of the freecase (namely V = 0).

• dN/dE = ndos defines a Stieljes measure called theDensity of States or DOS.

Page 19: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 19

- An example of IDoS -

Page 20: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 20

II.2.6- States

We consider states on A of the form

A ∈ A → T ρA ,

with ρ ≥ 0 and T ρ = n if n is the charge carrierdensity. Then

ρ ∈ L1(A, T )

The Fermi-Dirac state:

describes equilibrium of a fermion gas of independentparticles at inverse temperature β = 1/kBT and chem-ical potential µ:

ρβ, µ =1

1 + eβ(H−µ)

µ is fixed by the normalization condition

T ρβ, µ = n .

Page 21: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 21

II.3)- To Summarize

1. The C∗-algebra A = C∗(Ω o R2, B) is a Non Com-

mutative analog of the space of continuous functionsover the Brillouin zone B if the lattice of atoms isno longer periodic, or if there is a magnetic field.

2. A groupoid Γ associated to the discrete set of atomicpositions, gives rise to tight-binding models.

3. Calculus on A is available and generalizes the usualcalculus on B.

4. Textbook formulæ valid for perfect crystals can beeasily generalized using this calculus. If PF is thezero temperature limit of the Fermi-Dirac state,constrained by T (PF) = n, the expression

Ch(PF) = 2ıπT (PF [∂1PF , ∂2PF ] )

is valid at least if EF = µ T = 0 belongs to a gap ofthe energy spectrum.

.

Page 22: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 22

III - The FOUR TRACE WAY

J. Bellissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471.

Page 23: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 23

III.1)- The Kubo FormulaIII.1.1- Background

• The (non dissipative) current is

~J = qd ~X

dt=ıq

~[H, ~X ] =

q

~

~∇H

• The thermal average of A ∈ A

< A >β, µ = T (Aρβ, µ)

• The Liouville operator acts on A

LH =ı

~[H, . ]

• A dissipative evolution requires an operator C act-ing on A such that exp−tC : A 7→ A is a com-pletely positive contraction semigroup. C has thedimension of [time]−1. The (dissipative) evolution,with a uniform electric field, is given by the MasterEquation:

dA

dt= LH(A) +

q

~

~E .~∇A− C(A)

Page 24: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 24

III.1.2- Linear Response Theory

• The thermal averaged current satifies:

~j =< qd ~X

dt>β, µ = σ~E +O(~E 2)

• The 2 × 2 matrix σ is the conductivity tensor. Itis given by Kubo’s formula

σij =q2

~T

(

∂jρβ, µ1

~C − ~LH(∂iH)

)

• C usually depends on T so that as T ↓ 0, C ↓ 0.

• We have limT ↓ 0 ρβ, µ = PF .

Page 25: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 25

Theorem 3 Let assume

1. The Fermi level EF is not a discontinuity pointof the DOS of H.

2. limT ↓ 0C = 0.

3. PF is Sobolev differentiable: T

(~∇PF)2

<∞.

Then, as T ↓ 0, the conductivity tensor convergesto

σij =q2

h2ıπ T

(

PF [∂iPF , ∂jPF ])

.

In particular the direct conductivity vanishes and

σ12 = σH =q2

hCh(PF)

Page 26: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 26

III.2)- The Four Traces

• On every Hilbert space H, the usual trace is de-noted by Tr.

• In A we have the trace per unit volume T , associ-ated to a translation invariant probability measureP on the Hull.

III.2.1- Dixmier’s TracesJ. Dixmier, C.R.A.S., 1107 (1966).

• On a Hilbert space H, Lp(H) denotes the Schat-ten ideal of those compact operator on H such thatTr(|T |p) <∞.

• Given T a compact operator on H, let µ0 ≥ · · · ≥µn ≥ . . . ≥ 0 be its singular values (eigenvalues of|T |) labelled in decreasing order. Set

‖T‖p+ =

(

lim supn ∈ N

1

lnN

N − 1∑

n = 0

µpn

)1/p

• The set of T ; ‖T‖p+ <∞ is denoted by Lp+(H).This a Macaev ideal.

Page 27: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 27

Theorem 4 Set Lp−(H) = T compact; ‖T‖p+ = 0.

1. Lp−(H) and Lp+(H) are two-sided ideals in L(H).

2. For p < p′ ∈ [0,∞),

Lp(H) ⊂ Lp−(H) ⊂ Lp+(H) ⊂ Lp′(H)

3. ‖T‖p+ is a seminorm making Lp+(H)/Lp−(H) aBanach space.

• Given a euclidean invariant mean M on R, one candefine a linear form LimM on `∞(N) such that(i) LimM(a0, a1, a2, · · ·) = LimM(a1, a2, a3, · · ·),(ii) LimM(a0, a1, a2, · · ·) = LimM(a0, a0, a1, a1, · · ·),(iii) if a ∈ `∞(N) converges, LimM(a) = limn→ ∞ an.

• The Dixmier trace associated to M is given by

TrDix(T ) = LimM

(

1

lnN

N − 1∑

n = 0

µn

)

.

if T ∈ L1+(H) is positive.

• TrDix can be extended as a positive continuous linearform on L1+(H) vanishing on L1−(H) such that

TrDix(UTU−1) = TrDix(T ), TrDix(ST ) = TrDix(TS)

for U ∈ L(H) unitary and S, T ∈ L1+(H) .

Page 28: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 28

III.2.2- Graded Trace and Fredholm ModuleM. Atiyah, K-Theory, (Benjamin, New York, 1967).A. Connes, Publ. IHES, 62, 257 (1986).

• Set H = H ⊗ C2 with H = L2(R2). The grading

operator G is

G =

(

+1 00 −1

)

• T ∈ L(H) has degree 0 if GT − TG = 0T ∈ L(H) has degree 1 if GT + TG = 0.

• The graded commutator is given by

[T, T ′]S = TT ′ − (−)dT.dT ′

T ′T

• A degree 1 operator F is defined by

F =

(

0 uu∗ 0

)

where u = X/|X| and X = X1+ ıX2 is the positionoperator. Then F = F ∗ , F 2 = 1.

• A differential d with d2 = 0 is given by

dT = [F , T ]S

Page 29: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 29

• The Leibniz rule becomes

d(TT ′) = dT T ′ + (−)dTT dT ′

• A graded trace is defined as

TrS(T ) =1

2Tr(GFdT )

if dT ∈ L1(H).

• TrS is linear and satisfies

dT , dT ′ ∈ L1(H),⇒ TrS([T, T′]S) = 0

• Note:

1. TrS is not positive in general.

2. u = X/|X| coincides precisely with the singulargauge transformation corresponding to piercingthe plane adiabatically with one flux quantum.J.E. Avron, R. Seiler, B. Simon, Commun. Math. Phys., 159, 399 (1994).

Page 30: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 30

III.3)- Connes Formulæ

III.3.1- First Connes Formula

• Let A = C∗(ΩoR2, B) acts on H by πω = πω⊗ id

through degree 0 elements.

• First Connes Formula : for A ∈ A0 andP-almost all ω’s:

T(

|~∇A|2)

=1

πTrDix (|dπω(A)|2)

• Let S be the Non Commutative Sobolev spacenamely the Hilbert space generated by A ∈ A0 suchthat T (|A|2 + |~∇A|2) <∞. Then

A ∈ S ⇒ dπω(A) ∈ L2+(H)

• Also dπω(A) is compact for any A ∈ A.

Page 31: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 31

III.3.2- A Cyclic 2-cocycle

• For A0 , A1 , A2 ∈ A0, a cyclic 2-cocycle is definedby

T2 (A0, A1, A2) = 2ıπT (A0∂1A1∂2A2 − A0∂2A1∂1A2)

This trilinear form extends by continuity to S.

• T2 is cyclic

T2 (A0, A1, A2) = T2 (A2, A0, A1)

• T2 is Hochschild closed

0 = (bT2) (A0, A1, A2, A3) ≡

T2 (A0A1, A2, A3) − T2 (A0, A1A2, A3)

+T2 (A0, A1, A2A3) − T2 (A3A0, A1, A2)

• Second Connes Formula : for Ai ∈ A0:

T2 (A0, A1, A2) =

Ω

dPTrS (πω(A0)dπω(A1)dπω(A2))

Page 32: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 32

III.4)- Quantization of Hall conductivityRecall that at T = 0, the Hall conductivity becomes

σH =e2

~Ch(PF)

III.4.1- Fredholm Index

• Fact 1 : let P be a projection on H and P =P ⊗ 12. If dP ∈ L3(H) then PuP is Fredholm onPH and

TrS

(

P dP dP)

= Ind (PuP PH) ∈ Z

• Fact 2 : dP ∈ L3(H) ⇐⇒ (uPu∗−P ) ∈ L3(H)and

Ind (PuP PH) = Tr ((uPu∗ − P )2n+ 1) ∀n ≥ 1

• Thus Ind(PuP PH) measures the increase of thedimension of PH after applying u.

Page 33: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 33

III.4.2- Ch(PF ) is an integer

• Assume : PF ∈ S.Then dπω(PF) ∈ L2+(H) ⊂ L3(H) (1st Connesformula).

• By the 2nd Connes formula we get

Ch(PF ) =

Ω

dPTrS (πω(PF )dπω(PF )dπω(PF ))

The r.h.s. is the disordered average of

n(ω) = Ind(πω(PF)uπω(PF) πω(PF )H) ∈ Z

• By covariance one gets

n(τ~xω) = n(ω) P-almost all ω and ~x ∈ R2

• Since P is invariant ergodic, n(ω) is almost surelyconstant so that

PF ∈ S ⇒ Ch(PF) ∈ Z

and Ch(PF) measures the number of states cre-ated if one applies u namely the Laughlin singulargauge transformation ! This is indeed the numberof charges sent at ∞.

Page 34: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 34

III.4.3- Existence of Plateaux

• The Fermi level EF is defined as the limit as T ↓ 0of the chemical potential µ, constrained to

T (ρβ, µ) = n

where n is the charge carrier density.

• Experimentally one can change EF either by chang-ing the magnetic field B or by changing n.Both ways are used in practice.

• Remark that P ∈ S 7→ Ch(P ) ∈ Z is continuousthanks to Connes formulæ.

• Since PF = χ(H ≤ EF), if we assume that the mapEF ∈ (E−, E+) 7→ PF ∈ S is continuous (for theSobolev norm), then Ch(PF) stay constant for EF

in the interval (E−, E+) !This is the mechanism through which plateauxoccur in the Hall conductivity.

• In the next section we will see that the conditionPF ∈ S is a consequence of the existence of local-ized states around the Fermi level.

Page 35: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 35

IV - LOCALIZATION and TRANSPORT

J. Bellissard, H. Schulz-Baldes, A. van Elst, J. Math. Phys., 35, (1994), 5373-5471.J. Bellissard, H. Schulz-Baldes, Rev. Math. Phys., 10, 1-46 (1998).J. Bellissard, H. Schulz-Baldes, J. Stat. Phys., 91, (1998), 991-1026.

J. Bellissard, D. Spehner, work in progress.

Page 36: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 36

IV.1)- Localization TheoryIV.1.1- Definitions

• The DOS of H = H∗ affiliated to A, was defined asthe Stieljies-Lebesgue measure

dN (E) = dT (PE)

with PE = χ(H ≤ E).For ∆ ⊂ R borelian, we set P∆ = χ(H ∈ ∆).

• The non dissipative current is given by ~J = q/~~∇H .

• The current-current correlation is the measure mdefined on R × R by:∫

R × R

m(dE, dE ′)f(E)g(E ′) = T(

f(H) ~∇H g(H) ~∇H)

for f, g continuous functions with compact supporton R. In physicists notations (ignoring q/~)

m(dE, dE′)“=”| < E| ~J |E′ > |2

• IfHω is the representative of H associated to ω ∈ Ωwe set

~Xω(t) = eıt~Hω ~Xe−ı

t~Hω

Page 37: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 37

IV.1.2- Localization Length

• Given ∆ ⊂ R borelian, the average localizationlength `(∆) of states with energy within ∆ is de-fined through the following steps

1. Project the initial state |~x > on ∆: πω(P∆)|~x >.

2. Measure the distance it goes during time t byapplying ( ~Xω(t) − ~X)πω(P∆)|~x >

3. Square it to get the quantum average,average over timeaverage over disorder to get

L∆(t)2 =1

t

∫ t

0

ds

s

Ω

dP < ~x|πω(P∆)( ~Xω(t) − ~X)2πω(P∆)|~x >

4. Then`(∆) = lim sup

t→ ∞

L∆(t)

• Fact :

L∆(t)2 =1

t

t

0

ds

sT(

|~∇e−ıt~H|2P∆

)

Thus the localization length is algebraic and inde-pendent of the representation of the Hamiltonian !

Page 38: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 38

IV.1.3- Localization: Results

Assume `(∆) <∞:

1. The spectrum of Hω in ∆ is pure point almostsurely w.r.t. ω: all states in ∆ are localized.

2. There is an N -measurable function ` on ∆ such thatfor any ∆′ ⊂ ∆ borelian,

`(∆′) =

∆′dN (E)`(E)2

`(E) is the localization length at energy E

3. One has

`(∆′) =

Ω

dP

R2d2~x |~x|2

E ∈ σpp(Hω) ∩ ∆′

∣< 0|PE, ω|~x >∣

2

where PE, ω is the eigenprojection of Hω on theenergy E.

4. One also gets:

`(∆′) = 2

∆′×R

m(dE, dE′)

|E − E′|2

5. If [E0, E1] ⊂ ∆

‖PE1− PE0

‖S ≤

∫ E1

E0

(1 + `2)dN

Page 39: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 39

IV.1.4- Existence of Plateaux

• From the previous results PF ∈ S as long as EF

belongs to a region of localized states. Thus local-ization ⇒ existence of plateaux for the Hall con-ductivity.

• From previous results by Frohlich & Spencer, Aizenman

& Molcanov, the localization length is finite at highdisorder for the Anderson model.

• More recent results by Combes & Hislop, W.M. Wang,the same is true for the Landau Hamiltonian witha random potential, at least O(B−∞)-away fromthe Landau levels.

Page 40: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 40

IV.2)- Kinetic Theory for Electronic TransportIV.2.1- Mott’s Variable Range Hopping

B. Shklovskii, A. L. Effros, Electronic Properties of Doped Semiconductors, (Springer-Verlag, Berlin, 1984).

• Strongly localized regime, dimension d

• Low electronic DOS, Low temperature

• Absorption-emission of a phonon of energy ε

Prob ∝ e−ε/kBT

• Tunnelling probability at distance r

Prob ∝ e−r/ξ

• Density of state at Fermi level nF

ε nF rd ≈ 1

Optimizing, the conductivity satisfies

σ ∝ e−(T0/T )1/d+1Mott’s law

Optimal energy εopt ∼ T d/(d+1) T

Optimal distance ropt ∼ 1/T 1/(d+1) ξ

Page 41: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 41

2

EF

ε

r

distance

Energy

ε1

ε

- Mott’s Variable Range Hopping -

Page 42: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 42

IV.2.2- The Drude modelDrude, (1900).

• Electrons in a metal are free classical particles ofmass m∗ and charge q.

• Electron density is n.

• Collisions occur at random poissonian times· · · < t−1 < t0 < · · · < tn+1 < · · ·with

< tn+1 − tn >= τrel

• If pn is the electron momentum between times tnand tn+1, then the pn+1−pn’s are independent ran-dom variables distributed according to the Maxwelldistribution at temperature T .

Then the conductivity follows the Drude formula

σ =q2n

m∗τrel

Page 43: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 43

random scatterers

p pp

p

1 23

4

test particle

- The Drude Kinetic Model -

Page 44: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 44

IV.2.2- Quantum Drude model

D. Spehner, J. Bellissard, in progress.

1. Replace the classical motion by the quantum one inthe homogeneous system with Hamiltonian H .

2. Replace collisions by quantum jumps indexed by rat random poissonian times

· · · < t(r)−1 < t

(r)0 < · · · < t

(r)n+1 < · · · with

< t(r)n+1 − t

(r)n >= Γ−1

r

3. At collision of type r the density matrix changes

ρ 7→ K∗r(ρ)

for some operator K∗r .

4. The dissipation operator is

C∗(ρ) =∑

r

Γr (ρ−K∗r(ρ))

5. Assume:

(a) If ρ ∈ L1(A, T ) then C∗(ρ) ∈ L1(A, T ),

(b) exp−C∗(ρ) ≥ 0 if ρ ≥ 0,

(c) exp−C∗ leaves T invariant.

Page 45: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 45

IV.2.2- The Master Equation

• The electronic Hamiltonian with electric field is

Hω,~E

= Hω −q

~

~E . ~X

• The evolution of the density matrix is given by

ρ(t) = η∗t−tn K∗rn η

∗tn−tn−1

· · · K∗r1 η

∗t1(ρ)

if

1. t0 ≤ 0 < t1 < · · · < tn ≤ t < tn+1 are thecollision times and r1, · · · , rn the correspondingquantum jumps.

2. η∗t is the action on states of the quantum evolu-tion associated to H

ω,~E.

Theorem 5 The collision average evolution of aninitial state ρ ∈ L1(A, T ) is given by :

d〈ρ〉

dt=

−LH +q

~

~E · ~∇− C∗

〈ρ〉

Page 46: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 46

IV.2.3- The Conductivity

Theorem 6 The (time, thermal, quantum) aver-aged current follows linear response theory. Thecorresponding AC-conductivity tensor at frequencyω0 is given by the Kubo formula:

σi,j =q

~T

∂i(ρβ, µ) (C − LH − ı ω0)−1 (Jj)

where ρβ, µ is the (Fermi-Dirac) equilibrium state atinverse temperature β and chemical potential µ andC is the dual action of C∗ on A.

2

The Relaxation Time Approximation (RTA), consistsin setting C∗(ρ) = ρβ, µ (immediate return to equilib-rium after each collision) namely C = 1/τ where τis the relaxation time.

In the limit of zero dissipation τ → ∞, the conductiv-ity tests the spectral properties of LH near ıω0 on theimaginary axis.

Page 47: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 47

IV.3)- Why are Hall Plateaux so Flat ?

IV.3.1- Deviations from Ideal Hall System

The theorems concerning the Hall conductance quan-tization requires the following conditions

• The sample has infinite area in space.

• The electric field is vanishingly small.

• The temperature vanishes.

• The collision operator C vanishes at zero tempera-ture.

Questions : Can one estimate the error when we areaway from these conditions ?

1. Can one estimate the error when we are away fromthese conditions ?

2. If Yes, can one explain the accuracy of the plateaux ?

Page 48: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 48

Results :

• It is possible to show that the accuracy of plateauxis limited only by the dissipation mechanisms inpractice.The size of the sample, the electric field, the tem-perature can be arranged so that they do not con-tribute.

• An estimate of the dissipation based upon the RTAgives the following estimate

δσHσH

≤ const · νe

h

`2

µc

where ν is the filling factor, ` is the localizationlength (typically of the order of 100A) and µc is themobility of the sample.Putting realistic numbers in it leads to

δσHσH

≤ 10−4

far from 10−8 that are observed !

• The origin of this discrepancy is due to Mott’s vari-able range hopping.D. Polyakov, B. Shklovskii, Phys. Rev., B48, 11167, (1993).

Page 49: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 49

IV.3.1- A Quantum Jump Model

• At very low temperature, conduction electrons areconfined in the impurity band of the semiconductor.A tight-binding approximation suffices.

• Let Lω be the impurity lattice. Wave functionsbelong to Hω = `2(Lω). Jumps are labelled bypairs x 7→ y of sites in Lω.

• Whenever the jump x 7→ y occurs, the wave func-tion changes according to

ψ 7→Wx 7→ yψ = (1 + (|y > −|x >) < x|)ψ

• Following the Mott argument one assumes that theprobability of such process is

Γx 7→ y ∝ e−(

|V (x)−V (y)|kBT

+|x−y|ξ )

where V (x) = Vω(x) is the (random) potential en-ergy seen by the electron at site x, and ξ is thelocalization length.

Page 50: The NON COMMUTATIVE GEOMETRYpeople.math.gatech.edu/~jeanbel/TalksE/qhe.pdf · NON COMMUTATIVE GEOMETRY of the INTEGER QUANTUM HALL EFFECT Jean BELLISSARD1 2 Universit e Paul Sabatier,

QHE Adelaide August 16-20 1999 50

Claim :(in progress) this model leads to a correc-tion term

δσHσH

≤ const · e−(

T0T

)1/3

νe

h

`2

µc

according to Mott’s law.

Remark :

1. Shklovskii & Efros have argued that the DOS mustvanish linearly at the Fermi level, due to Coulombinteraction.

2. It should be possible to design the Hamiltonian totake this remark into account.

3. If the DOS vanishes at the Fermi level, the exponent1/3 changes into 1/2 which is observed in experi-ments