the earth: assemblage of atoms of the 92 ......fes 2 orgc2 fe weathering 2 o 3 h 2 so 4 runoff o 2...

55
CHAPTER 6: GEOCHEMICAL CYCLES Most abundant elements: oxygen (in solid earth!), iron (core), silicon (mantle), hydrogen (oceans), nitrogen, carbon, sulfur… The elemental composition of the Earth has remained essentially unchanged over its 4.5 Gyr history Extraterrestrial inputs (e.g., from meteorites, cometary material) have been relatively unimportant Escape to space has been restricted by gravity Biogeochemical cycling of these elements between the different reservoirs of the Earth system determines the composition of the Earth’s atmosphere and oceans, and the evolution of life THE EARTH: ASSEMBLAGE OF ATOMS OF THE 92 NATURAL ELEMENTS

Upload: others

Post on 17-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • CHAPTER 6: GEOCHEMICAL CYCLES

    • Most abundant elements: oxygen (in solid earth!), iron (core),

    silicon (mantle), hydrogen (oceans), nitrogen, carbon, sulfur…

    • The elemental composition of the Earth has remained essentially

    unchanged over its 4.5 Gyr history

    – Extraterrestrial inputs (e.g., from meteorites, cometary

    material) have been relatively unimportant

    – Escape to space has been restricted by gravity

    • Biogeochemical cycling of these elements between the different

    reservoirs of the Earth system determines the composition of the

    Earth’s atmosphere and oceans, and the evolution of life

    THE EARTH: ASSEMBLAGE OF ATOMS OF THE 92 NATURAL ELEMENTS

  • BIOGEOCHEMICAL CYCLING OF ELEMENTS:

    examples of major processes Physical exchange, redox chemistry, biogeochemistry are involved

    Surface

    reservoirs

  • EVOLUTION OF O2 AND O3 IN EARTH’S ATMOSPHERE

  • NOAA Greenhouse Gas records

    http://www.esrl.noaa.gov/gmd/aggi/

  • OXIDATION STATES OF NITROGEN N has 5 electrons in valence shell a9 oxidation states from –3 to +5

    -3 0 +1 +2 +3 +4 +5

    NH3

    Ammonia

    NH4+

    Ammonium

    R1N(R2)R3

    Organic N

    N2 N2O

    Nitrous

    oxide

    NO

    Nitric

    oxide

    HONO

    Nitrous acid

    NO2-

    Nitrite

    NO2

    Nitrogen

    dioxide

    HNO3

    Nitric acid

    NO3-

    Nitrate

    Decreasing oxidation number (reduction reactions)

    Increasing oxidation number (oxidation reactions)

    Nitrogen: Nitrogen is a major component of the atmosphere, but an essential nutrient in short

    supply to living organisms. Why is "fixed" nitrogen in short supply? Why does it stay

    in the atmosphere at all?

    free radical free radical

  • THE NITROGEN CYCLE: MAJOR PROCESSES

    ATMOSPHERE N2 NO

    HNO3

    NH3/NH4+ NO3

    -

    orgN

    BIOSPHERE

    LITHOSPHERE

    combustion

    lightning

    oxidation

    deposition

    assimilation

    (bacteria or

    host plants

    decay

    (bacteria)

    nitrification

    (bacteria, aerobic)

    denitrification

    (bacteria,

    anaerobic)

    biofixation

    (bacteria)

    burial weathering

    free radical

    "fixed" or "odd" N is less stable globally N2

    Kunstgjødsel

    http://iconbazaar.com/bars/contributed/pg04.html

  • IPCC WGI, 2013

    Box 6.2, Figure 1 |

    Anthropogenic reactive

    nitrogen (Nr) creation rates

    (in TgN yr–1) from fossil fuel

    burning (orange line),

    cultivation-induced biological

    nitrogen fixation (blue line),

    Haber–Bosch process

    (green line) and total

    creation (red line). Source:

    Galloway et al. (2003),

    Galloway et al. (2008). Note

    that updates are given in

    Table 6.9. The only one with

    significant changes in the

    more recent literature is

    cultivation-induced BNF)

    which Herridge et al. (2008)

    estimated to be 60 TgN yr–

    1. The data are only

    reported since 1850, as no

    published estimate is

    available since 1750.

    I 1926 krevde lysbueprosessen i snitt 61000 kWh for å produsere

    1 tonn fiksert nitrogen, Frank-Caro-prosessen krevde rundt 12-

    14000 kWh, mens Haber-Bosch-prosessen kun krevde 4000 kWh

    https://no.wikipedia.org/wiki/KWh

  • Økning i N2O konsentrasjonen de siste 2000 år.

    Fra 270 ppbv til 325 ppb (+20%)

  • FAST OXYGEN CYCLE: ATMOSPHERE-BIOSPHERE

    • Source of O2: photosynthesis

    nCO2 + nH2O g (CH2O)n + nO2

    • Sink: respiration/decay

    (CH2O)n + nO2 g nCO2 + nH2O

    O2

    CO2

    orgC

    orgC litter

    Photosynthesis

    less respiration

    decay

    O2 lifetime: 5000 years

    http://iconbazaar.com/bars/contributed/pg04.html

  • …however, abundance of organic carbon in

    biosphere/soil/ocean reservoirs is too small to control

    atmospheric O2 levels

    Atmosfære

    Atmosfære

    ∑ C

  • SLOW OXYGEN CYCLE: ATMOSPHERE-LITHOSPHERE

    O2 CO2

    Compression

    subduction

    Uplift

    CONTINENT OCEAN

    FeS2 orgC

    weathering Fe2O3 H2SO4

    runoff

    O2 CO2

    Photosynthesis

    decay

    orgC

    burial

    SEDIMENTS

    microbes

    FeS2 orgC

    CO2 orgC: 1x107 Pg C

    FeS2: 5x106 Pg S

    O2: 1.2x106 Pg O

    O2 lifetime: 3 million years

  • The heavier temperature lines 160,000 BP to present reflect more data points, not necessarily greater variability.

    Source: Climate and Atmospheric History of the past 420,000 years from the Vostok Ice Core, Antarctica, by Petit

    J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis J. Delaygue G.,

    Delmotte M. Kotlyakov V.M., Legrand M., Lipenkov V.M., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M.,

    Nature, 3 June 1999.

    Antarctic Ice Core Data

    CO2 varies over geologic time, within the range 190 – 280 ppm for the last

    420,000 years. The variations correlate with climate: cold low CO2 . Is

    CO2 driving climate or vice versa?

  • Det Global karbonbudsjettet

    1 Pg = 1015 g = 1000 mill tonn

  • Det Global karbonbudsjettet

    1 Pg = 1015 g = 1000 mill tonn

    Fotosyntes

    e

    Respirasjo

    n/nedbrytni

    ng

  • Det Global karbonbudsjettet

  • Det Global karbonbudsjettet

  • Det Global karbonbudsjettet

  • Det Global karbonbudsjettet

    • Stor utveksling

    mellom atmosfære

    og planter/hav

    • Levetid CO2:

    820(PgC)/(100+100

    PgC/år) = 4 år

    • Mye karbon i

    dyphavet

    • Veldig tregt tap av

    karbon til

    olje/kull/gass Kilde: https://www.carboncyclescience.us/what-is-carbon-cycle

  • Le Quere, 2016

    Jacob (1999): FF: 6 Pg(C)/yr

    Avskoging: 1.6 Pg(C)/yr

    Økning atm: 4 Pg(C)/yr

    Opptak (hav/land): 3.6 Pg(C)/yr

    FF: 9.5 Pg(C)/yr

    Avskoging: 1.0 Pg(C)/yr

    Økning atm: ≈ 5 Pg(C)/yr

    Opptak hav: ≈ 3 Pg(C)/yr

    Opptak land: ≈ 2.5 Pg(C)/yr

  • Forskjell NH/SH skyldes mer utslipp fra fossile

    kilder i nord.

    IPCC, 2013

  • Carbon Cycle on Land

    •Photosynthesis:

    CO2 + H2O + light => "H2CO" + O2

    •Respiration:

    "H2CO" + O2 => CO2 + H2O + energy

    Very little organic matter is stored, on average.

    Carbon Cycle in the ocean

    •Dissolution/evasion

    CO2(g) + H2O + CO3(aq) = 2 HCO3

    ¯

    https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiIn_qPjvDXAhVEYZoKHQNgBloQjRwIBw&url=https%3A%2F%2Fwww.huffingtonpost.com%2Fjose-maria-figueres%2Fwhats-working-inspiring-a_b_10331436.html&psig=AOvVaw26LInujZHt4dK76QdJOisl&ust=1512468425629577

  • Karbonkjemi i havet

    • CO2 løses i vannet og danner CO2·H2O

    – Likevekt ved Henrys lov

    KH = [CO2·H2O]/PCO2 = 3·10-2 M/atm

    • CO2·H2O dissosierer og danner HCO3- og H+

    – K1 = [HCO3-][H+]/[CO2·H2O] = 9·10

    -7 M

    • HCO3- dissosierer og danner CO3

    2- og H+

    – K2 = [CO32-][H+]/[HCO3

    - ] = 7·10-10 M

    pH = -log [H+]

    Lav pH [H+] høy

    [H+] høy R5 og R4 forskjøvet

    mot venstre

    pH i havet (pre-industrielt): 8.2

    Ønsker å finne

    F(Ki, [H+])

    M=mol/liter (Molar)

  • Oppløst karbon i havet

    https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjc7cC9kPDXAhWGHJoKHY46APgQjRwIBw&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOceanic_carbon_cycle&psig=AOvVaw0ZUVZGvIm8NRFI7vOJ8leK&ust=1512469063395027

  • Ønsker å finne F(Ki, [H+])

  • = 0.03 Betyr dette at 97% av

    ekstra tilført CO2 blir

    tatt opp i havet?

  • Oppløst karbon i havet

    pH=8 [H+]=10-8 M

    DIC = 2·10-3 M

    https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjc7cC9kPDXAhWGHJoKHY46APgQjRwIBw&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOceanic_carbon_cycle&psig=AOvVaw0ZUVZGvIm8NRFI7vOJ8leK&ust=1512469063395027https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjKy5e2kfDXAhWpBZoKHW0OBDwQjRwIBw&url=https%3A%2F%2Fwattsupwiththat.com%2F2013%2F11%2F27%2Fco2-in-the-air-co2-in-the-seawater%2F&psig=AOvVaw0ZUVZGvIm8NRFI7vOJ8leK&ust=1512469063395027

  • Buffereffekten av HCO3- og CO3

    2-

    Nei, mer CO2 betyr mer H+ slik at F øker

    NB! Buffereffekten hindrer ikke at [H+]

    øker, men demper økningen betydelig

    Ved en ekstra tilførsel

    av CO2 til atmosfæren

    (dN), hvor mye blir

    værende ?

    k’= kH k1 / k2 For R6

  • Lang utregning ……. (se side 102 i boka)

    = 0.28

    Betyr dette at 72% av ekstra tilført CO2 blir tatt opp i havet?

    Ja, men ikke umiddelbart!

    - VOC er volumet av hele havet, og blandingen ned i dyphavet er treg.

    - Høyere temperatur ved overflaten (?) varmere vann på overflaten

    tregere blanding

    Dersom vi bare tar med

    overflatelaget blir f=0.94

  • Hvordan tas resten av CO2 opp?

    CO2(g) + CaCO3 ↔ 2HCO3- + Ca2+

    f=7%

    IPCC, 2013

    CaCO3 : I sedimenter fra bl.a skjell

  • IPCC, 2013

  • Hvordan blir CO2 fjernet på enda lengre tidsskalaer?

    • Forvitring av mineraler som består av kalsiumsilikat (CaSiO3)

  • CO2 opptak i havet til nå

    IPCC, 2013

  • IPCC, 2013

  • Arrows indicate

    El Nino events

    Notice:

    • atmospheric increase is ~50% of fossil fuel emissions

    • significant interannual variability

  • EVIDENCE FOR LAND UPTAKE

    OF CO2 FROM TRENDS IN O2,

    1990-2000

  • Dagens CO2

    budsjett.

    IPCC, 2013

  • http://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwisgPiFlfDXAhWJF5oKHWbEAfEQjRwIBw&url=http%3A%2F%2Feuanmearns.com%2Fco2-emissions-reduction-renewables-and-recession%2F&psig=AOvVaw1QJ7EU3LZ3o4_Il5oQSNHX&ust=1512470245545693

  • CYCLING OF CARBON WITH TERRESTRIAL BIOSPHERE

    Inventories in PgC

    Flows in PgC yr-1

    Relatively small reservoirs a Short time scales

  • Biogeokjemiske tilbakekoblinger

    • T øker økt/redusert plantevekst økt/red CO2 opptak

    negativ/positiv tilbakekobling

    • CO2 øker økt plantevekst økt CO2 opptak negative

    tilbakekobling (såkalt non-climate feedback)

  • Feedback parameter

    𝑪𝒅𝑻

    𝒅𝒕= 𝑸 + 𝜶𝒊 𝑻

    En-boks klimamodell:

    αi: Feedback parametere

    Q: Strålingspådriv (Wm-2)

    C: Global varmekapasitet

    Kilde: IPCC 2013.

    https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjhl7ui_czXAhVoYZoKHa8aBmsQjRwIBw&url=https://wattsupwiththat.com/2016/09/03/feet-of-clay-the-official-errors-that-exaggerated-global-warming-part-2/&psig=AOvVaw2jslIbr-d3VD-JhvVXiNkf&ust=1511261288885131

  • IPCC, 2013

  • Mer CO2 i

    atmosfæren

    høyere opptak i

    hav og på land

    Høyere temperatur

    høyere/lavere

    opptak i hav og på

    land

    Uendret

    klima, høyere

    CO2

    Varmere klima,

    uendret CO2

  • CO2 utslipp og Paris-avtalen

    https://blogs.agu.org/geospace/2016/06/27/capping-warming-2-degrees-new-study-details-pathways-beyond-paris/

    https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjN1pmvmPDXAhVmIJoKHSLXAPcQjRwIBw&url=https%3A%2F%2Fblogs.agu.org%2Fgeospace%2F2016%2F06%2F27%2Fcapping-warming-2-degrees-new-study-details-pathways-beyond-paris%2F&psig=AOvVaw0aXcOEY66IWvkMDRvhgHAg&ust=1512471182698349

  • Varmekraftverk basert biobrensel og CCS: En

    mulighet for negative CO2 utslipp?

  • UPTAKE OF CO2 BY THE OCEANS

    CO2(g)

    CO2.H2O

    CO2.H2O HCO3

    - + H+

    HCO3- CO3

    2- + H+

    KH = 3x10-2 M atm-1

    K1 = 9x10-7 M

    K2 = 7x10-10 M

    Net uptake:

    CO2(g) + CO32-

    + H2O 2HCO3

    -

    CO2.H2O HCO3

    - CO32-

    OCEAN

    ATMOSPHERE

  • EQUILIBRIUM PARTITIONING OF CO2 BETWEEN ATMOSPHERE AND GLOBAL OCEAN

    Equilibrium for present-day ocean:

    only 3% of total inorganic carbon is currently in the atmosphere

    But CO2(g) k [H+] k F k

    … positive feedback to increasing CO2

    Pose problem differently: how does a CO2 addition dN partition between

    the atmosphere and ocean at equilibrium?

    28% of added CO2 remains in atmosphere!

    2

    2 2

    ( )0.03

    ( ) ( )

    CO

    CO CO

    N gF

    N g N aq

    varies roughly as [H+]

    2

    2 2

    ( )0.28

    ( ) ( )

    CO

    CO CO

    dN gf

    dN g dN aq

    varies roughly as [H+]2

  • FURTHER LIMITATION OF CO2 UPTAKE:

    SLOW OCEAN TURNOVER (~ 200 years)

    Inventories in 1015 m3 water

    Flows in 1015 m3 yr-1

    Uptake by oceanic mixed layer only (VOC= 3.6x1016 m3)

    would give f = 0.94 (94% of added CO2 remains in atmosphere)