the color glass condensate - smu physics...qcd evolution equations at small x a) the dglap equation...

47
The The Color Color G G lass lass Condensa Condensa te: te: An effective theory of QCD An effective theory of QCD at high energies at high energies Raju Venugopalan Raju Venugopalan Brookhaven National Laboratory Brookhaven National Laboratory

Upload: others

Post on 18-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The The Color Color GGlass lass CondensaCondensate:te:

An effective theory of QCD An effective theory of QCD at high energiesat high energies

Raju VenugopalanRaju Venugopalan

Brookhaven National LaboratoryBrookhaven National Laboratory

Page 2: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Recent Reviews on the CGC:

L. McLerran, hep-ph/0311028

E. Iancu & R. Venugopalan, hep-ph/0303204

A. H. Mueller, hep-ph/9911289

Page 3: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Momentum Resolution

Page 4: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

QCD evolution equations at small x

a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)If x_Bj << 1, gluon bremsstrahlung is dominant in QCD evolution:P_gg > P_qg > P_qq

Large Logs from Bremsstrahlung

For and x~1, resumAt small x, sum double logs

# of gluons grows rapidly…

Page 5: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

increasing

But… the phase space density decreases-the proton becomes more dilute

Page 6: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Thus far, our discussion has focused on the Bjorken limit in QCD:

Other interesting limit-is the Regge limit of QCD:

Asymptotic freedom, Factorization Theorems, machinery of precision physics in QCD…

Physics of strong fields in QCD, multi-particle production- possibly discover novel universal properties of theory in this limit

Page 7: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

QCD evolution equations at small xb) The BFKL equation (Balitsky-Fadin-Kuraev-Lipatov)

Evolution in x, notRe-sums

# of gluons grows even more rapidly

Page 8: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

-Large x

-Small x

Phase space density grows rapidly-BFKL evolution breaks down when phase space density f~ 1

Gluon density saturates at f=

Page 9: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Gluon recombination-higher twist effects

Gribov, Levin, RyskinMueller, QiuBlaizot, Mueller

Recombination effects compete with DGLAP Bremsstrahlung effects when

Saturation of the gluon density for

Page 10: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

A hadron at high energies

Each wee parton carries only a small fraction

of the momentum of the hadron

What is the behavior of wee partons in a high energy hadron?

Page 11: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Unlike QED, the QCD light cone vacuum is very complicated:--various topological objects, Instantons, Monopoles, Skyrmions, …Hadrons may be bags or flux tubes or solitons:Complex phenomena - Chiral symmetry breaking, Confinement,…

Given this, how does one describe the structure of hadrons in high energy scattering?

How does one construct a Lorentz invariant wave fn for a hadron?

Partial answer: formulate the theory on the light cone

Page 12: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Initial value surface t+z=0

Life on the light cone

Quantize theory on light like surface:

Quantum field theories quantized on light like surfaces have remarkable properties

RV, nucl-th/9808023

Page 13: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Q.F.T on the light cone

Two dimensional quantum mechanics

isomorphism

Light cone dispersion relation:

Energy

Momenta

Mass

Susskind, 1968Weinberg, 1966

Light cone pert. theory = Rayleigh-Schrodinger pert. theory

Page 14: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The Color Glass Condensate: An effective field theory of QCD at high energies

Life on the Light Cone

The MV-model

Quantum evolution: a Wilsonian RG

The JIMWLK equations

Analytical approximations and numerical solutions

Page 15: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The MV modelMcLerran, RV; KovchegovJalilian-Marian,Kovner,McLerran,Weigert

Consider large nucleus in the IMF frame:

One large component of the current-others suppressed by Wee partons see a large density of valence color charges at

small transverse resolutions.

Page 16: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Born-Oppenheimer: separation of large x and small x modes

Valence partons are static over wee parton life times

Page 17: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Limiting fragmentation

Suggestive that valence partons are recoil-less sources-unaffected by Bremsstrahlung of wee partons

Page 18: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Random sources

Gaussian random sources

Page 19: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The effective action

Generating functional:

Gauge invariant weight functional describing distribution of the sources

Scale separating sources and fields

where

To lowest order,

Page 20: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

For a large nucleus,

where, for valence quark sources, one has

For A >>1, and

Effective action describes a weakly coupled albeit non-perturbative system

Page 21: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The classical field of the nucleus at high energies

Saddle point of effective action-> Yang-Mills equations

Solutions are non-Abelian Weizsäcker-Williams fields

Careful solution requires smearing in

Page 22: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

z

Random Electric & Magnetic fields in the plane of the fast moving nucleus

Page 23: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Average over to compute gluon distribution

Gaussian in MV

= gluon phase space density =

for A >> 1

Page 24: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The Color Glass Condensate

Typical momentum of gluons is

Bosons with large occupation # ~ - form a condensate

Gluons are colored

Random sources evolving on time scales much larger than natural time scales-very similar to spin glasses

Hadron/nucleus at high energies is a Color Glass Condensate

Page 25: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The Color Glass Condensate: An effective field theory of QCD at high energies

Life on the Light Cone

The MV-model

Quantum evolution: a Wilsonian RG

The JIMWLK equations

Analytical approximations and numerical solutions

Page 26: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Color charge grows due to inclusion of fields into hard source with decreasing x:

Because of strong fields All insertions are O(1)

obeys a non-linear Wilson renormalization groupequation-the JIMWLK equation

(Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner)

Page 27: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

At each step in the evolution, compute 1-point and 2-point functions in the background field

The JIMWLK (functional RG) equation:

⇒ An infinite hierarchy of ordinary differential equations for the correlators

Page 28: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Correlation FunctionsChange of variables:

Consider the 2-point function:

Can solve JIMWLK in the weak field limit:

Brownian motion in functional space: Fokker-Planck equation!

“time”

“diffusion coefficient”

Iancu, McLerran;Weigert

Recover the BFKL equation in this low density limit

Page 29: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Can also solve JIMWLK in the strong field limit: Iancu,McLerran

Gluon phase space density

How does one compute Q_s(Y) ?

Page 30: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Novel regime of QCD evolution at high energies

The Color Glass Condensate

Page 31: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The Color Glass Condensate: An effective field theory of QCD at high energies

Life on the Light Cone

The MV-model

Quantum evolution: a Wilsonian RG

The JIMWLK equations

Analytical approximations and numerical solutions

Page 32: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

The Balitsky-Kovchegov equation

I. Balitsky;Y. KovchegovDIS:

S-matrix amplitude

McLerran,RV

Path ordered exponential

Page 33: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Weak field limit:

violates unitarity bound if N > 1

For dipole probes strong fields

Iancu-McLerran RPA =>

=> N ~ 1 - dipole unitarizes

Choose as saturation conditionto determine Q_s

Page 34: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

BK: Evolution eqn. for the dipole cross-section

The 2-point correlator in JIMWLK has

a closed form expression for

BFKL Non-linear

For small dipole,

From saturation condition,

For large dipole,

Levin,Tuchin;Iancu,McLerran;Mueller

Page 35: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Numerical solutions of the BK-Eqn.

BFKL BK

No infrared diffusion a la BFKL in BK

Exact analogy to travelling waves => Munier,Peschanski

Page 36: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Numerical simulations of BK-eqn displayGeometrical Scaling(Armesto,Braun; Golec-Biernat,Stasto,Motyka)

Infrared diffusion pathology of BFKL is cured.

State of the art: numerical simulations of JIMWLK n-point correlators by Rummukainen & Weigert

Running coupling effects important & still to be understood…

Synopsis of CGC numerics

Page 37: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Geometrical Scaling

Can write the solution of BFKL as:

For (but close!), can write

soln. where argument vanishes

Plugging into N_Y, can show simply

Iancu,Itakura, McLerran;Mueller,Triantafyllopolous

is large than BFKL anomalous dimension ~0.5

Page 38: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Geometrical scaling at HERA

Scaling seen for all x < 0.01 and

(Golec-Biernat,Kwiecinski,Stasto)

Page 39: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

How does Q_s behave as function of Y?

Fixed coupling LO BFKL:

LO BFKL+ running coupling:

Re-summed NLO BFKL + CGC:

Triantafyllopolous

Very close toHERA result!

Page 40: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

A-dependence of saturation scale

Mueller

Such interesting systematics may be tested at LHC & eRHIC

Page 41: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Hadron & Nuclear Scattering at high energies

Page 42: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

I: Universality: collinear versus k_t factorization

Collinear factorization:

k_t factorization:

Are these objects universal? Very important for extraction of “gluon” distributions.

Page 43: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Solve Yang-Mills equations for two light cone sources:

For observables average over

Page 44: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Gluon production in high energy pA collisions:

is non-linear in the gluon density to all orders-recover unintegrated gluon dist at large k_t

Quark production:

Not k_t factorizable!

Page 45: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Breaks k_t factorization?Contribution is same orderin coupling

Wave-fn evolution effects (beyond MV) difficult to include-work of Rummukainen & Weigert is promising.

Classical evolution shows re-scattering-hence energy loss at eta=0 must be especially strong in AA!

Page 46: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Colliding Sheets of Colored Glass at High Energies

Classical Fields with occupation # f=

Initial energy and multiplicity of produced gluonsdepends on Q_s

Classical approach breaks down at late times when f <<1

Page 47: The Color Glass Condensate - SMU Physics...QCD evolution equations at small x a) The DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) If x_Bj

Space-time evolution in heavy ion collisions

Initial conditions determined by saturation scale Q_s >> T_i

Do initial state (wave fn.) effects or final state (parton re-scattering) dominate in the space-time evolution?

Q_s=1.4--2 GeV from HERA dataextrapolations and numerical simulations