ten° the new 10° binning - osram · ten°–the new 10°binning | os gl s eem ae january 2018 13...

16
TEN° The new 10° Binning General Lighting Light is OSRAM www.osram-os.com CONFIDENTIAL

Upload: others

Post on 13-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° Binning

General Lighting

Light is OSRAM

www.osram-os.com

CONFIDENTIAL

Page 2: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

2

What is TEN°?

TEN° is the name of the new OSRAM OS feature and binning to ensure

that maximum color differences are kept within 3UNITS in the CIE 2015

10° u’v’ color space. This ensures unprecedented color consistency

especially if the spectral composition of the white light is different

between LEDs e.g. due to different blue wavelengths of the chip.

CIE

19

31

y

CIE 1931 2° x

CIE 1931 2° xy

Planckian Locus

27S3

30S3

35S3

40S3

45S3

50S3

57S3

65S3

CIE

20

15

10

°v' F

,10

CIE 2015 10° u'F,10

CIE 2015 10° u'F,10v'F,10

Planckian Locus

Page 3: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

3

Why do we need the TEN° binning and a new color

space?

Imagine you are illuminating a scene with spotlights and their white looks

different. You are measuring and the color coordinates are not only within

1SDCM but exactly the same .. Still they look different!

… How can this happen?

0,394

0,396

0,398

0,400

0,402

0,404

0,406

0,408

0,410

0,412

0,414

0,427 0,432 0,437 0,442 0,447y

x

CIE 1931 2° xy3000K 1SDCM

3000K 3SDCM

LED CRI80 450nm

Black Body Radiator3000K

LED CRI70 450nm

LED CRI90 450nm

LED CRI80 440nm

LED CRI80 445nm

LED CRI80 455nm

LED CRI80 460nm

Page 4: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

4

How do we define a color space?

The CIE 1931 2° Color matching functions

In order to measure the color of light the CIE 1931 standard colorimetric

observer was defined. Based on color matching experiments and

transformations the x, y, z color matching functions have been derived.

Page 5: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

5

How do we define a color space?

The CIE 1931 2° color space

Based on the 1931 2° CMF the 1931 2° color space was formed. This is the

standard color space that every one is using for the binning of LEDs.

Page 6: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

6

390 450 510 570 630 690 750

Inte

nsit

y

Wavelength [nm]

Spectral Power Distribution of different LEDs with 3000K

Black Body Radiator3000K

LED CRI80 450nm

LED CRI80 440nm

LED CRI80 445nm

LED CRI80 455nm

LED CRI80 460nm

390 450 510 570 630 690 750

Inte

nsit

y

Wavelength [nm]

Spectral Power Distribution of different LEDs with 3000K

Black Body Radiator3000K

LED CRI70 450nm

LED CRI80 450nm

LED CRI90 450nm

0,0

0,5

1,0

1,5

2,0

2,5

380 430 480 530 580 630 680 730

Tri

sti

mu

lus v

alu

es

Wavelength [nm]

Tristimulus values for CIE 1931 2°

CIE 1931 2° x

CIE 1931 2° y

CIE 1931 2° z

0,394

0,396

0,398

0,400

0,402

0,404

0,406

0,408

0,410

0,412

0,414

0,427 0,432 0,437 0,442 0,447

y

x

CIE 1931 2° xy3000K 1SDCM

3000K 3SDCM

LED CRI80 450nm

Black Body Radiator3000K

LED CRI70 450nm

LED CRI90 450nm

LED CRI80 440nm

LED CRI80 445nm

LED CRI80 455nm

LED CRI80 460nm

Why can two light sources with exactly the same color

coordinates look different?

This problem is caused due to some inaccuracies in the CIE 1931 2° xy

color diagram. It may happen, that LEDs with different spectral

composition may be measured to have exactly the same color

coordinates but the visual perception still shows color differences!

Page 7: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

7

Our eye has a different receptor cell (cones) ratio and pigment density

over the viewing angle.

1931 2° Observer:

Field of view: ~ 17mm @ 0,5m

1964 10° Observer:

Field of view: ~ 90mm @ 0,5m

Most of the SSL applications provide a field of view of 10° or more!

Therefore an assessment of the white appearance based on 2° will always

be less representative than a comparison based on 10°!

Why do we see color differences even if the LEDs are

measured with exactly the same color coordinates?

10° Observer

2° Observer

Receptor cells (cones) in the retina

2° 10°

Page 8: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

8

Scientific data from CIE 170-1-2006 shows the optical pigment density

variation over field size:

More details on the optical density of the visual

pigments as a function of field size (CIE 170-1-2006)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 1 2 3 4 5 6 7 8 9 10

Pe

ak

op

tic

al d

en

sit

y

Field size (degrees)

Peak optical density of the visual pigments as a function of field size (CIE 170-1-2006)

L-Pigments

M-Pigments

S-Pigments

Delta (L,M - S)

0%

20%

40%

60%

80%

100%

120%

140%

160%

0 1 2 3 4 5 6 7 8 9 10

Ra

tio

be

twe

en

L-,

M-p

igm

en

ts a

nd

S-p

igm

en

t

Field size (degrees)

Peak optical density ratio of the visual pigment between the L-,M-pigments and the S-pigment as a function of field size (CIE 170-1-2006)

Ratio (L,M vs S)

Receptor cells (cones) in the retina

10° Observer

2° Observer

Page 9: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

9

How do we define a better color space?

The CIE 2015 10° color matching functions

The 2° observer assumes a color judgment in the foveal field of

observation. But most applications offer a larger field of view. The

different concentration of cones leads to different color matching.

10°

0,0

0,5

1,0

1,5

2,0

2,5

380 430 480 530 580 630 680 730

Tri

sti

mu

lus

va

lue

s

Wavelength [nm]

Tristimulus values for CIE 1931 2° and 2015 10° field size

CIE 1931 2° x

CIE 1931 2° y

CIE 1931 2° z

CIE 2015 10° xF,10

CIE 2015 10° yF,10

CIE 2015 10° zF,10

Page 10: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

10

Based on the 2006 10° CMF the 1964 10° color space was formed. This

color space is known for decades but never used for color binning in

general lighting.

How do we define a better color space?

The CIE 2015 10° color space

0,0

0,5

1,0

1,5

2,0

2,5

380 430 480 530 580 630 680 730

Tri

sti

mu

lus

va

lue

s

Wavelength [nm]

Tristimulus values for CIE 1931 2° and 2015 10° field size

CIE 1931 2° x

CIE 1931 2° y

CIE 1931 2° z

CIE 2015 10° xF,10

CIE 2015 10° yF,10

CIE 2015 10° zF,10

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

y

x

Chromaticity Diagram: 1931 2° and 2015 10°

1931 2° xy

1931 2° Black Body

3000K 20SDCM

2015 10° xy

2015 10° Black Body

3000K 20UNIT

Page 11: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

11

390 450 510 570 630 690 750

Inte

nsit

y

Wavelength [nm]

Spectral Power Distribution of different LEDs with 3000K

Black Body Radiator3000K

LED CRI80 450nm

LED CRI80 440nm

LED CRI80 445nm

LED CRI80 455nm

LED CRI80 460nm

390 450 510 570 630 690 750

Inte

nsit

y

Wavelength [nm]

Spectral Power Distribution of different LEDs with 3000K

Black Body Radiator3000K

LED CRI70 450nm

LED CRI80 450nm

LED CRI90 450nm

0,0

0,5

1,0

1,5

2,0

2,5

380 430 480 530 580 630 680 730

Tri

sti

mu

lus v

alu

es

Wavelength [nm]

Tristimulus values for CIE 2015 10° field size

CIE 2015 10° xF,10

CIE 2015 10° yF,10

CIE 2015 10° zF,10

0,385

0,387

0,389

0,391

0,393

0,395

0,397

0,399

0,401

0,403

0,405

0,434 0,439 0,444 0,449 0,454

yF,1

0

xF,10

CIE 2015 10° xF,10yF,103000K 1UNIT

3000K 3UNIT

LED CRI80 450nm

Black Body Radiator3000K

LED CRI70 450nm

LED CRI90 450nm

LED CRI80 440nm

LED CRI80 445nm

LED CRI80 455nm

LED CRI80 460nm

How can we solve this problem and measure more

accurately the visual impression of color differences?

Using the latest CIE 2015 fundamental chromaticity diagram with

physiological axes will ensure that the visible color differences are also

captured in the measurement and binning accordingly! The new color

matching functions are now summarizing the last 85 years of research.

Page 12: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

12

How can we create a more uniform color space where

color differences in any direction are judged equally?

In 1976 the CIE proposed a transformation from the 1931 2° xy to the 1976

2° u’v’ color space. This transformations creates a new color space where

the MacAdam ellipses are circles and therefore the color space is more

uniform.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

y

x

Chromaticity Diagram: 1931 2° and 2015 10°

1931 2° xy

1931 2° Black Body

3000K 20SDCM

2015 10° xy

2015 10° Black Body

3000K 20UNIT

xy

to

u’v’

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7u

'

v'

Chromaticity Diagram: 1931 2° and 2015 10°

1931 2° u'v'

1931 2° Black Body

3000K 20SDCM

2015 10° u'v'

2015 10° Black Body

3000K 20UNIT

Page 13: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

13

How big are possible color differences in current

standard binning measured in the 2015 10° u’v’

Even if the LED is binned in a 1SDCM MacAdam ellipse, the visible color

difference can be more than 3UNITS in u’v’!

3SDCM Binning 1SDCM Binning 3SDCM + TEN° Binning

0,370

0,375

0,380

0,385

0,390

0,372 0,377 0,382 0,387 0,392

y

x

CIE 1931 2° xy

4000K1SDCM

40S3

VirtualProductionData

0,370

0,375

0,380

0,385

0,390

0,372 0,377 0,382 0,387 0,392

y

x

CIE 1931 2° xy

4000K1SDCM

40S3

VirtualProductionData

0,370

0,375

0,380

0,385

0,390

0,372 0,377 0,382 0,387 0,392

y

x

CIE 1931 2° xy

4000K1SDCM

40S3

VirtualProductionData

0,497

0,498

0,499

0,500

0,501

0,502

0,503

0,504

0,505

0,506

0,507

0,226 0,228 0,230 0,232 0,234 0,236

v' F

,10

u'F,10

CIE 2015 10° u'F,10v'F,10

4000K1UNIT

4000K3UNIT

VirtualProductionData

0,497

0,498

0,499

0,500

0,501

0,502

0,503

0,504

0,505

0,506

0,507

0,226 0,228 0,230 0,232 0,234 0,236

v' F

,10

u'F,10

CIE 2015 10° u'F,10v'F,10

4000K1UNIT

4000K3UNIT

VirtualProductionData

0,497

0,498

0,499

0,500

0,501

0,502

0,503

0,504

0,505

0,506

0,507

0,226 0,228 0,230 0,232 0,234 0,236

v' F

,10

u'F,10

CIE 2015 10° u'F,10v'F,10

4000K1UNIT

4000K3UNIT

VirtualProductionData

Based on a simulated production distribution with 4000K

CRI80 and a blue wavelength variation of 15nm.

Page 14: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

14

Even if the LED is binned in a 1SDCM MacAdam ellipse, the visible color

difference can be more than 3UNITS in u’v’!

3SDCM Binning 1SDCM Binning 3SDCM + TEN° Binning

0,0000,0010,0020,0030,0040,0050,0060,0070,008

1931 2° u'v' 2015 10° u'v'

du

'v' /

SD

CM

/ U

NIT

Worse case color difference: 1SDCM Binning

How big are worse case color differences in current

standard binning measured in the 2015 10° u’v’

0,497

0,498

0,499

0,500

0,501

0,502

0,503

0,504

0,505

0,506

0,507

0,226 0,228 0,230 0,232 0,234 0,236

v' F

,10

u'F,10

CIE 2015 10° u'F,10v'F,10

4000K1UNIT

4000K3UNIT

VirtualProductionData

0,497

0,498

0,499

0,500

0,501

0,502

0,503

0,504

0,505

0,506

0,507

0,226 0,228 0,230 0,232 0,234 0,236

v' F

,10

u'F,10

CIE 2015 10° u'F,10v'F,10

4000K1UNIT

4000K3UNIT

VirtualProductionData

0,497

0,498

0,499

0,500

0,501

0,502

0,503

0,504

0,505

0,506

0,507

0,226 0,228 0,230 0,232 0,234 0,236

v' F

,10

u'F,10

CIE 2015 10° u'F,10v'F,10

4000K1UNIT

4000K3UNIT

VirtualProductionData

Based on a simulated production distribution with 4000K

CRI80 and a blue wavelength variation of 15nm.

0,0000,0010,0020,0030,0040,0050,0060,0070,008

1931 2° u'v' 2015 10° u'v'

du

'v' /

SD

CM

/ U

NIT

Worse case color difference:3SDCM Binning

0,0000,0010,0020,0030,0040,0050,0060,0070,008

1931 2° u'v' 2015 10° u'v'd

u'v

' / S

DC

M /

UN

IT

Worse case color difference:3SDCM + TEN° Binning

Up to 7,4

Up to 4,9

Page 15: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

TEN° – The new 10° binning | OS GL S EEM AE

January 2018

15

Let’s move together into a new era of LED white binning!

What standards are we using for our new TEN°

binning?

1.) CIE 170-1:2006: Fundamental Chromaticity

Diagram with Physiological Axes - Part 1

Use of the most recent and standardized

physiological meaningful color matching

functions from 2006.

2.) CIE 170-2:2015: Fundamental Chromaticity

Diagram with Physiological Axes – Part 2:

Spectral Luminous Efficiency Functions and

Chromaticity Diagrams

Use of the most recent chromaticity diagram for

the 10° observer.

3.) ISO 11664-5:2009(E) / CIE S 014-5/E:2009:

Colorimetry - Part 5: CIE 1976 L*u*v* Colour

Space and u', v' Uniform Chromaticity Scale

Diagram

Transformation from ellipses in xy to circles in

u’v’ using the CIE 1976 u’v’ UCS

transformation.

Page 16: TEN° The new 10° Binning - OSRAM · TEN°–The new 10°binning | OS GL S EEM AE January 2018 13 How big are possible color differences in current standard binning measured in the

www.osram-os.com

Thank you.