tem ppgoral regulation of ppp yhosphotyrosine-modified ... · tem ppgoral regulation of ppp...

1
Temporal regulation of phosphotyrosine-modified Rac1 in response to epidermal growth factor stimulation Andy Law, Soonjin Hong, Henrick Horita, and Kim Middleton P2126 Andy Law, Soonjin Hong, Henrick Horita, and Kim Middleton Cytoskeleton Inc., Denver, CO 80223 2. Detection and enrichment of pY proteins by APY03 4. Change of pY Rac1 and Rac1GTP levels in A431 treated with EGF P2126 Abstract PV EGF PV + + + PV EGF PV + + + + EGF(min) 0 0.5 1 5 10 15 It is well established that the classic GTP switch mechanism determines the “on” (GTPbound) and “off” (GDPbound) state of small GTPases. Additionally, there is mounting evidence that additional direct, dynamic modifications of GTPases may modulate their function in signal transduction processes. Several reports indicated that GTPases, including Ras 1 and Cdc42 2 , are directly modified by tyrosyl phosphorylation (pY) in response to external stimuli such as epidermal growth factor (EGF). Another study demonstrated that Y64 in Rac1 is regulated by Src and FAK in vitro 3 . These studies suggest that pY modification may regulate the interaction of GTPases with downstream signaling proteins. However, these findings were generated largely through transfection experiments; thus, in most cases endogenous relevance remains to be determined. Identifying endogenous B A EGF(min) 0 0.5 1 5 10 15 A B IP: APY03 bead IB: anti Rac1 NIH3T3 A431 HeLa NIH3T3 A431 HeLa protein modifications during signal transduction is challenging as the signal is often extremely transient and only a small percent of the signaling protein is modified during any given signaling event. We have recently generated a high affinity mouse monoclonal antipY antibody (APY03) which is highly specific to pY and will not crossreact with phosphoserine (pS) or phosphothreonine (pThr) as shown in Figure 1. APY03 demonstrates strong detection of pY proteins in both immunoblotting (IB) and immunofluorescence (IF) applications (Figure 2a and 2c). For immunoprecipitation (IP) experiments, APY03 was first covalently conjugated to protein G beads in order to minimize the co elution of heavy and light chains of the antibody which can often Rac1 pYRac1 PAK pull down of Rac1GTP NIH3T3/PV A431/EGF + + mIgG bead APY03 bead to protein G beads in order to minimize the coelution of heavy and light chains of the antibody, which can often interfere with immunoblot analysis. Figure 2b shows that APY03 beads can immunoprecipitate a wide range of pY proteins in lysates prepared from cells treated with either EGF or pervanadate (PV). The aim of this study was to develop an assay sensitive enough to detect endogenous pYmodified Rac1 upon stimulation by EGF. The IP assay was used in conjunction with a Rac1 activation assay to follow temporal changes in endogenous Rac1 activation and tyrosyl phosphorylation in response to EGF stimulation of HeLa and A431 cells. Rac1 activation, monitored by PAKbinding, followed a predicted time course in which activation peaked, within d d f l dh f d d b l l l C EGF(min) 0 0.5 1 5 10 15 D C EGF(min) 0 0.5 1 5 10 15 30 seconds in HeLa and 1 minute in A431 after EGF stimulation, and thereafter decreased to basal level. Conversely, pY Rac1 levels decreased to minimum at 30 seconds in HeLa and 1 minute in A431 post stimulation before returning to basal levels. To our knowledge, these data represent the first demonstration that endogenous Rac1 is a target for transient modification by a tyrosine kinase, and possibly a phosphatase. Furthermore, these results support transfection data suggesting that Rac1 can be modified by Src and FAK tyrosine kinases. Future work will utilize the IP assay to elucidate the temporal relationship between Rac1 activation and tyrosyl phosphorylation under a variety of physiological stimuli and to define the identity of the endogenous tyrosine kinase(s)/phosphatase(s) that regulate tyrosyl phosphorylation of Rac1. Rac1 IP: APY03 bead IB: APY03 (A) 20g of lysate from cells either left untreated or treated with EGF (50ng/ml for 5 minutes) or PV (100M for 15 30 minutes) were resolved by SDS PAGE and immunoblotted with APY03 (B) Results ___PP2 ____ __PF228 ___ EGF(min) 0 10 0 10 0 10 E pYRac1 Rac1 (100M for 1530 minutes) were resolved by SDSPAGE and immunoblotted with APY03. (B) Immunoprecipitation of pY proteins was performed by incubating equal amount of lysate from untreated or treated (PV or EGF) cells with APY03 beads or mouse IgG (mIgG) beads. Samples were resolved by SDSPAGE and immunoblotted with APY03 antibody. (C) Both NIH3T3 and A431 cells were plated on glass cover slips prior to treatment. Untreated or PV treated (100M for 10 minutes) NIH3T3 cells were fixed in acetone/methanol prior to staining. Serum restricted A431 cells were either untreated or EGF treated (50ng/ml for 5 minutes)prior to fixation and staining. Nuclei 3. Change of pY Rac1 and Rac1GTP levels in HeLa treated with EGF 1. APY03 is specific to pY modification A B PV Calyculin A + + Calyculin A + + (A) Serum starved A431cells were either left untreated or treated with EGF (50ng/ml) for the indicated times. Cells were lysed in RIPA buffer. APY03 beads were used to immunoprecipitate pY proteins from 1mg of total cell lysate from each condition. Samples were resolved by SDSPAGE and immunoblotted with antiRac1 antibody to detect tyrosyl phosphorylatedRac1 from the immunoprecipitated pY protein population. (B) 600g of the same A431 lysate were used in PAK ll d f ( ) l f ll d h were stained with DAPI (blue) and pY signals (green) were detected with APY03 and Alexa Fluor 555 goat antimouse antibodies. 2 pYBSA pSBSA APY03 (1:5000) NIH3T3 A431 A431 A431 EGF(min) 0 0.5 1 5 10 15 30 EGF(min) 0 0.5 1 5 10 15 30 IP: APY03 bead IB: anti Rac1 pull down of Rac1GTP to measure active Rac1. (C) Total pY proteins from A431 cells treated with EGF were enriched using APY03 bead immunoprecipitation. Samples were resolved by SDSPAGE and total pY was detected with APY03 antibody. (D) 10g of the same A431 lysate was resolved by SDSPAGE and immunoblotted with antiRac1 antibody. (E) Serum starved A431 cells were left untreated or treated with either 30M of Src inhibitor (PP2) for 30 minutes or 10M of FAK inhibitor (PF228) for 1 hour before EGF treatment. Cells were lysed in RIPA buffer. APY03 beads were used to immunoprecipitate pY proteins from 1mg of total cell lysate from each condition 0 0.5 1 1.5 OD pThrBSA Conclusions C PV + + + + pYBSA pSBSA pThrBSA BSA IB: antipY (APY03) antipS antipThr PAK pull down of Rac1GTP D PV + + + + pYBSA pSBSA pThrBSA BSA Rac1 pYRac1 A B were used to immunoprecipitate pY proteins from 1mg of total cell lysate from each condition. Samples were resolved by SDSPAGE and immunoblotted with antiRac1 antibody to detect phosphorylatedRac1 from the immunoprecipitated pY protein population. 10g of the same lysate were resolved by SDSPAGE and total Rac1 was detected using antiRac1 antibody. 1 10 50 100 ng/well Conclusions EGF(min) 0 0.5 1 5 10 15 30 Preincubation of pYBSA inhibited APY03 bead from pulling down pY proteins in lysate A B EGF(min) 0 0.5 1 5 10 15 30 (A) Phosphopetides (pY, pS and pThr) were conjugated to BSA, and increasing amounts of phosphopeptideBSA were added serially to an ELISA plate. APY03 (1:5000) and goat antimouse HeLa IP: antiRas IB: APY03 Tubulin Rac1 NIH3T3 IP: APY03 bead IB: APY03 Preincubation of pS, pThrBSA or BSA with APY03 bead did not affect its ability to pull down pY proteins from PV treated NIH3T3 Addition of pYBSA, but not pS, pThrBSA or BSA, to APY03 inhibited the detection of pY Ras in Hela treated with PV. b d (1:5000) were used to detect phosphopeptideBSA in wells. (B) 20g of cell lysate from cells either left untreated or treated with 100M of H 2 O 2 activated pervanadate(PV), a tyrosine phosphatase inhibitor, for 10 minutes or 50nM of calyculin A, a serine/threonine phosphatase inhibitor, for 1 hour were resolved by SDSPAGE and immunoblotted(IB) with the indicated antibodies (antipS and antipThr antibodies were obtained from Millipore). (C) 30l slurry of APY03 beads, equivalent to 10g of APY03 antibody, was first incubated with 50g of either pYBSA S BSA Th BSA BSA f 30 i t d th h d 3 ti t d fi APY03 C D (A) Serum starved HeLa cells were either left untreated or treated with EGF (50ng/ml) for specific times as indicated. Cells were lysed in RIPA buffer. APY03 beads were used to immunoprecipitate pY proteins from 1mg of total cell lysate from each condition Samples were resolved by SDSIP: APY03 bead IB: APY03 1. APY03 and APY03 beads are useful tools to detect endogenous tyrosyl phosphorylated proteins such as Rac1. BSA,pSBSA,pThrBSA or BSA for 30 minutes and then washed 3 times to define APY03 specificity. 300g of lysate from NIH3T3 cells either left untreated or treated with 100M of PV were pulled down using the APY03 beads that were preincubated with phosphopeptideBSA or BSA. Westerns were performed and samples were immunoblotted with APY03 antibody. (D)1 mg of lysates from HeLa cells either left untreated or treated with PV were pulled down using 5g of antiRas antibody bound to 10l of protein G beads. Pull down proteins were resolved in SDSPAGE and transferred to a PVDF membrane. Immunoblotting was conducted using APY03 pY proteins from 1mg of total cell lysate from each condition. Samples were resolved by SDS PAGE and immunoblotted with antiRac1 antibody to detect tyrosyl phosphorylatedRac1 from the immunoprecipitated pY protein population. (B) 600g of the same HeLa lysate was used in PAK pull down of Rac1GTP to measure active Rac1. (C) Total pY proteins from HeLa cells treated with EGF were enriched using APY03 bead immunoprecipitation. Samples were resolved by SDSPAGE and total pY was detected with APY03 antibody. (D) 10g of the Hela lysate were resolved by SDSPAGE and immunoblotted with antitubulin and antiRac1 antibodies. 2. Modifications such as tyrosyl phosphorylation may modulate Rac1 activation status and activity; importantly, our data demonstrate the significance of identifying and defining the interplay between protein modifications. 3. Src and FAK may be essential kinases for the tyrosyl phosphorylation status of Rac1. 4. Future work will utilize the IP assay to elucidate the temporal relationship between Rac1 activation and tyrosyl phosphorylation under a variety of physiological stimuli. SDS PAGE and transferred to a PVDF membrane. Immunoblotting was conducted using APY03 mixed with 10g/ml of either pY, pS, pThrBSA or BSA only. CleanBlot (Thermo Scientific) was used as secondary antibody to avoid the detection of heavy and light chains coming off the beads during elution. 1) Bunda S. et al. 2014. Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. PNAS, E3785E3794 2) Tu S. et al. 2003. Epidermal growth factordependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J. Biol. Chem. 278:4929349300 3) Chang F. et al. 2011. Tyrosine phosphorylation of Rac1: A role in regulation of cell spreading. PLoS ONE, 6(12): e28587 References

Upload: others

Post on 30-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tem ppgoral regulation of ppp yhosphotyrosine-modified ... · Tem ppgoral regulation of ppp yhosphotyrosine-modified Rac1 in response to epidermal growth factor stimulation Andy Law,

Temporal regulation of phosphotyrosine-modified Rac1 in response to p g p p y pepidermal growth factor stimulation

Andy Law, Soonjin Hong, Henrick Horita, and Kim Middleton P2126Andy Law, Soonjin Hong, Henrick Horita, and Kim MiddletonCytoskeleton Inc., Denver, CO 80223

2. Detection and enrichment of pY proteins by APY03   4. Change of pY Rac1 and Rac1‐GTP levels in A431 treated with EGF 

P2126

AbstractPV              EGF                PV

‐ +           ‐ +              ‐ +                    PV                           EGF                 PV

‐ +              ‐ +            ‐ +             ‐ +       

EGF(min)          0           0.5         1           5          10         15         It is well established that the classic GTP switch mechanism determines the “on” (GTP‐bound) and “off” (GDP‐bound) state of small GTPases. Additionally, there is mounting evidence that additional direct, dynamic modifications of GTPases may modulate their function in signal transduction processes. Several reports indicated that GTPases, including Ras1 and Cdc422, are directly modified by tyrosyl phosphorylation (pY) in response to external stimuli such as epidermal growth factor (EGF).  Another study demonstrated that Y64 in Rac1 is regulated by Src and FAK in vitro3. These studies suggest that pY modification may regulate the interaction of GTPases with downstream signaling proteins.  However, these findings were generated largely through transfection experiments; thus, in most cases endogenous relevance remains to be determined. Identifying endogenous 

BAEGF(min)       0          0.5         1            5           10         15         

A B

IP: APY03 beadIB: anti Rac1

NIH3T3                   A431                 HeLa

NIH3T3                               A431                   HeLa

p ; , g y g gprotein modifications during signal transduction is challenging as the signal is often extremely transient and only a small percent of the signaling protein is modified during any given signaling event. 

We have recently generated a high affinity mouse monoclonal anti‐pY antibody (APY03) which is highly specific to pY and will not cross‐react with phosphoserine (pS) or phosphothreonine (pThr) as shown in Figure 1.  APY03 demonstrates strong detection of pY proteins in both immunoblotting (IB) and immunofluorescence (IF) applications (Figure 2a and 2c). For immunoprecipitation (IP) experiments, APY03 was first covalently conjugated to protein G beads in order to minimize the co elution of heavy and light chains of the antibody which can often

Rac1 pY‐Rac1 PAK pull down of Rac1‐GTP

NIH3T3/PV                                                                                        A431/EGF‐ +                                                          ‐ +                                 

mIgG bead APY03 bead

to protein G beads in order to minimize the co‐elution of  heavy and light chains  of  the antibody, which can often interfere with immunoblot analysis.  Figure 2b shows that APY03 beads can immunoprecipitate a wide range of pYproteins in lysates prepared from cells treated with either EGF or pervanadate (PV). 

The aim of this study was to develop an assay sensitive enough to detect endogenous pY‐modified Rac1 upon stimulation by EGF. The IP assay was used in conjunction with a Rac1 activation assay to follow temporal changes in endogenous Rac1 activation and tyrosyl phosphorylation in response to EGF stimulation of HeLa and A431 cells. Rac1 activation, monitored by PAK‐binding, followed a predicted time course in which activation peaked, within 

d d f l d h f d d b l l l

CEGF(min)      0           0.5      1          5        10        15         

DCEGF(min)      0           0.5      1          5        10        15         

30 seconds in HeLa and 1 minute in A431 after EGF stimulation, and thereafter decreased to basal level. Conversely, pY Rac1 levels decreased to minimum at 30 seconds in HeLa and 1 minute in A431 post stimulation before returning to basal levels. To our knowledge, these data represent the first demonstration that endogenous Rac1 is a target for transient modification by a tyrosine kinase, and possibly a phosphatase.  Furthermore, these results support transfection data suggesting that Rac1 can be modified by Src and FAK tyrosine kinases.  Future work will utilize the IP assay to elucidate the temporal relationship between Rac1 activation and tyrosylphosphorylation under a variety of physiological stimuli and to define the identity of the endogenous tyrosine kinase(s)/phosphatase(s) that regulate tyrosyl phosphorylation of Rac1.

Rac1IP: APY03 beadIB: APY03(A) 20g of lysate from cells either left untreated or treated with EGF (50ng/ml for 5 minutes) or PV 

(100M for 15 30 minutes) were resolved by SDS PAGE and immunoblotted with APY03 (B)

Results

( )/p p ( ) g y y p p y

___PP2____         __PF228___EGF(min)      0            10              0             10           0              10  E

pY‐Rac1

Rac1

(100M for 15‐30 minutes) were resolved by SDS‐PAGE and immunoblotted with APY03. (B) Immunoprecipitation of pY proteins was performed by incubating equal amount of lysate from untreated or treated (PV or EGF) cells with APY03 beads or mouse IgG (mIgG) beads.  Samples were resolved by SDS‐PAGE and immunoblotted with APY03 antibody. (C) Both NIH3T3 and A431 cells were plated on glass cover slips prior to treatment. Untreated or PV treated (100M for 10 minutes) NIH3T3 cells were fixed in acetone/methanol prior to staining. Serum restricted A431 cells were either untreated or EGF treated (50ng/ml for 5 minutes) prior to fixation and staining. Nuclei 

3. Change of pY Rac1 and Rac1‐GTP levels in HeLa treated with EGF 

1. APY03 is specific to pY modification 

A BPV          Calyculin A

‐ +            ‐ +Calyculin A              

‐ +                 ‐ +

(A) Serum starved A431cells were either left untreated or treated with EGF (50ng/ml) for the indicated times. Cells were lysed in RIPA buffer. APY03 beads were used to immunoprecipitate pYproteins from 1mg of total cell lysate from each condition.  Samples were resolved by SDS‐PAGE and immunoblotted with  anti‐Rac1 antibody to detect tyrosyl phosphorylated‐Rac1 from the immunoprecipitated pY protein population. (B) 600g of the same A431 lysate were used in PAK 

ll d f ( ) l f ll d h

( g ) p gwere stained with DAPI (blue) and pY signals (green) were detected with APY03 and Alexa Fluor 555 goat anti‐mouse antibodies.

2pY‐BSA

pS‐BSA

APY03 (1:5000)

NIH3T3           A431         A431                 A431

EGF(min)     0      0.5      1        5       10       15    30  EGF(min)        0         0.5         1           5          10         15       30    

IP: APY03 beadIB: anti Rac1

pull down of Rac1‐GTP to measure active Rac1. (C) Total pY proteins from A431 cells treated with EGF were enriched using APY03 bead immunoprecipitation. Samples were resolved by SDS‐PAGE and total pY was detected with APY03 antibody. (D) 10g of the same A431 lysate was resolved by SDS‐PAGE and immunoblotted with anti‐Rac1 antibody. (E) Serum starved A431 cells were left untreated or treated with either 30M of Src inhibitor (PP2) for 30 minutes or 10M of FAK inhibitor (PF228) for 1 hour before EGF treatment. Cells were lysed in RIPA buffer. APY03 beads were used to immunoprecipitate pY proteins from 1mg of total cell lysate from each condition0

0.5

1

1.5

OD

p

pThr‐BSA

ConclusionsC PV ‐ +                  ‐ +                ‐ +          ‐ +     

pY‐BSA            pS‐BSA           pThr‐BSA          BSA

IB: anti‐pY (APY03)                                    anti‐pS anti‐pThr

PAK pull down of Rac1‐GTP

DPV ‐ +                     ‐ +                   ‐ +              ‐ +     

pY‐BSA                pS‐BSA              pThr‐BSA           BSA

Rac1pY‐Rac1

A B

were used to immunoprecipitate pY proteins from 1mg of total cell lysate from each condition. Samples were resolved by SDS‐PAGE and immunoblotted with  anti‐Rac1 antibody to detect phosphorylated‐Rac1 from the immunoprecipitated pY protein population. 10g of the same lysate were resolved by SDS‐PAGE and total Rac1 was detected using anti‐Rac1 antibody. 

1 10 50 100ng/well

ConclusionsEGF(min)     0       0.5      1       5       10     15     30    Pre‐incubation of 

pY‐BSA inhibited APY03 bead from pulling down  pYproteins in lysate

A B

EGF(min)       0       0.5       1         5        10       15      30    

(A) Phosphopetides (pY, pS and pThr) were conjugated to BSA, and increasing amounts of phosphopeptide‐BSA were added serially to an ELISA plate.  APY03 (1:5000) and goat anti‐mouse 

HeLaIP: anti‐RasIB: APY03 Tubulin

Rac1

NIH3T3 IP: APY03 beadIB: APY03

Pre‐incubation of pS, pThr‐BSA or BSA withAPY03 bead did not affect its ability to pull down pY proteins from PV treated NIH3T3

Addition of pY‐BSA, but not pS, pThr‐BSA or BSA, toAPY03 inhibited the detection of pY Ras in  Helatreated with PV. 

b dp p p p y p ( ) g(1:5000) were used to detect phosphopeptide‐BSA in wells. (B) 20g of cell lysate from cells either left untreated or treated with 100M of H2O2 activated pervanadate(PV), a tyrosine phosphatase inhibitor, for 10 minutes or 50nM of calyculin A, a serine/threonine phosphatase inhibitor, for 1 hour were resolved by SDS‐PAGE and immunoblotted(IB) with the indicated antibodies (anti‐pS and anti‐pThr antibodies were obtained from Millipore). (C) 30l slurry of APY03 beads, equivalent to 10g of APY03 antibody, was first incubated with 50g of either pY‐BSA S BSA Th BSA BSA f 30 i t d th h d 3 ti t d fi APY03

C D

(A) Serum starved HeLa cells were either left untreated or treated with EGF (50ng/ml) for specific times as indicated. Cells were lysed in RIPA buffer. APY03 beads were used to immunoprecipitatepY proteins from 1mg of total cell lysate from each condition Samples were resolved by SDS‐

IP: APY03 beadIB: APY03

1. APY03 and APY03 beads are useful tools to detect endogenous tyrosyl phosphorylated proteins such as Rac1.

BSA, pS‐BSA, pThr‐BSA or BSA for 30 minutes and then washed 3 times to define APY03 specificity.   300g of lysate from NIH3T3 cells either left untreated or treated with 100M of PV were pulled down using the APY03 beads that were pre‐incubated with phosphopeptide‐BSA or BSA.  Westerns were performed and samples were immunoblotted with APY03 antibody. (D) 1 mg of lysates from HeLa cells either left untreated or treated  with PV were pulled down using 5g of anti‐Ras antibody bound to 10l of protein G beads. Pull down proteins were resolved in SDS‐PAGE and transferred to a PVDF membrane. Immunoblotting was conducted using APY03

pY proteins from 1mg of total cell lysate from each condition.  Samples were resolved by SDSPAGE and immunoblotted with  anti‐Rac1 antibody to detect tyrosyl phosphorylated‐Rac1 from the immunoprecipitated pY protein population. (B) 600g of the same HeLa lysate was used in PAK pull down of Rac1‐GTP to measure active Rac1. (C) Total pY proteins from HeLa cells treated with EGF were enriched using APY03 bead immunoprecipitation. Samples were resolved by SDS‐PAGE and total pY was detected with APY03 antibody. (D) 10g of the Hela lysate were resolved by SDS‐PAGE and immunoblotted with anti‐tubulin and anti‐Rac1 antibodies.

2. Modifications such as tyrosyl phosphorylation may modulate Rac1 activation status and activity; importantly, our data demonstrate the significance of identifying and defining the interplay between protein modifications.

3. Src and FAK may be essential kinases for the tyrosyl phosphorylation status of Rac1.4. Future work will utilize the IP assay to elucidate the temporal relationship between Rac1 

activation and tyrosyl phosphorylation under a variety of physiological stimuli.SDS PAGE and transferred to a PVDF membrane. Immunoblotting was conducted using APY03 mixed with 10g/ml of either pY‐, pS‐, pThr‐BSA or BSA only. CleanBlot (Thermo Scientific) was used as secondary antibody to avoid the detection of heavy and light chains coming off the beads during elution.  1) Bunda S. et al. 2014. Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation.  PNAS, E3785‐E3794

2) Tu S. et al. 2003. Epidermal growth factor‐dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J. Biol. Chem. 278:49293‐493003) Chang F. et al. 2011. Tyrosine phosphorylation of Rac1: A role in regulation of cell spreading. PLoS ONE, 6(12): e28587

References