teae003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · variants at the craniovertebral...

14
1 Page 1 Transorbital endoscopic amygdalohippocampectomy 26 April, 2015 Tim Lucas, MD, PhD Neurosurgery [email protected] 2 Financial Disclosures None Lucas Lab Funding sources T32 3 TEA 4 (Cranial) (Cranial) Range of globe displacement: 4-7 mm (4 cadaver approaches) Lucas, et al., in preparation 5 (Cranial) (Cranial) 6 Distance from lateral orbital rim to lateral aspect of dural exposure Range 2.2-2.8 cm (over 4 cadaver approaches)

Upload: others

Post on 01-Jun-2020

6 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

1

Page 1

Transorbital endoscopic

amygdalohippocampectomy

26 April, 2015

Tim Lucas, MD, PhD

Neurosurgery

[email protected]

2

Financial DisclosuresNone

Lucas Lab Funding sources

T32

3

TEA

4

(Cranial) (Cranial)

Range of globe displacement: 4-7 mm

(4 cadaver approaches)

Lucas, et al., in preparation

5

(Cranial) (Cranial)

6

Distance from lateral orbital rim to lateral aspect of dural exposure:

Range 2.2-2.8 cm (over 4 cadaver approaches)

Page 2: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

2

Page 2

7postopChen et al., 2014

8

9

Bony exposure

Anterior view (slight oblique)

Preop Postop

Craniectomy dimensions:

Medial-lateral: 8-14mm

Superior-Inferior: 11-14mm10

(Cranial)

(Lateral)

11 12

Page 3: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

3

Page 3

13

(Cranial)

(Anterior)

14

15

Extent of resection: Axial

Preop Postop

16

Language sparing surgery

Sanai, et al., NEJM 2008;358:18-17

n=186 patients

Role for language mapping in dominant

hemisphere surgery

17

Essential

language sites

7

13

15

fingers

tongue

index finger

motor

mouth/

tongue

sensory

2

12

13

9

15

tumor

18

Limits of Trans Orbital Exposure

Range of medial-lateral exposure:

38-49.9 degrees

(4 cadaver approaches)

Range of rostral-caudal exposure:

60.4-81.5 degrees

(4 cadaver approaches)

Page 4: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

22/04/2015

1

Rings and Pillars: An Organized Approach to Development and

Variants at the Craniovertebral Junction

Jason Talbott, MD, PhDAssistant Professor in Neuroradiology

San Francisco General Hospital and UCSF Department of Radiology and Biomedical Imaging

introduction anatomy pathologyembryology

ANATOMY

A. NasionB. Tuberculum sellaC. BasionD. OpisthionE. Hard palateF. Anterior arch, atlasG. Posterior arch, atlasH. Odontoid processI. Body of axis

Smoker et al. Childs Nerv Syst (2008), 24:1123-1145

ANATOMY

H. Odontoid processI. Body of axisJ. Jugular tubercleK. Occipital condyleL. Lateral mass, atlas

Smoker et al. Childs Nerv Syst (2008), 24:1123-1145

ANATOMY

BO= Basiocciput

http://bookdome.com/health/anatomy/Anatomy-Human-Skeleton/Cranial-Bones-Part-2.html

EO= Exocciput

ANATOMY

https://my.statdx.com/#anatomyContent;craniocervical_junction_neurohttp://ajs.sagepub.com/content/32/4/1077/F1.expansion

BIOMECHANICAL MODEL

CENTRAL PIVOT: C2 VB Dens Basiocciput

TWO RINGS Foramen magnum

Lateral clivus Exocciput

Atlas

Pang et al. Childs Nerv Syst (2011), 27:253-64

Page 5: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

22/04/2015

2

Pang et al. Childs Nerv Syst (2011), 27:253-64

EMBRYOLOGY

Dudek and Fix, Embryology, 1998

EMBRYOLOGY

SCEROTOME

C3

C4

C5

C6

C3

C4

C5

VERTEBRAL BODY RESEGMENTATION

Axial Lateral

Proatlas (C0)

O 1

O 2

O 3

O 4

C1

C2

C3

C1

C2

Proatlas Hypocentrum (prochordal bow)

C1 Hypocentrum (prochordal bow)

AXIAL LATERAL

Menezes et al. Neurosurg (2009), 64:945-54

IMAGING

• CT– Thin cut bone algorithm– 3D reformats for complex anomolies

• MRI– Cervicomedullary compression– Vascular compression– Aberrant CSF flow

• Plain Film– Dynamic flexion/extension

CVJ CraniometryChamberlain’s line Midline sagittal Basilar

impression/invagination

Wackenheim’s clivusbaseline

Midline sagittal Cranivertebraldislocation

Clivus-canal angle Midline sagittal “Craniovertebralkyphosis”

Basal angle Midline sagittal Platybasia

Atlanto-occipital joint axis angle

Coronal Occipital condyle hypoplasia

Page 6: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

22/04/2015

3

CVJ PATHOLOGY

Malformations of Central Pillar

AXIAL component of occipital sclerotomes, proatlas (C0) and C1 Sclerotomes

ODONTOID BASIOCCIPUT

Odontoid hypoplasia

Basiocciput hypoplasia

Os odontoideum Basilar impression

Ossiculumterminale

Basilar kyphosis

Os avis

Bifid dens

Modified from Pang et al. Childs Nerv Syst (2011), 27:253-64

Malformations of Surrounding Rings

LATERAL component and hypochordal bow of proatlas (C0) and C1 re-segmented sclerotomes

PROATLAS (C0) C1 SCLEROTOME

Third occipital condyle

Hypoplastic anterior C1 arch

Hypertrophic occipital condyle

Hypoplastic/aplastic C1 posterior arch

Atlas assimilation Aplasia lateral mass C1

Bifid anterior and posterior C1 arch

Modified from Pang et al. Childs Nerv Syst (2011), 27:253-64

CVJ PATHOLOGY

CENTRAL PILLAR

Malformations of Central Pillar

Axial component of occipital sclerotome, proatlas(C0) and C1 Sclerotomes

ODONTOID BASIOCCIPUT

Odontoid hypoplasia

Bifid clivus

Os odontoideum Basilar impression

Ossiculumterminale

Basilar kyphosis

CENTRAL PILLAR

Odontoid Dysgenesis: Aplastic Dens

• Rare• Associated with…

• Spondyloepiphyseal dysplasia• Muccopolysaccharidoses• Metatropic dwarfism

• Associated with C1-C2 instability

Pang et al. Childs Nerv Syst (2011), 27:253-64

Odontoid Dysgenesis: 3 yo with metatropic dysplasia

CENTRAL PILLAR

Odontoid Dysgenesis: Aplastic base of dens

CENTRAL PILLAR

Pang et al. Childs Nerv Syst (2011), 27:253-64

Page 7: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

22/04/2015

4

Odontoid Dysgenesis: Aplastic apical segment of dens

CENTRAL PILLAR

Pang et al. Childs Nerv Syst (2011), 27:253-64

Odontoid Dysgenesis: Os Odontoideum

UCSF Teaching Filehttp://www.physio-pedia.com/Cervical_Instability

CENTRAL PILLAR

• Controversial congenital vsaquired• Likely both

• C1-C2 instability• Flex/extension

• Associated with many syndromes

Odontoid Dysgenesis: Ossiculum terminale persistens

CENTRAL PILLAR

Smoker et al. Childs Nerv Syst (2008), 24:1123-1145

Basiocciput:

Malformations of Central Pillar

Axial component of occipital sclerotome, proatlas(C0) and C1 Sclerotomes

ODONTOID BASIOCCIPUT

Odontoid hypoplasia

Basiocciput hypoplasia

Os odontoideum Basilar impression

Ossiculumterminale

Basilar kyphosis

Os avis Bifid clivus

Bifid dens

CENTRAL PILLAR

Basiocciput Hypoplasia: Newborn with CHARGE

CENTRAL PILLAR

UCSF Teaching File

Basiocciput Hypoplasia:

• Basilar invagination• CMJ compression• Occipital condyle

hypoplasia commonly associated

CENTRAL PILLAR

Smoker et al. Childs Nerv Syst (2008), 24:1123-1145

Page 8: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

22/04/2015

5

Central Pillar: Basiocciput

Basilar invagination:

• Anterior (short clivus) and posterior (exoccipital) subtypes

• Platybasia• “Kyphotic” clivus-canal angle• Retroflexed dens (anterior)• CMJ compression• Occipital condyle hypoplasia

Smoker et al. Childs Nerv Syst (2008), 24:1123-1145

RINGS

Malformations of Surrounding Rings

Lateral component and hypochordal bow of proatlas (C0) and C1 resegmented sclerotomes

PROATLAS (C0) C1 SCLEROTOME

Atlas assimilation Hypoplastic anterior C1 arch

Occipital condyle hypoplasia

Hypoplastic/aplastic C1 posterior arch

Hypertrophic occipital condyle

Aplasia lateral mass C1

3rd Occipital condyle

Bifid anterior and posterior C1 arch

Assimilation of atlas:

• MC anomaly of CVJ (0.1-3% population)

• Anterior, lateral, posterior zones

• C1-C2 instability• Associated with…

• Basilar invagination• Klippel-Feil• Chiari I

UCSF Teaching File

RINGS

Occipital condyle hypoplasia:

RINGS

Smoker et al. Childs Nerv Syst (2008), 24:1123-1145

Occiptal condyle hyperplasia:

RINGS

Pang et al. Childs Nerv Syst (2011), 27:253-64

Malformations of Surrounding Rings

Lateral component and hypocordal bow of proatlas (C0) and C1 resegmented sclerotomes

PROATLAS (C0) C1 SCLEROTOME

Atlas assimilation Hypoplastic anterior C1 arch

Hypoplasticoccipital condyle

Hypoplastic/aplastic C1 posterior arch

Hypertrophic occipital condyle

Aplasia lateral mass C1

Bifid anterior and posterior C1 arch

RINGS

Page 9: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

22/04/2015

6

C1 Neural arch hypoplasia:

• Derived from lateral C1 sclerotome

• Partial to complete• Keller type• Usually stable• C1 posterior arch

“rachischisis” common (4% population

RINGS

UCSF Teaching File

Anterior C1 arch hypoplasia:

• Derived from C1 hypchordal bow

• True aplasia very rare

• Varying degrees of C1-C2 instability• Loss of TAL

attachment and dens

RINGS

Pang et al. Childs Nerv Syst (2011), 27:253-64

SYNDROMES

Syndromes associated with CVJ anomolies:

• Down syndrome• Klippel Fiel• Achondroplasia• Mucopolysaccaridoses• Osteogenesis imperfecta

Smoker et al. Childs Nerv Syst (2008), 24:1123-1145

PILLAR AND RINGS

Malformations of Central Pillar

AXIAL component of occipital sclerotomes, proatlas (C0) and C1 Sclerotomes

ODONTOID BASIOCCIPUT

Odontoid hypoplasia

Basiocciput hypoplasia

Os odontoideum Basilar impression

Ossiculumterminale

Basilar kyphosis

Os avis

Bifid dens

Malformations of Surrounding Rings

LATERAL component and hypochordal bow of proatlas (C0) and C1 re-segmented sclerotomes

PROATLAS (C0) C1 SCLEROTOME

Third occipital condyle

Hypoplastic anterior C1 arch

Hypertrophic occipital condyle

Hypoplastic/aplastic C1 posterior arch

Atlas assimilation Aplasia lateral mass C1

Bifid anterior and posterior C1 arch

Conclusion

• Pillar-ring model of CVJ helps classify and conceptualize vast array of pathologies

• Embryology is your friend• Axial sclerotomes Pillar• Lateral sclerotomes Rings • Proatlas is like “C0”

• CT (thin cut with 3D reformats) for bony anomalies

• MRI for associated compressive pathology

REFERENCES

• Smoker et al. Childs Nerv Syst (2008), 24:1123-1145.

• Pang et al. Childs Nerv Syst (2011), 27:253-64.

• Dudek and Fix, Embryology, 1998.

• Menezes et al. Neurosurg (2009), 64:945-54

Page 10: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

2/28/15  

1  

Trauma  at  the  Craniovertebral  Junc8on:  Don’t  Lose  Your  Head  

Lubdha  M.  Shah    ASNR  2015  

Objec8ves  

•  Review  anatomy  of  the  craniovertebral  junc8on    

•  Discuss  various  trauma8c  injuries  of  the  CVJ  – Consider  the  associated  injuries    

•  Summarize  the  complimentary  role  of  different  imaging  modali8es  in  assessing  CVJ  injuries  

Harris’  Rule  of    12   AOD  

•  BAI  –  distance  between  basion  &  rostral  extension  of  posterior  cor8cal  margin  of  axis  

•  3.4  mm  (8.7-­‐26)  •  Higher  sensi8vity  on  radiographs  vs.  CT  

Rojas  CA,  et  al.  Reassessment  of  the  Craniocervical  Junc>on  :  Normal    Values  on  CT.  AJNR  2007  

AOD  

•  BDI  –  distance  from  most  inferior  por8on  of  basion  to  superior  dens  

•  5.7  mm  (1.4  -­‐9.1)    

AOD  

•  Powers  ra8o  –  ra8o  of  distance  between  basion  to  spinolaminar  line  of  atlas  &  distance  from  opisthion  to  posterior  aspect  of  anterior  C1  arch  

•  BC/OA  •  0.8  mm  (0.6-­‐1.2)    •  Sensi8vity  33-­‐60%  

Page 11: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

2/28/15  

2  

AOD  

•  ADI    –  Predental  space  –  1.3  mm  (0.6-­‐2.4  mm)  – Maintained  by  atlantodental,  alar  and  transverse  ligaments  

 

AOD    

•  Atlanto-­‐occipital  interval  

•  Congruent  through  out  joint  space  

•  1.0  mm  (0.5-­‐1.8)  

•  AO  disloca8on      •  AO  subluxa8on  •  Hyperextension  ,  lateral  flexion,  +/-­‐  hyperflexion  

•  Incompetence  of  alar  ligament,  tectorial  membrane    

•  Type  1  odontoid  fx  

Atlanto-­‐occipital  Dissocia8on  Injuries  

•  3  types  (Traynelis)    –  Anterior  displacement  of  occiput  

–  Longitudinal  distrac8on  with  separa8on  of  occiput  from  C1  

–  Posterior  displacement  of  occiput  with  respect  to  C1  

•  Does  not  address  severity  of  injury    

•  Rotatory  subluxa8on  

Atlanto-­‐occipital  Dissocia8on  Injuries  

•  Incidence  higher  in  peds  –  Atlanto-­‐occipital  joint  less  concave  

–  Underdeveloped  ligaments  

•  High  mortality  -­‐  brain  stem  injury  

•  Injuries  of  upper  cervical  nerve  roots  

•  Vasospasm  and  dissec8on  of  vertebral  or  IC  arteries  

Atlanto-­‐occipital  Dissocia8on  Injuries   Diffusion  Tensor  Imaging  •  Correla8on  with  white  mader  integrity    •  May  offer  greater  precision  in  assessing  

neurologic  deficit  over  neurologic  examina8on  alone  

ADC  dec  in  SCI  pa8ents  Hemorrhage  greatest  decrease,  followed  by  quadriplegia    

Page 12: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

2/28/15  

3  

Clivus  Fracture  

•  High-­‐energy  blunt  trauma  •  CN  deficits,  esp.  VI  and  VII  •  High  mortality:    – brainstem  trauma    – vertebrobasilar  occlusion  

Occipital  Condylar  Fracture  •  Hi  energy  blunt  trauma  with  

axial  compression,  lateral  bending  or  rota8onal  injury  to  alar  ligament    

•  Collet-­‐Sicard  syndrome:  paralysis  of  CN  9,10,11,12  

•  Type  1  –  Axial  loading;  ipsi  alar  ligament  

may  be  compromised,  but  stability  maintained  by  contra  alar  ligament  &  tectorial  membrane  

Occipital  Condylar  Fracture  Type  2  –  Extends  from  occipital  bone  via  condyle  to  enter  FM  

–  Stability  maintained  by  intact  alar  ligaments  &  tectorial  membrane    

  Type  3  Mediated  via  alar  ligament  tension  Assoc.  disrup8on  of  tectorial  membrane  &  contra.  alar  ligament  may  cause  instability  

Jefferson  C1  Fracture  •  Axial  loading  injury  •  Fall  from  height,  diving  injury  

•  Simultaneous  disrup8on  of  anterior  &  posterior  arches  of  C1  +/-­‐  disrup8on  of  ligaments  

Jefferson  Fracture  •  Stable  if  transverse  ligament  is  intact  

•  Torn  transverse  ligament  –  Combined  offset  of  C1-­‐C2  lateral  masses  >=  6.9  mm  

– Widening  of  atlantoaxial  interval    >=  6.9  mm  

•  Widening  of  ADI  with  dynamic  maneuvers  also  suggests  transverse  ligament  injury  (not  appropriate  in  acute  semng)  

 

Page 13: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

2/28/15  

4  

Transverse  Ligament  Injury    

Dickman  and  Sonntag  •  Type  1  – Midsubstance  ligamentous  injury  

–  Surgical  treatment  •  Type  2  –  Avulsion  of  ligamentous  inser8on    

–  Trial  of  external  mobiliza8on,  poten8al  of  osseous  helaing  

Dickman  CA,  Sonntag  VK.  Injuries  involving  the  transverse  atlantal  ligament:  classifica8on  and  treatment  guidelines  based  upon  experience  with  39  injuries.  Neurosurgery.  1997  Apr;40(4)  886-­‐7.  

Odontoid  Fracture  •  Hyperflexion  mechanism  

–  5-­‐15%  of  cervical  spine  fxs  •  Anderson  &  D’Alonzo  

Classifica8on    –  Type  1  

•  Upper  dens  •  Stable,  immobiliza8on  

–  Type  2  •  Base  of  dens  •  Most  common,  non-­‐union  rate  10-­‐77%  

–  Type  3  •  Body  of  axis,  facets  

Roy-­‐Camille  Classifica8on  –  Poten8al  for  Dens  Displacement  

•  Type  1:  Fx  line  inclined  forwards,  anterior  dens  displacement  

•  Type  2:  Fx  line  inclined  backwards,  posterior  dens  displacement  

•  Type  3:  Horizontal  fracture,  dens  displaced  anterior  or  posterior    

Odontoid  Fracture  •  STIR  commonly  used  to  evaluate  

acuity  of  fractures  

•  STIR  signal  may  be  decreased  or  absent  in  acute  dens  fractures,  par8cularly  in  elderly  

Lensing  FD,    et  al.  Reliability  of  the  STIR  sequence  for  acute  type  II  odontoid  fractures.  AJNR  2014  Aug;35(8):1642-­‐6.  

Trauma8c  Spondylolisthesis  

•  AKA  Hangman’s  Fracture  •  Fracture  of  C2  pars  interar8cularis  due  to  hyperextension  and  distrac8on    

•  Dens  typically  spared  •  Extension  to  transverse  foramen  à  vertebral  artery  injury  

•  Other  fx  1/3  of  cases    

Trauma8c  Spondylolisthesis  Levine  &  Edwards  Type  1:  Nondisplaced  fracture  thru  neural  arch  

–  Hyperextension,  axial  load  Type  2:  Transla8on  &  angula8on      

–  Hyperextension,  axial  load,  rebound  flexion  

Type  2A:    oblique  fx  with  angula8on  

–  Flexion,  distrac8on    Type  3:  Posterior  arch  fx  with  facet  disloca8on,  angula8on  

–  Flexion,  compression  

Page 14: TEAe003ca8d94addb66aab5-c5d5615aae30db61d1ced35d35f0936c.r32.… · Variants at the Craniovertebral Junction Jason Talbott, MD, PhD Assistant Professor in Neuroradiology San Francisco

2/28/15  

5  

Atlantoaxial  Rotatory  Subluxa8on    Alar  ligament  disrup8on,  rota8onal  angle  <  36  degrees  and  the  contact  surface  between  the  facets  is  less  than  60%  

Atlantoaxial  Rotatory  Fixa8on  Atlantoaxial  subluxa8on,  disloca8on  

–  Fixa8on  occurs  within  normal  range  of  rota8on  of  C1-­‐C2  joint  

–  Flexion  with  rota8on  force  •  Pediatric  pa8ents  have  

enhanced  elas8city  of  ligaments,  horizontally  oriented,  shallower  joint  surfaces  of  lateral  masses,  incompletely  developed  neck  musculature,  larger  head-­‐body  rela8onship  

•  Adults  with  RA,  Down  Syndrome,  Morquio  Syndrome  and  Marfan  Syndrome  

Atlantoaxial  Rotatory  Subluxa8on    •  Lateral  flexion  with  

contralateral  rota8on  “Cock-­‐Robin”  

•  Neural  damage,  death  –  Time  between  injury  &  

reduc8on  directly  correlates  with  prognosis  

–  Irreducible    aser  1-­‐3  months,  requires  surgery      

–  Tx:  trac8on  for  6  weeks,  analgesics,  AA  arthrodesis  

•   CT  and  MRI  before  reduc8on  to  evaluate  for  addi8onal  spine  injuries  

Atlantoaxial  Rotatory  Subluxa8on    Fielding  and  Hawkins  Classifica8on  •  Type  1:    rotatory  subluxa8on,  NO  displacement  of  atlas  (ADI≤  3  mm)  •  Type  2:    rotatory  subluxa8on  with  anterior  displacement  of    atlas  3-­‐5  mm  •  Type  3:    rotatory  subluxa8on  with  anterior  displacement  of  atlas  >  5  mm  •  Type  4:    rotatory  subluxa8on  with  posterior  displacement  of  atlas  

Summary    

•  Review  the  complex  func8onal  CVJ  anatomy    – Key  measurements  in  assessing  trauma8c  injury  

•  Outlined  important  trauma8c  CVJ  injuries    –  Iden8fied  associated  injuries    

•  Compared  different  imaging  modali8es  in  assessing  CVJ  injuries  

References  •  Levine  AM,  Edwards  CC.  The  management  of  trauma8c  

spondylolisthesis  of  the  axis.  J  Bone  Joint  Surg  Am.  1985  Feb;67(2):217-­‐26.  

•  Fielding  JW,  Hawkins  RJ.  Atlanto-­‐axial  rotatory  fixa8on.  (Fixed  rotatory  subluxa8on  of  the  atlanto-­‐axial  joint).  J  Bone  Joint  Surg  Am.  1977  Jan;59(1):37-­‐44.    

•  Prad  H,  Davies  E,  King  L.  Trauma8c  injuries  of  the  c1/c2  complex:  computed  tomographic  imaging  appearances.  Curr  Probl  Diagn  Radiol.  2008  Jan-­‐Feb;37(1):26-­‐38.  Review.  

•  Roy-­‐Camille  R,  Saillant  G,  Judet  T,  et  al  (1980)  [Factors  of  severity  in  the  fractures  of  the  odontoid  process  (author's  transl)].  Rev  Chir  Orthop  Reparatrice  Appar  Mot;  66:183–186.  French.