tcmg4: tcs mg-based alloys database - thermo-calc · tcmg4: tcs mg-based alloys database . database...

48
TCMG4 www.thermocalc.com 1 of 48 TCMG4: TCS Mg-based Alloys Database Database name: TCS Mg-based Alloys Database Database acronym: TCMG Database owner: Thermo-Calc Software AB Database version: 4.0 TCMG4 is a thermodynamic database for Mg-based alloys for use with the Thermo-Calc software package. TCMG can be used for a wide range of compositions from pure Mg to very complex Mg-based commercial magnesium alloys. It can be used not only for calculating phase diagrams and thermodynamic properties of assessed systems, but also for predicting phase equilibria and simulating solidification processes for a wide range of magnesium alloys of industrial relevance, including the Mg-Al based alloys such as AZ, AE, AJ, AM, AS, and AX, Mg-Zn-Zr alloys such as ZK60, Mg-RE (rare earth)-Zn (EZ) alloys and Mg-RE-Zr alloys such as WE and so on. The database has been developed in a 24-element framework: Ag Al Ca Ce Cu Fe Gd K La Li Mg Mn Na Nd Ni Pr Sc Si Sn Sr Th Y Zn Zr A hybrid approach of experiments, first-principles calculations and CALPHAD modeling have been used to obtain thermodynamic descriptions of the constituent binary and ternary systems over the whole composition and temperature ranges. In total, 161 binary systems and 81 ternary systems have been assessed, as listed in the section Systems Critically Assessed in TCMG4. These assessed binary and ternary systems can be calculated with the BINARY module and the TERNARY module in Thermo-Calc, respectively. Examples of calculated binary phase diagrams, ternary phase diagrams and thermodynamic properties of these assessed systems can be found in Examples of calculations using TCMG. In TCMG4, there are 434 solution phases and intermetallic compounds included. Note that in most cases phases having the same crystal structure had been merged as the same phase. A full list of the phases and their models and constituents can be found in List of all phases included in TCMG4 and List of models for all the phases included in TCMG4, respectively. For some phases with general names in the database, supplementary information was attached. Users can find it in the List of models section, or get it by using the command LIST_SYSTEM CONSTITUENT or LIST_DATABASE CONSTITUENT in the TDB module. The TCMG4 database enables predictions (such as multi-component phase equilibria calculation, equilibrium solidification simulation and Scheil solidification simulation) to be made for multicomponent systems and alloys of industrial importance. This means that TCMG4 may be utilized to extrapolate to higher-order systems by combining several critically assessed systems. Some examples for such calculations are shown in Examples of calculations. It should be noted, however, that validation of such extrapolations should be always made by experiments. Concerning how to simulate solidification processes and how to appropriately interpret the simulated results, it is highly recommended for the users to read the section Examples of solidification simulation. If you are interested in the revision history for this database, the information is available in the online help (from Thermo-Calc go to Help>Online Help) or in the various release notes on our website.

Upload: doanlien

Post on 27-Aug-2018

238 views

Category:

Documents


0 download

TRANSCRIPT

TCMG4

www.thermocalc.com 1 of 48

TCMG4: TCS Mg-based Alloys Database

Database name: TCS Mg-based Alloys Database Database acronym: TCMG

Database owner: Thermo-Calc Software AB Database version: 4.0

TCMG4 is a thermodynamic database for Mg-based alloys for use with the Thermo-Calc software package. TCMG can be used for a wide range of compositions from pure Mg to very complex Mg-based commercial magnesium alloys. It can be used not only for calculating phase diagrams and thermodynamic properties of assessed systems, but also for predicting phase equilibria and simulating solidification processes for a wide range of magnesium alloys of industrial relevance, including the Mg-Al based alloys such as AZ, AE, AJ, AM, AS, and AX, Mg-Zn-Zr alloys such as ZK60, Mg-RE (rare earth)-Zn (EZ) alloys and Mg-RE-Zr alloys such as WE and so on. The database has been developed in a 24-element framework:

Ag Al Ca Ce Cu Fe Gd K La Li Mg Mn

Na Nd Ni Pr Sc Si Sn Sr Th Y Zn Zr

A hybrid approach of experiments, first-principles calculations and CALPHAD modeling have been used to obtain thermodynamic descriptions of the constituent binary and ternary systems over the whole composition and temperature ranges. In total, 161 binary systems and 81 ternary systems have been assessed, as listed in the section Systems Critically Assessed in TCMG4. These assessed binary and ternary systems can be calculated with the BINARY module and the TERNARY module in Thermo-Calc, respectively. Examples of calculatedbinary phase diagrams, ternary phase diagrams and thermodynamic properties of these assessed systems can be found in Examples of calculations using TCMG.

In TCMG4, there are 434 solution phases and intermetallic compounds included. Note that in most cases phases having the same crystal structure had been merged as the same phase. A full list of the phases and their models and constituents can be found in List of all phases included in TCMG4 and List of models for all the phases included in TCMG4, respectively. For some phases with general names in the database, supplementary information was attached. Users can find it in the List of models section, or get it by using the command LIST_SYSTEM CONSTITUENT or LIST_DATABASE CONSTITUENT in the TDB module.

The TCMG4 database enables predictions (such as multi-component phase equilibria calculation, equilibrium solidification simulation and Scheil solidification simulation) to be made for multicomponent systems and alloys of industrial importance. This means that TCMG4 may be utilized to extrapolate to higher-order systems by combining several critically assessed systems. Some examples for such calculations are shown in Examples of calculations. It should be noted, however, that validation of such extrapolations should be always made by experiments. Concerning how to simulate solidification processes and how to appropriately interpret the simulated results, it is highly recommended for the users to read the section Examples of solidification simulation.

If you are interested in the revision history for this database, the information is available in the online help (from Thermo-Calc go to Help>Online Help) or in the various release notes on our website.

TCMG4

www.thermocalc.com 2 of 48

Systems Critically Assessed in TCMG4

Assessed Binary Systems in Full Range of Composition and Temperature

Assessed Ternary Systems

Mg-Ag-Cu Mg-Ag-Gd Mg-Al-Ca Mg-Al-Ce Mg-Al-Cu Mg-Al-Fe

Mg-Al-Gd Mg-Al-Li Mg-Al-Mn Mg-Al-Na Mg-Al-Nd Mg-Al-Ni

Mg-Al-Si Mg-Al-Sn Mg-Al-Sr Mg-Al-Y Mg-Al-Zn Mg-Al-Zr

Mg-Ca-Ce Mg-Ca-Gd Mg-Ca-Li Mg-Ca-Nd Mg-Ca-Ni Mg-Ca-Si

Mg-Ca-Sn Mg-Ca-Sr Mg-Ca-Y Mg-Ca-Zn Mg-Ca-Zr Mg-Ce-Gd

Mg-Ce-La Mg-Ce-Mn Mg-Ce-Nd Mg-Ce-Si Mg-Ce-Sr Mg-Ce-Y

Mg-Ce-Zn Mg-Ce-Zr Mg-Cu-Fe Mg-Cu-Li Mg-Cu-Mn Mg-Cu-Ni

Mg-Cu-Si Mg-Cu-Y Mg-Cu-Zn Mg-Cu-Zr Mg-Fe-Mn Mg-Fe-Ni

Mg-Fe-Si Mg-Fe-Zn Mg-Gd-Li Mg-Gd-Nd Mg-Gd-Sr Mg-Gd-Y

Mg-Gd-Zn Mg-Gd-Zr Mg-La-Nd Mg-La-Ni Mg-La-Si Mg-La-Y

Mg-Mn-Ni Mg-Mn-Sc Mg-Mn-Si Mg-Mn-Y Mg-Mn-Zn Mg-Nd-Sr

Mg-Nd-Y Mg-Nd-Zn Mg-Ni-Zn Mg-Si-Zn Mg-Pr-Y Mg-Si-Sn

Mg-Si-Y Mg-Sn-Zn Mg-Sr-Zn Mg-Y-Zn Ag-Al-Cu Al-Ca-Sr

Al-Cu-Si Al-Fe-Mn Ca-Sr-Zn

TCMG4

www.thermocalc.com 3 of 48

Assessed Quaternary Systems

Mg-Al-Ca-Zn Mg-Al-Ca-Sr Mg-Al-Cu-Si Mg-Al-Mn-Zn Mg-Gd-Nd-Y

Examples of Calculations Using TCMG Note that some phase diagrams have been calculated with older versions of the TCMG database; small differences might be observed if these are recalculated with TCMG4. For the systems that have been considerably or significantly improved, the phase diagrams are recalculated with TCMG4.

Figure 1. Calculated Al-Mg phase diagram [1998, Liang].

Figure 2. Calculated Gd-Mg phase diagram [2007, Guo].

TCMG4

www.thermocalc.com 4 of 48

Figure 3. Calculated Al-Li phase diagram [1989, Saunders].

Figure 4. Calculated La-Mg-Nd isothermal section at 773 K, the assessment is based on the experimental work of Zhang [2014].

Figure 5. Calculated Mg-Gd-Zn phase equilibria at 673 K [2015a, Chen].

TCMG4

www.thermocalc.com 5 of 48

Figure 6. Calculated Al-Mg-Zn liquidus projection [1997, Liang; 2005, Petrov].

Figure 7. Calculated Al-Mg-Sr liquidus projection [2007, Janz], compared with the alloy compositions for which the primary phases were determined [2008, Cao; 2007, Aljarrah].

TCMG4

www.thermocalc.com 6 of 48

Figure 8. Calculated enthalpy of mixing of liquid at 955 K along several compositional lines in the Al-Li-Mg system [2011, Wang].

Figure 9. Calculated vertical section from Mg to Al0.67Li0.33 in the Al-Li-Mg system [2011, Wang].

TCMG4

www.thermocalc.com 7 of 48

Figure 10. Calculated isothermal section from Mg0.667Sn0.333 to Mg0.54Al0.46 [2007, Doernberg].

Figure 11. Calculated solidus and solvus of the (Mg) solution in the Gd-Mg-Y system [2007, Guo].

Figure 12. Calculated Mg-rich phase equilibria of the Gd-Mg-Nd system at 773 K and 808 K [2011, Qi].

TCMG4

www.thermocalc.com 8 of 48

Figure 13. Scheil solidification calculations of the Mg-8Gd-0.6Zr-3(Nd, Y) alloys.

Figure 14. Calculated vertical sections in the Ce-Mg-Mn system, at 0.6 wt. % Mn, 1.8 wt. % Mn and 2.5 wt. % Mn, respectively, compared with experimental data from Zhang [2009].

Figure 15. Calculated vertical section at 9.1 wt.% Al -1.53 wt.% Zn with Mn varying from 0 to 1 wt.% in the Mg-Al-Mn-Zn system. The experimental data are from Thorvaldsen and Aliravci [1992].

TCMG4

www.thermocalc.com 9 of 48

Figure 16. Comparison of calculated and measured liquidus temperatures and solidus temperatures of some ternary, quaternary, quinary and commercial Mg alloys.

Figure 17. Calculated Mg-Y-Zn liquidus projection in the Mg-rich corner and the Mg-Zn vicinity [2015a, Chen].

Figure 18. Calculated Mg-Y-Zn isothermal section at 773 K, showing the presence of 14H (LPSO), 18R (LPSO), W (Mg3R), I, Z and H (YZn5) [2015a, Chen].

TCMG4

www.thermocalc.com 10 of 48

Figure 19. Calculated Ce-Mg-Nd isothermal section at 773 K. Heated alloys A, B and C: (Mg) and Mg41R5; D, E and F: Mg41R5 and Mg12R.

Figure 20. Calculated Ce-Mg-Nd liquidus projection. As-cast alloys A and B: (Mg) > Mg12R; C: Mg12R > ?; D: Mg12R +(Mg) ?; E: Mg3R > Mg12R; F: Mg41R5 > Mg12R. The phase formation in alloys C, D and E can be interpreted with the metastable calculation.

Figure 21. Calculated Ag-Gd-Mg liquidus projection [2015b, Chen].

TCMG4

www.thermocalc.com 11 of 48

Figure 22. Calculated Cu-Mg-Y phase equilibria at 673 K [2015c, Chen].

Examples of Solidification Simulation Using TCMG AZ91 is a series of the most important die casting Mg alloys. The typical microstructures of the solidified AZ91 alloys usually consist of (Mg) grains and mainly the Al12Mg17 phase at the grain boundaries [2009, Kabirian and 2006, Wang]. Similar microstructures are observed in other AZ series alloys [2011, Wu]. Using the TCMG database, one can simulate the solidification process of the AZ91 alloy with the Scheil module. It should be noted, however, that there are several aspects that the users need to pay attentions to when they use the simulated results to interpret experimental observations:

It is recommended to always check the calculated phase fractions, before comparing the simulation with experimentally observed microstructures.

Figure 23a plots the total fraction of solid phases against temperature, from the solidification calculation of the AZ91 alloy (the solid line corresponds to the Scheil calculation and the dashed line to the equilibrium calculation). The calculation predicted the formation of three Al-Mn compounds, Al8Mn5, Al11Mn4 and Al4Mn, in addition to the experimentally observed phases, hcp_A3-(Mg) and Al12Mg17. At a first glance, the calculation is not reliable. As can be seen in Figure 23b, however, the amounts of the Al-Mn compounds are negligible. Of them, Al8Mn5 has the highest amount but less than 0.3% and the other two are less than 0.01%. They may have been overlooked in experiments because of their tiny amounts, if no advanced phase identification techniques had been used.

Mn is usually added as an alloying element in Mg-Al based alloys (including AZ, AM and AS series). This element is believed to be able to increase resistance against corrosion and prevent soldering in magnesium alloy high pressure die casting. Furthermore, Al8Mn5 usually forms at the beginning of the solidification of the AZ series Mg alloys and it had been reported that this phase can act as potent nucleation sites for (Mg). Although this ability of Al8Mn5 was doubted by the most recent work of Wang et al. [2010], this phase does precipitate in the solidified microstructures. However, it is not easy to experimentally identify the Al-Mn phases in Al-Mg based alloys, especially Al11Mn4 [2004, Barber] and Al4Mn [2004, Dhuka].

Not only the current Scheil simulation using TCMG agrees with experimental observations, but also such theoretical calculations can predict the phases that have a minor or trace amount and are difficult to be identified by experiments. It is suggested to always check the phase fractions in simulated results.

Practically, one may reject the phases whose amounts are negligible during the simulation.

One may feel it distracting to include those insignificant phases on the diagram. Practically, one can do a second-round simulation with those phases excluded. The insignificant phases could be identified based on a preliminary simulation in which all the phases are included. It is recommended to reject all phases first and then restore those of interest. Figure 24 presents the simulated Scheil solidification curve with only liquid, Al8Mn5, hcp_A3 and Al12Mg17 included. The solidification curve is almost the same as that in Figure 23a, so is

TCMG4

www.thermocalc.com 12 of 48

the phase formation of the major phases. However, it is much easier to analyze the simulated results, with the minor phases excluded.

Alternatively, one may choose to exclude from the solidification simulation some of the minor alloying elements, which have no significant effects on the solidification sequence, instead of rejecting the minor phases. This is practically useful as well, when the number of alloy components is large. In this case, the alloy contains only four components, while one may still run the simulation after excluding Mn, which is another way to get rid of the Mn-bearing compounds.

Interpretation of the thermal analysis data

Al8Mn5 is the primary phase during the solidification of the AZ91 alloy. The liquidus temperature (i.e. the start of the solidification of Al8Mn5) is calculated to be 680°C. It should be noted that the first arrested thermal effect observed in some thermal analysis experiments, e.g., 600.6°C [2014, Bakke] or 604°C [2003, Riddle], does not correspond to the liquidus temperature, but is related to the start of the solidification of (Mg), which is 601.4°C according to the Scheil calculation. Since the amount of Al8Mn5 is low, the heat effect corresponding to the solidification of Al8Mn5 is too small to be readily detected. Precisely conducted thermal analysis, however, can still detect the thermal effect. Thorvaldsen and Aliravci [1992] successfully measured the Al8Mn5 liquidus in several AZ91 alloys with 9.1 wt. % Al, 1.53 wt. % Zn and Mn varying from 0 to 1 wt.%. It has been shown in Figure 15 that these data can be well account for by the phase diagram calculated using TCMG.

It is suggested to make moderate use of Scheil solidification.

The Scheil solidification simulation can provide good approximations to real solidification processes and has been widely employed. But please note that a real solidification is expected to be between a Scheil solidification simulation and an equilibrium solidification simulation. Figure 25 presents the simulated equilibrium solidification profile and Scheil solidification profile in comparison with experimental thermal analysis [2003, Riddle]. As expected, the experimental profile is located between the two solidification simulations. The start temperature of the solidification of (Mg) and the eutectic temperature of L = (Mg) + Al12Mg17, together with the profile shape, are all accounted for by the Scheil simulation. One cannot complain that the solid phase fractions show significant differences in the region above 0.6. In this example the experimental results have been reasonably accounted for by the current simulation.

In some cases, a real solidification process could much more approach to either of the two solidification simulations and deviate from the other, depending on the experimental conditions and the alloy systems. In order to account for the differences between the simulation and the experimental observation, one should consider equilibrium calculations and/or even kinetic effects.

Figure 23. Scheil Solidification using TCMG with all the phases included. (The alloy composition used here is 8.82 wt. % Al, 0.91 wt. % Zn, 0.31 wt. % Mn, Mg balance).

TCMG4

www.thermocalc.com 13 of 48

Figure 24. Scheil solidification of the AZ91 alloy with only Liquid, Al8Mn5, Hcp_A3 and Al12Mg17 included. (The alloy composition used here is 8.82 wt. % Al, 0.91 wt. % Zn, 0.31 wt. % Mn, Mg balance).

Figure 25. Comparison of the simulated equilibrium and Scheil solidification profiles with experimental thermal analysis [2003, Riddle] (The alloy composition used here is 8.7 wt. % Al, 0.5 wt. % Zn, 0.26 wt. % Mn, Mg balance).

References [1989, Saunders] N. Saunders, Calculated stable and metastable phase equilibria in Al-Li-Zr alloys. Zeitschrift fur

Met. 80, 894–903 (1989). Modified by H.-L. Chen in TCMG2.0 in order to implement the new compound AlLi2.

[1992, Thorvaldsen] A. Thorvaldsen, C. A. Aliravci, Adv. Prod. Fabr. Light Met. Met. Matrix Comp., in Proceedings of the International Symposium, p. 277, (1992).

[1997, Liang] H. Liang, S. L. Chen, Y. A. Chang, A thermodynamic description of the Al-Mg-Zn system. Metall. Mater. Trans. A. 28, 1725–1734 (1997).

[1998, Liang] P. Liang et al., Experimental investigation and thermodynamic calculation of the central part of the Mg-Al phase diagram. Zeitschrift fur Met. 89, 536–540 (1998).

[2003, Riddle] Y. W. Riddle, M. M. Makhlouf, in Magnesium Technology 2003 (TMS (The Minerals, Metals & Materials Society), pp. 101–106 (2004).

[2004, Barber] L. P. Barber, Characterization of the solidification behavior and resultant microstructures of Magnesium-Aluminum alloys, Master’s thesis, Worcester Polytechnic Institute, Worcester, MA (2004).

TCMG4

www.thermocalc.com 14 of 48

[2004, Dhuka] E. Dhuka, N. Lohja, H. Oettel, D. Heger, Precipitation in Mg alloy AZ61 in dependence of various heat treatments processes. Metalurgija. 10, 233–241 (2004).

[2005, Petrov] D. Petrov et al., Aluminium-Magnesium-Zinc, in Landolt-Boernstein New Series IV/11A3, pp. 191–209, (2005).

[2006, Wang] Y. Wang, G. Liu, Z. Fan, Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment. Acta Mater. 54, 689–699 (2006).

[2007, Aljarrah] M. Aljarrah, M. A. Parvez, J. Li, E. Essadiqi, M. Medraj, Microstructural characterization of Mg–Al–Sr alloys. Sci. Technol. Adv. Mater. 8, 237–248 (2007).

[2007, Doernberg] E. Doernberg, A. Kozlov, R. Schmid-Fetzer, Experimental Investigation and Thermodynamic Calculation of Mg-Al-Sn Phase Equilibria and Solidification Microstructures. J. Phase Equilibria Diffus. 28, 523–535 (2007).

[2007, Guo] C. Guo, Z. Du, C. Li, A thermodynamic description of the Gd–Mg–Y system. Calphad. 31, 75–88 (2007).

[2007, Janz] A. Janz et al., Experimental study and thermodynamic calculation of Al–Mg–Sr phase equilibria. Intermetallics. 15, 506–519 (2007).

[2008, Cao] H. Cao et al., Experiments coupled with modeling to establish the Mg-rich phase equilibria of Mg–Al–Ca. Acta Mater. 56, 5245–5254 (2008).

[2009, Kabirian] F. Kabirian, R. Mahmudi, Effects of Zirconium Additions on the Microstructure of As-Cast and Aged AZ91 Magnesium Alloy. Adv. Eng. Mater. 11, 189–193 (2009).

[2009, Zhang] X. Zhang, D. Kevorkov, I.-H. Jung, M. O. Pekguleryuz, Phase equilibria on the ternary Mg–Mn–Ce system at the Mg-rich corner. J. Alloys Compd. 482, 420–428 (2009).

[2010, Wang] Y. Wang, M. Xia, Z. Fan, X. Zhou, G. E. Thompson, The effect of Al8Mn5 intermetallic particles on grain size of as-cast Mg–Al–Zn AZ91D alloy. Intermetallics. 18, 1683–1689 (2010).

[2011, Qi] H.Y. Qi, Thermodynamic assessment of the Gd-Mg-Nd system, unpublished work (with modifications).

[2011, Wang] P. Wang, Y. Du, S. Liu, Thermodynamic optimization of the Li–Mg and Al–Li–Mg systems. Calphad. 35, 523–532 (2011).

[2011, Wu] L. Wu, F. Pan, M. Yang, J. Wu, T. Liu, As-cast microstructure and Sr-containing phases of AZ31 magnesium alloys with high Sr contents. Trans. Nonferrous Met. Soc. China. 21, 784–789 (2011).

[2014, Bakke] D. P. Bakke, D. H. Westengen, in Essential Readings in Magnesium Technology (John Wiley & Sons, Inc., Hoboken, NJ, USA; pp. 313–318, (2014).

[2014, Zhang] F. Zhang, H. Xu, Y. Du, R. Schmid-Fetzer, T. Zhou, Phase equilibria of the Mg–La–Nd system at 500°C. J. Alloys Compd. 585, 384–392 (2014).

[2015a, Chen] H. Chen, “Thermodynamic assessment of the Gd-Mg-Zn and Mg-Y-Zn systems”, unpublished, (2015).

[2015b, Chen] H.-L. Chen, Thermodynamic assessment of the Ag-Gd-Mg system, unpublished work, (2015).

[2015c, Chen] H.-L. Chen, Thermodynamic assessment of the Cu-Mg-Y system, unpublished work, (2015).

TCMG4

www.thermocalc.com 15 of 48

List of all phases included in TCMG4

LIQUID

BCC_A2

BCC_B2

B2_BCC

B2_MGR

BCT_A5

CBCC_A12

CUB_A13

DHCP

DIAMOND_A4

FCC_A1

FCC_L12

L12_FCC

HCP_A3

FE2SI

FESI2_H

FESI2_L

C14_LAVES

C15_LAVES

C36_LAVES

MG2SI

MSI_B20

M5SI3_D88

AG51R14

MG41R5

XZN13

MG3R

L21_RMGZN2

ALR_OS16

CA5X3

RM5

CU6R

XZ2_C16

X3NI

MR_B27

M2R

M3R

MG17SR2

M23R6

XR

R3ZN22

RZN11

M5R

XZ2_C37

ALR_OP16

AL11R3

R7M3

MG12R

RSI2

RZN3

AL2R3

R5SI4

M10ZR7

R3SI2

R2NI7

AG9CA2

AG7CA2

AGCA3

AG4CE

AG2GD

AG51GD14

AG5LA

AGMG4

AGMG3

AG51ND14

AG2ND_H

AG2PR

AG5PR

AG4SC

CU2SC_C11B

AGSC

AG3SN1

AG4SR

AGSR

AG2SR3

AGY

AG2Y

AG51Y4

AGZN

AGZN3

AG5ZN8

AGZR

AGZR2

AL4CA

AL14CA13

AL3CA8

AL4CE

AL3CE_H

AL3CE_L

ALCE2

ALCE3_L

ALCU_DEL

ALCU_EPS

ALCU_ETA

ALCU_PRIME

ALCU_ZETA

GAMMA_D83

GAMMA_H

AL13FE4

AL2FE

AL5FE2

AL5FE4

AL2GD3

AL3GD

ALLA3

AL53LA22

AL3LA

AL11LA3_H

TCMG4

www.thermocalc.com 16 of 48

AL2LI3

ALLI2

AL4LI9

ALLI

ALMG_BETA

ALMG_EPSILON

AL12MG17_A12

LTAL11MN4

AL12MN

AL6MN

AL4MN

AL461MN107

AL8MN5_D810

HTAL11MN4

AL11ND3_H

AL3ND

ALND3

AL3NI2

AL3NI5

AL11PR3_H

AL3PR

ALPR3_L

AL3SC

AL2SC

ALSC

ALSC2

AL4SR

AL7SR8

AL3SR8

AL3Y_L

AL3Y_H

ALZR2

AL3ZR5

AL3ZR4

AL4ZR5

AL3ZR2

AL3ZR1

CACU5

CACU

CA2CU

CANI2

CA2NI7

CA3SI4

CA14SI19

CASI2

CA2SN_X

CA36SN23

CA31SN20

CA7SN6

CA3ZN

CAZN3

CU6CE

CU5CE

CU4CE

CU2CE

CEGD3

CENI3

CENI2

CEZN2

CEZN3

CE3ZN11

CE13ZN58

CEZN5

CE2ZN17

CEZN11

CU9GD2

CU7GD2

CU37LA3

CU6LA_L

CU4LA

CU2LA

CUMG2

CU4ND

CU7ND2

CUND_H

CU6PR

CU5PR

CU4PR

CU2PR

CU4SC

CUSC

CU15SI4_EPSILON

CU56SI11_GAMMA

CUSI_ETA

CU33SI7_DELTA

CU3SN_H_GAMMA

CU10SN3

CU3SN_L

CU41SN11

ETA

CU6SN5

CUSR

CUTH2

CU2TH

CU6TH

CU51TH14

CU7Y1

CU4Y

CU7Y2

CU2Y_H

EPSILON

CUZN_GAMMA

CU51ZR14

CU8ZR3

CUZR2

FE17ND2

FE17ND5

FE17PR2

FE2SC_C14

FE2SC_C36

FE2SC_C15

TCMG4

www.thermocalc.com 17 of 48

FE6SC29

FE5SN3

FE3SN2

FESN

FE17TH2

FE5TH

FE7TH2_L

FE7TH2_H

FE17Y2

FE23Y6

GAMMA_FEZN

GAMMA1_FEZN

DELTA_FEZN

ZETA_FEZN

FEZR3

GDMG5

GDND

GD3NI2

GD2NI7

GDNI4

GD5SI4

GD3SI5

GDSI2

GDZN2

GD3ZN11

GD13ZN58

GD2ZN17_L

GD2ZN17_H

GDZN12

LANI5

LA2NI7_H

LA7NI16

LA2NI3

LASI2_A1

LA5SN3_L

LA5SN4

LA11SN10

LA2SN3

LA3SN5

LAY

LI22SI5

LI13SI4

LI7SI3

LI12SI7

LI13SN5

LI22SN5

LI2SN5

LI5SN2

LI7SN3

LI8SN3

LISN

LI7SN2

LI2ZN3_L

LI2ZN3_H

LI2ZN5_L

LI2ZN5_H

LIZN4_L

LIZN4_H

LIZN2

BCC_B32

MG2NI

MG5PR

MGSC

MG38SR9

MG24Y5

MG2ZN3

MGZN

MG51ZN20

MG2ZN11

MN17ND2

L10

MNNI2

MN11SI19

MN3SI

MN6SI

MN9SI2

MN23SC6

MNSC4

MN19SN6

MN2SN

MNSN2

MN23Y6

MNZN9

ND2Y

NDZN2

ND3ZN11

ND13ZN58

ND2ZN17

NDZN11_H

NI5PR

NI7PR2

NI2PR

NI3SI_M

NI3SI_L

NI5SI2

THETA

NI3SI2

NISI

NI3SN_H

NI3SN_L

NI3SN2_H

NI3SN2_L

NI3SN4

NI17Y2

NI4Y

NI2Y1

NI2Y3

BETA_NIZN

GAMMA_NIZN

DELTA_NIZN

NI7ZR2

TCMG4

www.thermocalc.com 18 of 48

NI3ZR

NI21ZR8

NI11ZR9

PR2Y

PR13ZN58

PR2ZN17_H

SC5SI3

SCSI

SC3SI5_LT

SC3SI5_HT

SI2Y_H

SI4Y5

SI5Y3_H

SI5Y3_L

SI4ZR5_H

SI2ZR

SIZR3

ZR3SN_A15

ZR5SN3

ZRSN2

SRZN5_L

THZN2

THZN4

H_RZN5

Y13ZN58

YZN2_A

YZN2_B

ZN22ZR

ZN39ZR5

ZN3ZR_L

ZN3ZR_H

ZN2ZR1

ZN2ZR3

ZNZR2

AGGDMG_T

AL9CA31ZN10

AL2CAZN2

AL13CEMG6

ALCUMG_Q

ALCUMG_S

ALCUMG_T

ALCUMG_V

AL16FEMN3

AL13FE2MN2

AL10FEMN2

ALLIMG_T

ALMGMN_T

ALMGND_T

ALMG3NI2

AL38MG58SR4

AL4MGY

ALMGZN_PHI

ALMGZN_T1

ALMGZN_Q

ALMGZN_T2

CAMGSI_T1

CA7MG6SI14

CAMGSN_T1

CA2MG6ZN3

MG5CEY

T2_CEMGZN

T4_CEMGZN

T5_CEMGZN

T6_CEMGZN

T7_CEMGZN

CULIMG_T

CU16MG6SI7

CU3MG2SI

CUMGY_T1

CUMGY_T2

CUMGY_T3

CUMGY_T4

CUMGY_T5

CUMGY_T6

CUMGY_T7

CUMGY_T8

CUMGY_T9

CUMGY_T10

CUMGY_14H

CUMGY_18R

F_MGGDZN

Z_MGRZN

M_MGRZN

L_MGRZN

LAMGNI_T1

LAMGNI_T2

LAMGNI_T3

LAMGNI_T4

LAMGNI_T5

LAMGNI_T6

LAMGSI_T1

LAMGSI_T2

LAMGSI_T3

LAMGSI_T4

LAMGSI_T5

MG6MN3NI

MGNDZN_T1

MGNDZN_T2

MGNDZN_T3

MGNDZN_T4

LPSO_14H

LPSO_18R

I_MGRZN

AL3CU2MG9SI7

TCMG4

www.thermocalc.com 19 of 48

List of models for all the phases included in TCMG4

LIQUID

:AG AL CA CA2SN CE CU FE GD K LA LASN LI MG MG2SN MN NA ND NI PR SC SI SN SR TH Y ZN ZR ZZ:

BCC_A2

:AG AL CA CE CU FE GD K LA LI MG MN NA ND NI PR SC SI SN SR TH Y ZN ZR: VA:

2 SUBL 1 3

BCC_B2

:AG AL CA CE CU FE GD K LA LI MG MN NA ND NI PR SC SI SN SR TH Y ZN ZR:AG AL CA CE CU FE GD K LA LI MG MN NA ND NI PR SC SI SN SR TH Y ZN ZR: VA:

3 SUBL 0.5 0.5 3

B2_BCC

:AG CU NI ZN:CE GD ND Y PR ZR:

> B2 phases modeled separately from A2

2 SUBL 0.5 0.5

B2_MGR

:AL CU MG ND ZN:CA CE GD LA MG ND Y:

> LaMg, MgNd, NdZn, CeMg, CeZn, MgY, YZn, GdMg, GdZn

2 SUBL 0.5 0.5

BCT_A5

:AG AL SN ZN:

CBCC_A12

:AL CU FE MG MN NI SI SN ZN ZR: VA:

2 SUBL 1 1

CUB_A13

:AG AL CA CE CU FE MG MN NI SI SN ZN ZR: VA:

2 SUBL 1 1

DHCP

:AG AL CA CE CU GD LA MG MN ND NI PR SR Y:

DIAMOND_A4

:AL SI SN ZN:

FCC_A1

:AG AL CA CE CU FE GD K LA LI MG MN NA ND NI PR SC SI SN SR TH Y ZN ZR: VA:

2 SUBL 1 1

TCMG4

www.thermocalc.com 20 of 48

FCC_L12

:AG AL CA CE CU FE GD K LA LI MG MN NA ND NI PR SC SI SN SR TH Y ZN ZR:AG AL CA CE CU FE GD K LA LI MG MN NA ND NI PR SC SI SN SR TH Y ZN ZR: VA:

3 SUBL 0.75 0.25 1

L12_FCC

:AL CA LA: CE PR SN:

> L12 phases modeled separately from A1

2 SUBL 1 3

HCP_A3

:AG AL CA CE CU FE GD K LA LI MG MN NA ND NI PR SC SI SN SR Y ZN ZR: VA:

2 SUBL 1 0.5

FE2SI

:FE NI: AL SI:

2 SUBL 2 1

FESI2_H

:FE NI: MG SI:

2 SUBL 3 7

FESI2_L

:FE NI: AL SI:

2 SUBL 1 2

C14_LAVES

:AL CA CU GD LI MG MN NA NI SR Y ZN: AL CA CE CU GD K LA MG MN ND PR SC SR Y ZR ZN VA:

> Al2Zr, CaLi2, CaMg2, Mg2Sr, Mg2Y, MgZn2, Mn2Zr, Na2K

2 SUBL 2 1

C15_LAVES

:AL CA CU FE GD LA LI MG MN ND NI SI Y ZN ZR: AL CA CE CU FE GD LA LI MG ND NI PR SR SI Y ZN ZR:

> Includes 18 compounds, e.g. Al2Ca, Al2Ce, Cu2Mg, Fe2Gd, Mg2Gd

2 SUBL 2 1

C36_LAVES

:AL CU FE GD MG MN NI ZN: AL CA CU GD MG NI ZN:

> MgNi2 type phase, also includes MgNi2, (Cu,Zn)2Mg, (Al,Mg)2Ca

2 SUBL 2 1

MG2SI

:MG SI: AL NI SI SN:

> This is also Si2Ni and Mg2Sn

2 SUBL 2 1

TCMG4

www.thermocalc.com 21 of 48

MSI_B20

:FE MN: MG SI:

> FeSi and MnSi

2 SUBL 1 1

M5SI3_D88

:FE GD LA MN Y ZR: SI SN:

> Fe5Si3, Gd5Si3, Mn5Si3, Y5Si3, Zr5Si3, also LA5SN3(HT)

2 SUBL 5 3

AG51R14

:AG: CE LA PR:

> AG51PR14, AG51CE14, AG51LA14

2 SUBL 51 14

MG41R5

:MG ZN: CA CE GD LA ND PR SR Y:

> Mg41La5, Mg41Ce5, Mg41Nd5, Mg41Pr5

2 SUBL 41 5

XZN13

:CA NA SR: ZN:

> CaZn13, NaZn13, SrZn13

2 SUBL 1 13

MG3R

:LI MG ZN:CA CE GD LA MG ND PR SR Y:

> MG3CE, GDMG3, MG3ND, MG3PR, MG3LA

2 SUBL 3 1

L21_RMGZN2

:CE GD Y: MG: MG ZN:

> L21, isostructural to GdMg3: CeMgZn2, GdMgZn2, MgZn2Y, aka W

3 SUBL 1 1 2

ALR_OS16

:AL: CE GD LA PR:

> a phase based on ALCE, ALGD, ALLA, ALPR(rt)

2 SUBL 1 1

CA5X3

:CA LA: AG SI SN ZN:

> CA5SI3, CA5SN3, CA5AG3, CA5ZN3, also La5Si3

2 SUBL 5 3

RM5

:CA CE GD LA ND SR Y: AG CU NI ZN:

> Ag5Sr, Cu5La, SRZN5, GdNi5, Ni5Y, CaZn5, Cu5Nd, Cu5Sr, CeNi5, CaNi5, Cu5Gd

2 SUBL 1 5

TCMG4

www.thermocalc.com 22 of 48

CU6R

:CU: CE ND GD LA:

> Cu6Nd, Cu6Gd & Cu6La (HT)

2 SUBL 6 1

XZ2_C16

:AG AL CU FE NI SI ZN ZR: AL FE SN TH ZR:

> FeSn2, FeZr2, CuAl2, NiZr2, SiZr2, ZnTh2

2 SUBL 1 2

X3NI

:AL GD LA NI PR Y: NI SI:

> Gd3Ni, La3Ni, Pr3Ni, Y3Ni, also Al3Ni & NI3SI(ht)

2 SUBL 3 1

MR_B27

:CU NI SI ZN:CE GD LA ND PR SR Y ZR:

> CuCe, CuLa, CuNd(rt), NiY, ZnSr, SiLa, CuPr, SiGd & SiZr(rt)

2 SUBL 1 1

M2R

:AG AL CU MG ZN: CA CE GD LA ND PR SR Y:

> Also Ag2Ca, Ag2Sr, Al2Sr, CaZn2, SrZn2, etc.

2 SUBL 2 1

M3R

:FE NI: CA GD LA MG PR Y TH:

> Ni3Pr, Fe3Gd, Fe3Y, NI3Gd, NI3La, Ni3Y, NI3Ca, Fe3Th

2 SUBL 3 1

MG17SR2

:CE GD LA ND PR SR TH Y: AL FE MG NI ZN:

> Also Ce2Mg17, La2Mg17, Ce2Fe17, Pr2Zn17, Y2Zn17, Gd2Fe17, Gd2Ni17, Th2Zn17

2 SUBL 2 17

M23R6

:AL FE MG MN: CE GD ND PR SR Y ZR:

> Fe23Gd6, Mn23Gd6, Mn23Nd6, Mn23Pr6, also Fe23Zr6, Mg23Sr6

2 SUBL 23 6

XR

:AG AL NI SI SN ZN: CA CE GD LA PR Y ZR:

> Also NiZr, AgCa, SiCa, SnCa, SiZr_H, ZnCa

2 SUBL 1 1

R3ZN22

:CE GD ND PR: ZN:

> Ce3Zn22, Gd3Zn22, Nd3Zn22, Pr3Zn22

2 SUBL 0.12 0.88

TCMG4

www.thermocalc.com 23 of 48

RZN11

:CA ND PR: ZN:

> This is CaZn11, NdZn11_L, PrZn11

2 SUBL 1 11

M5R

:CU NI ZR: GD ZR VA:

> A phase based on Cu5Gd_L, Ni5Zr & Cu5Zr

2 SUBL 5 1

XZ2_C37

:AL SI: CA GD ND NI PR Y:

> AlPr2, AlY2, AlNd2, AlGd2, SiNi2, SiCa2

2 SUBL 1 2

ALR_OP16

:AL: ND PR:

> A phase based on AlNd & AlPr(ht)

2 SUBL 1 1

AL11R3

:AL ZN: CE LA ND PR Y:

> Al11Ce3, Al11La3_L, Al11Nd3_L, Al11Pr3_L, Zn11Pr3, Zn11Y3

2 SUBL 11 3

R7M3

:CE LA PR TH: FE NI:

> Th7Fe3, Pr7Ni3, Ce7Ni3, La7Ni3

2 SUBL 0.7 0.3

MG12R

:AL MG MN ZN: CE GD LA ND PR SR Y:

> Mg12Ce, Mg12La, Mg12Pr, also Zn12Y, Mn12Gd, Mn12Y

2 SUBL 12 1

RSI2

:LA Y: SI:

> LASI2, SI2Y(rt)

2 SUBL 1 2

RZN3

:GD ND PR Y: ZN:

> GdZn3, NdZn3, PrZn3, YZn3

2 SUBL 1 3

AL2R3

:AL: ZR Y:

> A phase based on Al2Zr3 & Al2Y3

2 SUBL 0.4 0.6

R5SI4

:LA MG ZR: SI:

> La5Si4, Si4Zr5(rt)

2 SUBL 5 4

TCMG4

www.thermocalc.com 24 of 48

M10ZR7

:CU NI: ZR:

> Cu10Zr7, Ni10Zr7

2 SUBL 10 7

R3SI2

:LA MG ZR: SI:

> Si2Zr3, La3Si2

2 SUBL 3 2

R2NI7

:CE LA MG Y: NI:

> Ni7Y2, Ce2Ni7, La2Ni7(RT)

2 SUBL 2 7

AG9CA2

:AG: CA:

2 SUBL 0.818182 0.181818

AG7CA2

:AG: CA:

2 SUBL 0.777778 0.222222

AGCA3

:AG: CA:

2 SUBL 0.25 0.75

AG4CE

:AG: CE:

2 SUBL 4 1

AG2GD

:AG: GD:

2 SUBL 0.667 0.333

AG51GD14

:AG: GD:

2 SUBL 0.785 0.215

AG5LA

:AG: LA:

2 SUBL 5 1

AGMG4

:AG: MG:

2 SUBL 0.2 0.8

AGMG3

:AG CU: MG:

2 SUBL 0.23 0.77

AG51ND14

:AG: ND:

2 SUBL 0.785 0.215

AG2ND_H

:AG: ND:

2 SUBL 0.666667 0.333333

AG2PR

:AG: PR:

2 SUBL 2 1

TCMG4

www.thermocalc.com 25 of 48

AG5PR

:AG: PR:

2 SUBL 5 1

AG4SC

:AG: SC:

2 SUBL 0.8 0.2

CU2SC_C11B

:AG CU: SC:

2 SUBL 2 1

AGSC

:AG: SC:

2 SUBL 0.5 0.5

AG3SN1

:AG: AG SN:

2 SUBL 0.75 0.25

AG4SR

:AG: SR:

2 SUBL 4 1

AGSR

:AG: SR:

2 SUBL 1 1

AG2SR3

:AG: SR:

2 SUBL 2 3

AGY

:AG: Y:

2 SUBL 0.5 0.5

AG2Y

:AG: Y:

2 SUBL 0.667 0.333

AG51Y4

:AG: Y:

2 SUBL 0.785 0.215

AGZN

:ZN: AG ZN:

2 SUBL 1 2

AGZN3

:AG ZN:

AG5ZN8

:AG ZN: AG:AG ZN: AG ZN:

4 SUBL 2 2 3 6

AGZR

:AG: ZR:

2 SUBL 0.5 0.5

AGZR2

:AG: ZR:

2 SUBL 0.3333 0.6667

TCMG4

www.thermocalc.com 26 of 48

AL4CA

:AL MG: CA SR:

2 SUBL 4 1

AL14CA13

:AL MG ZN: CA:

2 SUBL 14 13

AL3CA8

:AL: CA MG:

2 SUBL 3 8

AL4CE

:AL: CE:

2 SUBL 0.8 0.2

AL3CE_H

:AL: CE:

2 SUBL 0.75 0.25

AL3CE_L

:AL: CE:

2 SUBL 0.75 0.25

ALCE2

:AL: CE:

2 SUBL 0.3333 0.6667

ALCE3_L

:AL: CE:

2 SUBL 0.25 0.75

ALCU_DEL

:AL ZN: CU FE:

2 SUBL 2 3

ALCU_EPS

:AL CU ZN NI: CU FE:

2 SUBL 1 1

ALCU_ETA

:AL CU: AG CU:

2 SUBL 1 1

ALCU_PRIME

:AL: CU:

2 SUBL 2 1

ALCU_ZETA

:AL: AG CU:

2 SUBL 9 11

GAMMA_D83

:AL SI: AL CU SI: AG CU:

3 SUBL 4 1 8

GAMMA_H

:AL: AL CU: AG CU:

3 SUBL 4 1 8

AL13FE4

:AL:FE MN: AL VA:

3 SUBL 0.6275 0.235 0.1375

TCMG4

www.thermocalc.com 27 of 48

AL2FE

:AL: FE MN:

2 SUBL 2 1

AL5FE2

:AL: FE MN:

2 SUBL 5 2

AL5FE4

:AL FE MN:

AL2GD3

:AL: GD:

2 SUBL 2 3

AL3GD

:AL: GD:

2 SUBL 3 1

ALLA3

:AL: LA:

2 SUBL 1 3

AL53LA22

:AL: LA:

2 SUBL 0.707 0.293

AL3LA

:AL: LA:

2 SUBL 3 1

AL11LA3_H

:AL: LA:

2 SUBL 11 3

AL2LI3

:AL MG: LI:

2 SUBL 2 3

ALLI2

:AL: LI:

2 SUBL 1 2

AL4LI9

:AL: LI:

2 SUBL 4 9

ALLI

:AL LI MG: LI MG VA:

2 SUBL 1 1

ALMG_BETA

:AL ZN: LI MG:

2 SUBL 140 89

ALMG_EPSILON

:AL ZN: MG:

2 SUBL 30 23

AL12MG17_A12

:GD LI MG: AL CA MG ZN: AL MG NI ZN:

3 SUBL 10 24 24

TCMG4

www.thermocalc.com 28 of 48

LTAL11MN4

:AL: MN FE:

2 SUBL 11 4

AL12MN

:AL: MN:

2 SUBL 12 1

AL6MN

:AL: MN FE:

2 SUBL 6 1

AL4MN

:AL: MN:

2 SUBL 4 1

AL461MN107

:AL: MN FE:

2 SUBL 461 107

AL8MN5_D810

:AL: MN: AL MN:

3 SUBL 12 5 9

HTAL11MN4

:AL MN: MN:

2 SUBL 29 10

AL11ND3_H

:AL: ND:

2 SUBL 11 3

AL3ND

:AL: ND:

2 SUBL 3 1

ALND3

:AL: ND:

2 SUBL 1 3

AL3NI2

:AL: AL MG NI: NI VA:

3 SUBL 3 2 1

AL3NI5

:AL: NI:

2 SUBL 0.375 0.625

AL11PR3_H

:AL: PR:

2 SUBL 11 3

AL3PR

:AL: PR:

2 SUBL 3 1

ALPR3_L

:AL: PR:

2 SUBL 1 3

AL3SC

:SC: AL:

2 SUBL 1 3

TCMG4

www.thermocalc.com 29 of 48

AL2SC

:SC: AL:

2 SUBL 1 2

ALSC

:SC: AL:

2 SUBL 1 1

ALSC2

:SC: AL:

2 SUBL 2 1

AL4SR

:AL MG: CA SR:

2 SUBL 0.8 0.2

AL7SR8

:AL: CA SR:

2 SUBL 0.46667 0.53333

AL3SR8

:AL: SR:

2 SUBL 0.27273 0.72727

AL3Y_L

:AL: Y:

2 SUBL 0.75 0.25

AL3Y_H

:AL: Y:

2 SUBL 0.75 0.25

ALZR2

:AL: ZR:

2 SUBL 0.33333 0.66667

AL3ZR5

:AL: ZR:

2 SUBL 0.375 0.625

AL3ZR4

:AL: ZR:

2 SUBL 0.42857 0.57143

AL4ZR5

:AL: ZR:

2 SUBL 0.44444 0.55556

AL3ZR2

:AL: ZR:

2 SUBL 0.6 0.4

AL3ZR1

:AL: ZR:

2 SUBL 0.75 0.25

CACU5

:CA: CU:

2 SUBL 0.1667 0.8333

CACU

:CA: CU:

2 SUBL 0.5 0.5

TCMG4

www.thermocalc.com 30 of 48

CA2CU

:CA: CU:

2 SUBL 0.6667 0.3333

CANI2

:CA: NI:

2 SUBL 0.333 0.667

CA2NI7

:CA: NI:

2 SUBL 0.2222 0.7778

CA3SI4

:CA: SI:

2 SUBL 0.428571 0.571429

CA14SI19

:CA: SI:

2 SUBL 0.424242 0.575758

CASI2

:CA: SI:

2 SUBL 0.333333 0.666667

CA2SN_X

:CA MG: CA: SN:

3 SUBL 1 1 1

CA36SN23

:CA: SN:

2 SUBL 36 23

CA31SN20

:CA: SN:

2 SUBL 31 20

CA7SN6

:CA: SN:

2 SUBL 7 6

CA3ZN

:CA:ZN:

2 SUBL 3 1

CAZN3

:CA: ZN:

2 SUBL 1 3

CU6CE

:CU: CE:

2 SUBL 0.857 0.143

CU5CE

:CU: CE:

2 SUBL 0.833 0.167

CU4CE

:CU: CE:

2 SUBL 0.8 0.2

CU2CE

:CU: CE:

2 SUBL 0.667 0.333

TCMG4

www.thermocalc.com 31 of 48

CEGD3

:GD CE:

CENI3

:CE: NI:

2 SUBL 0.25 0.75

CENI2

:CE NI: CE NI:

2 SUBL 0.333 0.667

CEZN2

:CE: MG ZN:

2 SUBL 0.333 0.667

CEZN3

:CE: ZN:

2 SUBL 0.25 0.75

CE3ZN11

:CE: MG ZN:

2 SUBL 0.214 0.786

CE13ZN58

:CE: ZN:

2 SUBL 0.183 0.817

CEZN5

:CE: MG ZN:

2 SUBL 0.167 0.833

CE2ZN17

:CE: MG ZN:

2 SUBL 0.105 0.895

CEZN11

:CE: MG ZN:

2 SUBL 8.3E-2 0.917

CU9GD2

:CU: GD:

2 SUBL 0.818182 0.181818

CU7GD2

:CU: GD:

2 SUBL 0.777778 0.222222

CU37LA3

:CU: LA:

2 SUBL 37 3

CU6LA_L

:CU: LA:

2 SUBL 6 1

CU4LA

:CU: LA:

2 SUBL 4 1

CU2LA

:CU: LA:

2 SUBL 2 1

TCMG4

www.thermocalc.com 32 of 48

CUMG2

:AG CU NI: MG:

2 SUBL 1 2

CU4ND

:CU: ND:

2 SUBL 0.8 0.2

CU7ND2

:CU: ND:

2 SUBL 0.7777778 0.2222222

CUND_H

:CU: ND:

2 SUBL 0.5 0.5

CU6PR

:CU: PR:

2 SUBL 0.857 0.143

CU5PR

:CU: PR:

2 SUBL 0.833 0.167

CU4PR

:CU: PR:

2 SUBL 0.8 0.2

CU2PR

:CU: PR:

2 SUBL 0.667 0.333

CU4SC

:CU: SC:

2 SUBL 4 1

CUSC

:CU: SC:

2 SUBL 1 1

CU15SI4_EPSILON

:CU MG: AL SI:

2 SUBL 15 4

CU56SI11_GAMMA

:CU MG: SI:

2 SUBL 56 11

CUSI_ETA

:CU: SI:

2 SUBL 0.76 0.24

CU33SI7_DELTA

:CU: SI:

2 SUBL 0.825 0.175

CU3SN_H_GAMMA

:CU SN:

CU10SN3

:CU SN:

TCMG4

www.thermocalc.com 33 of 48

CU3SN_L

:CU SN: CU SN:

2 SUBL 3 1

CU41SN11

:CU SN: CU SN:

2 SUBL 41 11

ETA

:CU: CU SN: SN:

3 SUBL 1 1 1

CU6SN5

:CU: CU SN: SN:

3 SUBL 1 1 1

CUSR

:CU: SR:

2 SUBL 0.5 0.5

CUTH2

:CU: TH:

2 SUBL 0.333 0.667

CU2TH

:CU: TH:

2 SUBL 0.667 0.333

CU6TH

:CU: TH:

2 SUBL 0.857 0.143

CU51TH14

:CU: TH:

2 SUBL 0.7826 0.2174

CU7Y1

:CU2 Y: CU:

2 SUBL 1 5

CU4Y

:CU: Y:

2 SUBL 4 1

CU7Y2

:CU: Y:

2 SUBL 7 2

CU2Y_H

:CU: Y:

2 SUBL 2 1

EPSILON

:CU MN ZN:

> including CuZn_EPS, MnZn_EPS

CUZN_GAMMA

:CU ZN: CU ZN: CU: MG ZN:

4 SUBL 2 2 3 6

TCMG4

www.thermocalc.com 34 of 48

CU51ZR14

:CU: ZR:

2 SUBL 0.7846 0.2154

CU8ZR3

:CU: ZR:

2 SUBL 0.7273 0.2727

CUZR2

:CU: ZR:

2 SUBL 0.333 0.667

FE17ND2

:FE: ND:

2 SUBL 1 0.1176

FE17ND5

:FE: ND:

2 SUBL 1 0.2941

FE17PR2

:FE: PR:

2 SUBL 17 2

FE2SC_C14

:FE: SC:

2 SUBL 0.67 0.33

FE2SC_C36

:FE: SC:

2 SUBL 0.67 0.33

FE2SC_C15

:FE: SC:

2 SUBL 0.64 0.36

FE6SC29

:FE: SC:

2 SUBL 0.17 0.83

FE5SN3

:FE: SN:

2 SUBL 5 3

FE3SN2

:FE: SN:

2 SUBL 3 2

FESN

:FE: SN:

2 SUBL 1 1

FE17TH2

:FE: TH:

2 SUBL 0.89 0.11

FE5TH

:FE: TH:

2 SUBL 0.83 0.17

FE7TH2_L

:FE: TH:

2 SUBL 0.78 0.22

TCMG4

www.thermocalc.com 35 of 48

FE7TH2_H

:FE: TH:

2 SUBL 0.78 0.22

FE17Y2

:FE: Y:

2 SUBL 1 0.1176

FE23Y6

:FE: Y:

2 SUBL 1 0.2609

GAMMA_FEZN

:FE ZN: FE ZN: FE ZN: ZN:

4 SUBL 0.154 0.154 0.231 0.461

GAMMA1_FEZN

:FE: FE ZN: ZN:

3 SUBL 0.137 0.118 0.745

DELTA_FEZN

:FE: FE ZN: ZN:ZN:

4 SUBL 5.8E-2 0.18 0.525 0.237

ZETA_FEZN

:FE VA: ZN: ZN VA:

3 SUBL 7.2E-2 0.856 7.2E-2

FEZR3

:FE ZR: FE ZR:

2 SUBL 1 3

GDMG5

:AG CA GD ND SR Y: MG ZN:

2 SUBL 1 5

GDND

:GD ND: GD ND:

2 SUBL 0.5 0.5

GD3NI2

:GD: NI:

2 SUBL 3 2

GD2NI7

:GD: NI:

2 SUBL 2 7

GDNI4

:GD: NI:

2 SUBL 1 4

GD5SI4

:GD: SI:

2 SUBL 0.5556 0.4444

GD3SI5

:GD: SI:

2 SUBL 0.375 0.625

GDSI2

:GD: SI:

2 SUBL 0.3333 0.6667

TCMG4

www.thermocalc.com 36 of 48

GDZN2

:GD: ZN:

2 SUBL 0.333 0.667

GD3ZN11

:GD: ZN:

2 SUBL 0.214 0.786

GD13ZN58

:GD: MG ZN:

2 SUBL 0.183 0.817

GD2ZN17_L

:GD: ZN:

2 SUBL 0.105 0.895

GD2ZN17_H

:GD: ZN:

2 SUBL 0.105 0.895

GDZN12

:GD: ZN:

2 SUBL 7.7E-2 0.923

LANI5

:LA NI: NI LA:NI:

3 SUBL 0.16667 0.33333 0.5

LA2NI7_H

:LA: NI:

2 SUBL 2 7

LA7NI16

:LA: NI:

2 SUBL 0.3043 0.6957

LA2NI3

:LA: NI:

2 SUBL 0.4 0.6

LASI2_A1

:LA: SI:

2 SUBL 0.36 0.64

LA5SN3_L

:LA: SN:

2 SUBL 0.625 0.375

LA5SN4

:LA: SN:

2 SUBL 0.555 0.445

LA11SN10

:LA: SN:

2 SUBL 0.524 0.476

LA2SN3

:LA: SN:

2 SUBL 0.4 0.6

LA3SN5

:LA: SN:

2 SUBL 0.375 0.625

TCMG4

www.thermocalc.com 37 of 48

LAY

:LA Y: Y:

2 SUBL 1 1

LI22SI5

:LI: SI:

2 SUBL 22 5

LI13SI4

:LI: SI:

2 SUBL 13 4

LI7SI3

:LI: SI:

2 SUBL 7 3

LI12SI7

:LI: SI:

2 SUBL 12 7

LI13SN5

:LI: SN:

2 SUBL 13 5

LI22SN5

:LI: SN:

2 SUBL 22 5

LI2SN5

:LI: SN:

2 SUBL 2 5

LI5SN2

:LI: SN:

2 SUBL 5 2

LI7SN3

:LI: SN:

2 SUBL 7 3

LI8SN3

:LI: SN:

2 SUBL 8 3

LISN

:LI: LI SN:

2 SUBL 1 1

LI7SN2

:LI SN: SN:

2 SUBL 7 2

LI2ZN3_L

:LI: LI ZN:

2 SUBL 2 3

LI2ZN3_H

:LI ZN: LI ZN:

2 SUBL 2 3

LI2ZN5_L

:LI ZN: ZN:

2 SUBL 2 5

TCMG4

www.thermocalc.com 38 of 48

LI2ZN5_H

:LI ZN: ZN:

2 SUBL 2 5

LIZN4_L

:LI ZN: LI ZN:

2 SUBL 1 4

LIZN4_H

:LI ZN: LI ZN:

2 SUBL 0.2 0.8

LIZN2

:LI: ZN:

2 SUBL 1 2

BCC_B32

:LI ZN: LI ZN:

2 SUBL 1 1

MG2NI

:MG: CU NI ZN:

2 SUBL 2 1

MG5PR

:MG:PR Y:

2 SUBL 5 1

MGSC

:MG:MG SC:

2 SUBL 1 1

MG38SR9

:AL MG:CE ND SR:

2 SUBL 38 9

MG24Y5

:MG:CA CE GD LA MG ND PR Y:Y:

3 SUBL 24 4 1

MG2ZN3

:MG:AL CU ZN:

2 SUBL 2 3

MGZN

:MG:AL CU ZN:

2 SUBL 12 13

MG51ZN20

:MG:ZN:

2 SUBL 51 20

MG2ZN11

:MG:AL CU SI ZN:

2 SUBL 2 11

MN17ND2

:MN:ND:

2 SUBL 17 2

L10

:MN NI:MN NI:

2 SUBL 0.5 0.5

TCMG4

www.thermocalc.com 39 of 48

MNNI2

:MN NI: NI:

2 SUBL 1 2

MN11SI19

:MN: SI:

2 SUBL 11 19

MN3SI

:MN: SI:

2 SUBL 3 1

MN6SI

:MN: SI:

2 SUBL 17 3

MN9SI2

:MN: SI:

2 SUBL 33 7

MN23SC6

:MN: SC:

2 SUBL 23 6

MNSC4

:MN: SC:

2 SUBL 0.2 0.8

MN19SN6

:MN: SN:

2 SUBL 0.76 0.24

MN2SN

:MN: SN:

2 SUBL 0.667 0.333

MNSN2

:MN: SN:

2 SUBL 0.333 0.667

MN23Y6

:MG MN: Y:

2 SUBL 23 6

MNZN9

:MN: ZN:

2 SUBL 0.1 0.9

ND2Y

:ND Y: ND Y:

2 SUBL 2 1

NDZN2

:ND: ZN:

2 SUBL 0.333 0.667

ND3ZN11

:ND: ZN:

2 SUBL 0.214 0.786

ND13ZN58

:ND: ZN:

2 SUBL 0.183 0.817

TCMG4

www.thermocalc.com 40 of 48

ND2ZN17

:ND: ZN:

2 SUBL 0.105 0.895

NDZN11_H

:ND: ZN:

2 SUBL 8.33E-2 0.9167

NI5PR

:NI: PR:

2 SUBL 0.8333 0.1667

NI7PR2

:NI: PR:

2 SUBL 0.7778 0.2222

NI2PR

:NI: PR:

2 SUBL 0.6667 0.3333

NI3SI_M

:NI: SI:

2 SUBL 0.75 0.25

NI3SI_L

:NI: SI:

2 SUBL 0.76 0.24

NI5SI2

:NI: SI:

2 SUBL 0.7143 0.2857

THETA

:NI: NI VA: SI:

3 SUBL 1 1 1

NI3SI2

:NI: SI:

2 SUBL 0.6 0.4

NISI

:NI: SI:

2 SUBL 0.5 0.5

NI3SN_H

:NI SN: NI SN: NI:

3 SUBL 0.25 0.25 0.5

NI3SN_L

:NI: SN:

2 SUBL 0.75 0.25

NI3SN2_H

:NI: NI SN: SN:

3 SUBL 0.33333 0.33334 0.33333

NI3SN2_L

:SN: NI SN: NI:

3 SUBL 0.2 0.4 0.4

NI3SN4

:NI: NI SN: SN:

3 SUBL 0.25 0.25 0.5

TCMG4

www.thermocalc.com 41 of 48

NI17Y2

:NI: Y:

2 SUBL 17 2

NI4Y

:NI: Y:

2 SUBL 4 1

NI2Y1

:NI: Y:

2 SUBL 2 1

NI2Y3

:NI: Y:

2 SUBL 2 3

BETA_NIZN

:NI ZN:

GAMMA_NIZN

:NI ZN:

DELTA_NIZN

:NI: ZN:

2 SUBL 0.111 0.889

NI7ZR2

:NI: ZR:

2 SUBL 7 2

NI3ZR

:NI: ZR:

2 SUBL 3 1

NI21ZR8

:NI: ZR:

2 SUBL 21 8

NI11ZR9

:NI: ZR:

2 SUBL 11 9

PR2Y

:PR Y: PR Y:

2 SUBL 2 1

PR13ZN58

:PR: ZN:

2 SUBL 0.1831 0.8169

PR2ZN17_H

:PR: ZN:

2 SUBL 2 17

SC5SI3

:SC: SI:

2 SUBL 0.625 0.375

SCSI

:SC: SI:

2 SUBL 0.5 0.5

TCMG4

www.thermocalc.com 42 of 48

SC3SI5_LT

:SC: SI:

2 SUBL 0.375 0.625

SC3SI5_HT

:SC: SI:

2 SUBL 0.375 0.625

SI2Y_H

:SI: Y:

2 SUBL 2 1

SI4Y5

:SI: Y:

2 SUBL 4 5

SI5Y3_H

:SI: Y:

2 SUBL 5 3

SI5Y3_L

:SI: Y:

2 SUBL 5 3

SI4ZR5_H

:SI: ZR:

2 SUBL 4 5

SI2ZR

:SI: ZR:

2 SUBL 2 1

SIZR3

:SI: ZR:

2 SUBL 1 3

ZR3SN_A15

:ZR SN: ZR SN:

2 SUBL 3 1

ZR5SN3

:ZR: SN: SN VA:

3 SUBL 5 3 1

ZRSN2

:ZR: SN:

2 SUBL 1 2

SRZN5_L

:SR: ZN:

2 SUBL 1 5

THZN2

:TH: ZN:

2 SUBL 1 2

THZN4

:TH: ZN:

2 SUBL 1 4

H_RZN5

:GD Y: MG ZN:

2 SUBL 1 5

TCMG4

www.thermocalc.com 43 of 48

Y13ZN58

:Y: ZN:

2 SUBL 13 58

YZN2_A

:Y: ZN:

2 SUBL 1 2

YZN2_B

:Y: ZN:

2 SUBL 1 2

ZN22ZR

:ZN: ZR:

2 SUBL 0.9565 4.35E-2

ZN39ZR5

:ZN: ZR:

2 SUBL 0.8864 0.1136

ZN3ZR_L

:ZN: ZR:

2 SUBL 0.75 0.25

ZN3ZR_H

:ZN: ZR:

2 SUBL 0.75 0.25

ZN2ZR1

:ZN: ZR:

2 SUBL 0.6667 0.3333

ZN2ZR3

:ZN: ZR:

2 SUBL 0.4 0.6

ZNZR2

:ZN: ZR:

2 SUBL 0.3333 0.6667

AGGDMG_T

:AG GD: MG:

2 SUBL 0.15 0.85

AL9CA31ZN10

:AL: CA: ZN:

3 SUBL 1 1 1

AL2CAZN2

:AL: CA: ZN:

3 SUBL 2 1 2

AL13CEMG6

:AL: CE: MG:

3 SUBL 13 1 6

ALCUMG_Q

:AL: CU: MG:

3 SUBL 7 3 6

ALCUMG_S

:AL SI: CU:MG:

3 SUBL 2 1 1

TCMG4

www.thermocalc.com 44 of 48

ALCUMG_T

:MG: AL MG: AL CU MG ZN: AL:

4 SUBL 26 6 48 1

ALCUMG_V

:AL: CU: MG:

3 SUBL 5 6 2

AL16FEMN3

:AL: FE MN:

2 SUBL 4 1

AL13FE2MN2

:FE MN:AL:

2 SUBL 4 13

AL10FEMN2

:FE MN: AL:

2 SUBL 3 10

ALLIMG_T

:AL: LI: MG:

3 SUBL 0.53 0.33 0.14

ALMGMN_T

:AL: MG: MN:

3 SUBL 18 3 2

ALMGND_T

:AL: MG: ND:

3 SUBL 2 0.88 0.12

ALMG3NI2

:AL: NI: MG:

3 SUBL 1 2 3

AL38MG58SR4

:AL: MG: SR:

3 SUBL 38 58 4

AL4MGY

:AL MG Y: AL MG Y: MG Y:

3 SUB 0.6667 0.1667 0.1666

ALMGZN_PHI

:MG: AL ZN:

2 SUBL 21 17

ALMGZN_T1

:MG: MG AL: AL MG ZN: AL:

4 SUBL 26 6 48 1

ALMGZN_Q

:AL:MG:ZN:

3 SUBL 0.15 0.44 0.41

ALMGZN_T2

:AL: MG: ZN:

3 SUBL 0.15 0.43 0.42

CAMGSI_T1

:CA: CA MG: SI:

3 SUBL 0.3333 0.3334 0.3333

TCMG4

www.thermocalc.com 45 of 48

CA7MG6SI14

:CA: MG: SI:

3 SUBL 0.2592593 0.2222222 0.5185185

CAMGSN_T1

:CA: MG: SN:

3 SUBL 156 94 175

CA2MG6ZN3

:CA: MG: ZN:

3 SUBL 2 6 3

MG5CEY

:MG: CE Y:

2 SUBL 5 1

T2_CEMGZN

:CE: MG: ZN:

> Ce1Mg29Zn25, T2_Ce-Mg-Zn

3 SUBL 1.8182E-2 0.527273 0.454545

T4_CEMGZN

:CE: MG: ZN:

> CeMg2.5Zn4.5, T4_Ce-Mg-Zn

3 SUBL 1 2.5 4.5

T5_CEMGZN

:CE: MG: ZN:

> Ce3Mg13Zn30, T5_Ce-Mg-Zn

3 SUBL 6.5217E-2 0.282609 0.652174

T6_CEMGZN

:CE: MG: ZN:

> CeMg2Zn13, T6_Ce-Mg-Zn

3 SUBL 6.25E-2 0.125 0.8125

T7_CEMGZN

:CE: MG: ZN:

> Ce20Mg19Zn81, T7_Ce-Mg-Zn

3 SUBL 0.166667 0.158333 0.675

CULIMG_T

:CU: LI: MG:

3 SUBL 1 8E-2 1.92

CU16MG6SI7

:CU: MG: SI:

3 SUBL 16 6 7

CU3MG2SI

:CU: MG: SI:

3 SUBL 2.74 2 1.26

CUMGY_T1

:CU: MG: Y:

> CU9MG2Y, T1_Cu-Mg-Y

3 SUBL 0.75 0.166667 8.3333E-2

TCMG4

www.thermocalc.com 46 of 48

CUMGY_T2

:CU: MG: Y:

> CU4MGY, T2_Cu-Mg-Y

3 SUBL 4 1 1

CUMGY_T3

:CU: MG: Y:

> CU2MGY2, T3_Cu-Mg-Y

3 SUBL 2 1 2

CUMGY_T4

:CU: MG: Y:

> CUMGY, T4_Cu-Mg-Y

3 SUBL 1 1 1

CUMGY_T5

:CU: MG: Y:

> CU5MG8Y5, T5_Cu-Mg-Y

3 SUBL 0.277778 0.444444 0.277778

CUMGY_T6

:CU: MG: Y:

> CU5MG13Y5, T6_Cu-Mg-Y

3 SUBL 0.2173913 0.5652174 0.2173913

CUMGY_T7

:CU: MG: Y:

> CU18MG57Y25, T7_Cu-Mg-Y

3 SUBL 0.18 0.57 0.25

CUMGY_T8

:CU: MG: Y:

> CU5MG16Y5, T8_Cu-Mg-Y

3 SUBL 0.1923077 0.6153846 0.1923077

CUMGY_T9

:CU: MG: Y:

> CU9MG2Y, T9_Cu-Mg-Y

3 SUBL 1 4 1

CUMGY_T10

:CU: MG: Y:

> CU9MG78Y13, T10_Cu-Mg-Y

3 SUBL 9E-2 0.78 0.13

CUMGY_14H

:MG: Y: CU:

> 14H-type Cu-Mg-Y LPSO phase

3 SUBL 0.8571429 7.142857E-2 7.142857E-2

CUMGY_18R

:MG: Y: CU:

> 18R-type Cu-Mg-Y LPSO phase

3 SUBL 0.833334 8.3333E-2 8.3333E-2

TCMG4

www.thermocalc.com 47 of 48

F_MGGDZN

:GD: MG: ZN:

>Gd20Mg19Zn81,isostructural to Ce20Mg19Zn81, aka F

3 SUBL 0.166667 0.158333 0.675

Z_MGRZN

:GD Y: MG: ZN:

> hexagonal Z phase, aka S, hP92

3 SUBL 7E-2 0.28 0.65

M_MGRZN

:GD: MG: ZN:

> hexagonal M phase, hP238, related to S/Z and L

3 SUBL 8E-2 0.28 0.64

L_MGRZN

:GD: MG: ZN:

> hexagonal L phase, hP480, related to S/Z and M

3 SUBL 0.14 0.22 0.64

LAMGNI_T1

:LA: NI: MG:

3 SUBL 0.25 0.25 0.5

LAMGNI_T2

:LA: NI: MG:

3 SUBL 0.4 0.4 0.2

LAMGNI_T3

:LA MG: NI:

2 SUBL 0.333333 0.666667

LAMGNI_T4

:LA: NI: MG:

3 SUBL 0.666666 0.166667 0.166667

LAMGNI_T5

:LA: NI: MG:

3 SUBL 0.666666 0.22 0.113334

LAMGNI_T6

:LA: MG NI:

2 SUBL 0.675 0.325

LAMGSI_T1

:LA MG: SI:

2 SUBL 0.6 0.4

LAMGSI_T2

:LA: SI: MG:

3 SUBL 0.2 0.4 0.4

LAMGSI_T3

:LA: SI: MG:

3 SUBL 0.25 0.5 0.25

LAMGSI_T4

:LA: SI: MG:

3 SUBL 0.2 3.333E-2 0.76667

TCMG4

www.thermocalc.com 48 of 48

LAMGSI_T5

:LA: SI: MG:

3 SUBL 0.3293 4E-3 0.6667

MG6MN3NI

:MG: MN: NI:

3 SUBL 3 1 2

MGNDZN_T1

:MG: ND: ZN:

3 SUBL 0.35 5E-2 0.6

MGNDZN_T2

:MG: ND: ZN:

3 SUBL 0.35 0.1 0.55

MGNDZN_T3

:MG: ND: ZN:

3 SUBL 0.6 0.1 0.3

MGNDZN_T4

:MG: ND: ZN:

3 SUBL 0.3 0.15 0.55

LPSO_14H

:MG: GD Y: ZN:

3 SUBL 0.88 6E-2 6E-2

LPSO_18R

:MG: Y: ZN:

3 SUBL 0.84 8E-2 8E-2

I_MGRZN

:GD Y: MG ZN: MG ZN:

3 SUBL 0.1 0.3 0.6

AL3CU2MG9SI7

:AL: CU: MG: SI:

4 SUBL 3 2 9 7