tcfe8 - tcs steels/fe-alloys database, version 8...whole laves phase takes into account the elements...

17
TCFE8 Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com Org.No: 556540-6138 VAT No: SE556540613801 1 TCFE8 - TCS Steels/Fe-Alloys Database, Version 8.0 TCFE8 is a thermodynamic database for different kinds of steels, Fe-based alloys (stainless steels, high- speed steels, tool steels, HSLA steels, cast iron, corrosion-resistant high strength steels and more) and cemented carbides for use with the Thermo-Calc, DICTRA and TC-PRISMA software packages. Included Elements Ar Al B C Ca Co Cr Cu Fe H Mg Mn Mo N Nb Ni O P S Si Ta Ti V W Y Zn Zr Limits The database is applicable for various types of steels/Fe-alloys with a Fe-minimum of 50wt%, and for alloying elements the recommended composition limits (in weight percent) are as follows: Element max Element max Element Max Element max Al 5.0 Cu 5.0 Ni 20.0 Ti 3.0 B Trace Mg Trace O Trace V 15.0 C 7.0 Mn 20.0 P Trace W 15.0 Ca Trace Mo 10.0 S Trace Y * Co 20.0 N 5.0 Si 5.0 Zn ** Cr 30.0 Nb 5.0 Ta 10.0 Zr 10.0 Note that Ar and H are only considered in the gas phase and no modelling of solubility in the solid solution phases or liquid has been taken into account. * The element Zn has been added with the focus on the Zn corner of Al-Cr-Fe-Zn system for galvanization process, but several other binaries and ternaries are also included. ** The element Y has been added mainly for the purpose of oxide dispersion strengthened (ODS) steels and the Al-Cr-Cu-Fe-Mn-Ni-O-Si-Y-Zr has been included which contains many assessed oxygen containing binary and ternary systems. Sensible calculations cannot be expected if all alloying elements are at their highest limits. Some combinations of elements at high values will not give reasonable results; but, some alloying elements can exceed their limits considerably and the calculations will still give good results. Critical calculations must always be verified by equilibrium experimental data; it is the user’s responsibility to verify the calculations but Thermo-Calc Software AB is interested in knowing about any significant deviations in order to improve future versions of the database. The database has been based on complete reassessments of binary and many ternary systems; however, many intermediate compounds that do not occur in steels/Fe-alloys have been deleted from the database. Therefore, it is not suitable to calculate complete binary and ternary systems, but rather only in the iron- rich corner. Each parameter in the database has a reference to its origin. Sometimes, for some special steels/Fe-alloys, one may also prefer to append some other stoichiometric or solution phases (usually as intermediate compound phases that have been ignored in TCFE8) from

Upload: others

Post on 13-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    1

    TCFE8 - TCS Steels/Fe-Alloys Database, Version 8.0 TCFE8 is a thermodynamic database for different kinds of steels, Fe-based alloys (stainless steels, high-speed steels, tool steels, HSLA steels, cast iron, corrosion-resistant high strength steels and more) and cemented carbides for use with the Thermo-Calc, DICTRA and TC-PRISMA software packages.

    Included Elements Ar Al B C Ca Co Cr Cu Fe H Mg Mn Mo

    N Nb Ni O P S Si Ta Ti V W Y Zn Zr

    Limits The database is applicable for various types of steels/Fe-alloys with a Fe-minimum of 50wt%, and for alloying elements the recommended composition limits (in weight percent) are as follows:

    Element max Element max Element Max Element max Al 5.0 Cu 5.0 Ni 20.0 Ti 3.0 B Trace Mg Trace O Trace V 15.0 C 7.0 Mn 20.0 P Trace W 15.0 Ca Trace Mo 10.0 S Trace Y * Co 20.0 N 5.0 Si 5.0 Zn ** Cr 30.0 Nb 5.0 Ta 10.0 Zr 10.0

    Note that Ar and H are only considered in the gas phase and no modelling of solubility in the solid solution phases or liquid has been taken into account.

    * The element Zn has been added with the focus on the Zn corner of Al-Cr-Fe-Zn system for galvanization process, but several other binaries and ternaries are also included.

    ** The element Y has been added mainly for the purpose of oxide dispersion strengthened (ODS) steels and the Al-Cr-Cu-Fe-Mn-Ni-O-Si-Y-Zr has been included which contains many assessed oxygen containing binary and ternary systems.

    Sensible calculations cannot be expected if all alloying elements are at their highest limits. Some combinations of elements at high values will not give reasonable results; but, some alloying elements can exceed their limits considerably and the calculations will still give good results. Critical calculations must always be verified by equilibrium experimental data; it is the user’s responsibility to verify the calculations but Thermo-Calc Software AB is interested in knowing about any significant deviations in order to improve future versions of the database.

    The database has been based on complete reassessments of binary and many ternary systems; however, many intermediate compounds that do not occur in steels/Fe-alloys have been deleted from the database. Therefore, it is not suitable to calculate complete binary and ternary systems, but rather only in the iron-rich corner. Each parameter in the database has a reference to its origin.

    Sometimes, for some special steels/Fe-alloys, one may also prefer to append some other stoichiometric or solution phases (usually as intermediate compound phases that have been ignored in TCFE8) from

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    2

    another compatible database (e.g. SSOL5 and/or SSUB5). But the user must be very cautious on appropriately appending such data in the combination.

    The TCFE8 database contains an extensive GAS mixture phase (Ar and different species in the C-H-N-O-S system) for the main purpose of considering oxygen/nitrogen-gas controls in steel-making processes, and different gas atmospheres under e.g. heat treatments; however, it can be replaced by a large GAS phase appended from a compatible database (e.g. SSUB5 or SLAG3).

    Similarly, an IONIC_LIQ solution phase can be appended from the TCOX6 database, when it is really necessary to consider a more comprehensive ionic liquid phase for calculations of e.g. formations of complex oxides on steel-surfaces. However, for the purposes of investigating various steel-making metallurgical processes, it is highly recommended to append the so-called SLAG solution phase from e.g. SLAG3 database. In the meantime, one must keep in mind that the SLAG and IONIC_LIQ phases should never be simultaneously considered in the same defined system/calculation, as they both represent the slag mixture phase on two different scales (and using two different models).

    In the TCFE8 database Al and Si are modelled to dissolve into the CEMENTITE phase. This is necessary to be able to calculate para-equilibrium between e.g. BCC_A2 and CEMENTITE for alloys containing Al and Si [1]. The CEMENTITE phase is described with two sublattices with the ratio 3:1, with the following constituents; (Al, Co, Cr, Fe, Mn, Mo, Nb, Ni, Si, V, W)3(B, C, N)1.

    Ni and Si are available in the LAVES_PHASE_C14, which is modelled with two sublattices with the ratio 2:1. The Si solubility in the laves phase can be relatively high as has been shown by Zhao et al. [2]. The solubility of many other elements are included in the laves phase and with TCFE8, the description for the whole laves phase takes into account the elements Al, Co, Cr, Cu, Fe, Mg, Mn, Mo, Nb, Ni, Si, Ti and W. This description has shown satisfying accuracy of the predictions compared to experimental information [3-5].

    The present description of the SPINEL, HALITE and CORUNDUM phases and more, for the Fe-Al-Ca-Cr-Mg-Mn-Ni-Si-Ti-C-O system [6-11], in TCFE8 allows for accurate predictions in different fields, e.g. oxide scale formation on various steels [1216], see Figure 1 and Figure 2. In Figure 1 the oxide scale formed on a steel is predicted and the agreement with experimental information [12] is very good. One can see that below the outer scale (rich in corundum) a Fe-Mn spinel is formed and closest to the substrate a layer with halite and a Cr-Mn rich spinel, which also is verified in the work by Douglas et al. [12].

    The model used for the spinel and corundum phases makes it possible to simulate diffusion inside these phases using the DICTRA software (also possible for other oxides such as halite) provided suitable mobility data are available.

    TCFE8 contains molar volume data for all phases in the database (this was introduced first in TCFE4), which allows for the calculation of volume fraction of phases, as well as density and thermal expansivity using Thermo-Calc. Molar volumes are also needed when utilizing the TC-PRISMA software simulating precipitations. Validation of predicted densities in different alloys are shown in Figure 3 and in Figure 4 the relative length change in a commercial steel is shown.

    The element Y has been added in TCFE8 data base mainly for the purpose development of oxide dispersion strengthened (ODS) steels and the Al-Cr-Cu-Fe-Mn-Ni-O-Si-Y-Zr has been included which contains many assessed oxygen containing binary and ternary systems. Figure 5.

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    3

    The element Zn has been added in TCFE8 owing to its importance for hot-dip galvanization process with the focus on the Zn corner of Al-Cr-Fe-Zn system. Figure 6.

    Validation of the TCFE8 database against experimental data shows accurate predictions for:

    Tool steels and high-speed steels, especially in predicting correct phases and phase compositions. Figure 7 demonstrates the latter for a number of different tool steels and high-speed steels.

    HSLA steels, especially in predicting correct phases and phase compositions in all possible

    precipitates, see Figure 8 and Table 1. Solidification of cast irons and general steels. Inclusions containing complex oxides and sulphides.

    Stainless steels, tool steels, high-speed steels and other Fe-based alloys with high concentrations

    of N. The relative stability between the austenite and ferrite phases in Al and Cu-rich alloys.

    The relative stability between the austenite and ferrite phases in alloys containing Al, Cr, Mn and

    Ni. Sulphides, oxides, borides and phosphides. Figure 1 and Figure 2 shows calculation of oxide scale

    formation on a steel and a Fe-Cr-C alloy. Carbides, nitrides, carbonitrides and intermetallic phases such as sigma and laves phase.

    Liquidus and solidus temperatures. In addition, the accuracy to predict the correct primary phase to

    form from the liquid is reliable. In Figure 9 measured liquidus temperatures are compared with calculated liquidus temperatures for various steels.

    Cemented carbides, especially in predicting correct phases and fractions, phase compositions and

    invariant solid/liquid equilibrium temperatures, see Table 2.

    Major Updates from TCFE7.0 to TCFE8.0 • Yttrium is added including the following systems (either full or partial):

    – Al-Y, B-Y, C-Y, Co-Y, Cr-Y, Cu-Y, Fe-Y, Mo-Y, Nb-Y, Ni-Y, O-Y, Si-Y, Ta-Y, Ti-Y, V-Y, W-Y, Y-Zr – Al-O-Y, Cr-O-Y, Cu-O-Y, Fe-O-Y, Mn-O-Y, Ni-O-Y, O-Si-Y, O-Y-Zr – Al-Cr-O-Y, Al-Fe-O-Y, Al-O-Si-Y, Cr-Fe-O-Y, Mn-O-Y-Zr

    • Zinc added including the following systems (either full or partial): – Al-Zn, C-Zn, Ca-Zn, Co-Zn, Cr-Zn, Cu-Zn, Fe-Zn, Mg-Zn, Mn-Zn, Mo-Zn, Nb-Zn, Ni-Zn, P-Zn,

    S-Zn, Si-Zn, Ti-Zn, V-Zn, Y-Zn – Al-Cr-Zn, Al-Fe-Zn, Al-Mg-Zn, Al-Y-Zn, C-Co-Zn, Cr-Fe-Zn, Al-Si-Zn – Al-Cr-Fe-Zn

    • Improved Cu descriptions by adding Co-Cu, Co-Cu-Fe and Cu-Fe-Si systems. • Added description of C-Co-Cr for cemented carbide applications. • Added Fe2SiTi phase required for the Fe-Si-Ti precipitation hardening steels. • Fixed many previous issues in TCFE7 including:

    – Improved MnS-MnO pseudo binary description. – Updated Mo-Si description.

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    4

    – Improved description of liquid C-Fe-Si parameters which is common for cast irons. – Improved C-Fe-O description. – Improved relative stability of MU-Phase in Co-Nb and Co-Ta systems. – Improved relative stability of Sigma in Co-Cr, Al-Nb, Mn-Ta, Mo-V, Nb-V, Ta-Ti and Ta-V

    systems. – Improved relative stability of Laves_C14 in Co-Mo and Cu-Fe systems. – Improved relative stability of L12_FCC in Co-V system.

    Figure 1. a) Oxidation of a steel (17.8 wt.% Mn, 9.5 Cr, 1.0 Ni and 0.27 C) at 900 ºC. b) Calculated composition of the spinel phase in the oxide scale at 900 ºC.

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    5

    Figure 2. a) Calculated oxide scale formed on a low-Cr boiler steel (Fe-1.44Cr-0.06C wt.%) at 550 ºC. b) Calculated composition in different oxides versus oxygen partial pressure for the same steel as in a. These results agree very well compared with experimental information [17]. A small amount of graphite is present for the whole oxygen partial pressure interval.

    Figure 3. Calculated density of several different steels at room temperature compared with experimental data provided by Sandvik [18] and Uddeholm Tooling [19].

    Figure 4. Relative length change [20] of steel Fe-0.11C-0.5Mn-0.03Si-0.01Cr-0.02Ni (mass percent) compared with predictions using TCFE8.

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    6

    Figure 5. Isothermal section of Fe-Y-O calculated at 1000 °C.

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    7

    Figure 6. Zn corner of a) Al-Cr-Zn b) Al-Fe-Zn and c) Cr-Fe-Zn systems at 460 °C compared with experimental information [21-24].

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    8

    Figure 7. Calculated vs. experimental equilibrium composition for: a) MC, b) M7C3 and c) M6C carbides in different tool steels and high-speed steels. The experimental data has been taken from references [25, 26 and 27].

    Figure 8. Predicted mass fraction of Nb, Ti, V, and Al in precipitates compared with experimental information [28] for a microalloyed steel with 0.09%C, 1.51%Mn, 0.035%Al, 0.010%Ti, 0.030%Nb, 0.08%V and 0.0105%N (mass percent).

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    9

    Table 1. Predicted compositions for (TixNb1-x)NyC1-y and (NbtTi1-t)CuN1-u carbonitrides (site fractions) in two microalloyed steels compared with measurements from Craven et al. [29]. All calculations were made at 1000 ºC. Both steels contain the following alloy contents: 0.036%Al, 1.4%Mn, 0.50%Ni, 0.015%P, 0.002%S and 0.4%Si in addition to the composition provided in the table (mass percent). Steel 1 0.07%C 0.0079%N 0.025%Nb 0.009%Ti x y t u Experiment 0.86 ± 0.04 ≈ 1 1 ≈ 0.7 Calculation 0.94 0.94 0.98 0.71 Steel 2 0.097%C 0.0049%N 0.017%Nb 0.010%Ti x y t u Experiment 0.91 ± 0.03 0.84 ± 0.05 1 or ≈ 0.8 ≈ 1 Calculation 0.97 0.92 0.97 0.78

    Figure 9. Experimental liquidus temperatures [30, 31 and 32] for various steels (stainless steels, carbon and low alloy steels, high-speed steels with high Nb content and chromium steels) compared with calculations performed using the TCFE8 databases.

    Table 2. Predicted invariant temperatures of solid/liquid equilibria including WC, (cubic carbide), and graphite or M6C compared with experimental data [33 and 34]. System Invariant temperature graphite, °C Invariant temperature M6C, °C Experimental Calculated Experimental Calculated Co-W-C 1298 1298 1368 1368 +Nb 1282 1287 1345 1349 +Ta 1289 1289 1352 1348 +Ti 1289 1292 1361 1364 +Zr 1283 1291 1358 1362

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    10

    Acknowledgement Professor Bo Sundman and Doctor Bengt Hallstedt are acknowledged for many valuable discussions and important contributions. Special acknowledgements are given to Associate Professor Malin Selleby at the Royal Institute of Technology, Stockholm, Sweden for her contributions in oxide systems [6-11].

    References 1. G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara and T. Maki, Acta Materialia, Vol. 55, 2007, pp. 5027-5038. 2. J.-C. Zhao, M.R. Jackson and L.A. Peluso, Acta Materialia, Vol. 51, 2003, pp. 6395-6405. 3. J. Fritzheim, G.H. Meier, L. Niewolak, P.J. Ennis, H. Hattendorf, L. Singheiser and W.J. Quadakkers, J. of

    Power Sources, Vol. 178, 2008, pp. 163-173. 4. Z. Yang, G.-G. Xia, C.-M. Wang, Z. Nie, J. Templeton, J. Stevenson and P. Singh, J. of Power Sources, Vol.

    183, 2008, pp. 660-667. 5. European Commission, technical steel research, special and alloy steels, Report EUR 20315, ISBN 92-

    894-3655-7, 2002. 6. L. Kjellqvist, M. Selleby and B. Sundman, Calphad, Vol. 32, 2008, pp. 577-592. 7. L. Kjellqvist and M. Selleby, Calphad, Vol. 33, 2009, pp. 393-397. 8. L. Kjellqvist and M. Selleby, J. of Phase Equilibria and Diffusion, Vol. 31, 2010, pp. 113-134. 9. L. Kjellqvist and M. Selleby, J. of Alloys and Compounds, Vol. 507, 2010, pp. 84-92. 10. L. Kjellqvist and M. Selleby, International J. of Materials Research, Vol. 101, 2010, pp. 1222-1231. 11. L. Kjellqvist, PhD Thesis, KTH Royal Institute of Technology, ISBN 978-91-7415-428-3, Stockholm,

    Sweden 2009. 12. D. L. Douglas, F. Gesmundo and C. De Asmundis, Oxidation of Metals, Vol. 25, 1986, pp. 235-268. 13. D. L. Douglas and F. Rizzo-Assuncao, Oxidation of Metals, Vol. 29, 1988, pp. 271-287. 14. P. Nanni, V. Buscaglia, G. Battilana and E. Ruedl, J. of Nuclear Materials, Vol. 182, 1991, pp. 118-127. 15. H. Kurokawa, K. Kawamura and T. Maruyama, Solid State Ionics, Vol. 168, 2004, pp. 13-21. 16. R. Wang, M. J. Straszheim and R. A. Rapp, Oxidation of Metals, Vol. 21, 1984, pp. 71-79. 17. V. B. Trindade, U. Krupp, H.-J. Christ, M. J. Monteiro and F. C. Rizzo, Mat.-wiss. u. Werkstofftech., Vol.

    36, No. 10, 2005, pp. 471-476. 18. Personal Communication with Sandvik. 19. www.uddeholm.se 20. C. Garcia de Andrés, F. G. Caballero, C. Capdevila and L. F. Álvarez, Materials Characterization, Vol. 48,

    Issue 1, 2002, pp. 101-111. 21. R. Fourmentin, M-N. Avettand-Fènoël, G. Reumont, and P. Perrot, Journal of materials science, Vol. 42,

    No. 18, 2007, pp. 7934-7938. 22. N. Saunders, A. P. Miodownik, CALPHAD, Calculation of Phase Diagrams, Oxford, New York, 1998. 23. S. Yamaguchi, ISIJ, 2004, pp. 137–140. 24. H. Yamaguchi, Y. Hisamatsu, Tetsu to Hagane, Vol. 59, No. 11, 1973, pp. 280 (in Japanese). 25. J. Bratberg and K. Frisk, Met. Mat. Trans. A, Vol. 35A, No. 12, 2004, pp. 3649-3663. 26. J. Bratberg and K. Frisk, Proceeding of the Powder Metallurgy World Congress and EURO-PM2004,

    Vienna, Vol. 4, 2004, pp. 337-342. 27. J. Bratberg, Z. für Metallk., Vol. 96, No. 4, 2005, pp. 335-344. 28. S. Zajac, Internal report IM-3566, Swedish Institute for Metals Research, Stockholm, Sweden, 1998. 29. A. J. Craven, K. He, L. A. J. Garvies and T. N. Baker, Acta Mater., Vol. 48, 2000, pp 3857-3868. 30. Jernkontoret, ’’A Guide to the Solidification of Steels’’, 1977, Stockholm, Sweden. 31. G. Allan, EU technical steel research, Castability, solidification mode and residual ferrite distribution in

    highly alloyed stainless steels, 1997. 32. G. C. Coelho, J. A. Golczewski and H. F. Fischmeister, Mat. Trans. A, Vol. 34A, No. 9, 2003, pp. 1749-

    1758.

    http://www.uddeholm.se/

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    11

    33. O. Kruse, B. Jansson and K. Frisk, Journal of Phase Equilibria, Vol. 22, No. 5, 2011, pp. 552-555. 34. J. Bratberg and B. Jansson, Journal of Phase Equilibria and Diffussion, Vol. 27, No. 3, pp. 213-219.

    List of all phases included in TCFE8

    PHASE NAME MODEL Comments GAS:G (AR,C,C1H1,C1H1N1O1,C1H1N1_HCN,C1H1N1_HNC,C1H1O

    1,C1H1O2,C1H2,C1H2O1,C1H2O2_CIS,C1H2O2_DIOXIRANE,C1H2O2_TRANS,C1H3,C1H3O1_CH2OH,C1H3O1_CH3O,C1H4,C1H4O1,C1N1,C1N1O1,C1N1O1_NCO,C1N2_CNN,C1N2_NCN,C1O1,C1O1S1,C1O2,C1S1,C1S2,C2,C2H1,C2H1N1,C2H2,C2H2O1,C2H3,C2H4,C2H4O1_ACETALDEHYDE,C2H4O1_OXIRANE,C2H4O2_ACETICACID,C2H4O2_DIOXETANE,C2H4O3_123TRIOXOLANE,C2H4O3_124TRIOXOLANE,C2H5,C2H6,C2H6O1,C2H6O2,C2N1_CCN,C2N1_CNC,C2N2,C2O1,C3,C3H1,C3H1N1,C3H4_1,C3H4_2,C3H6,C3H6O1,C3H6_2,C3H8,C3N1,C3O2,C4,C4H1,C4H10_1,C4H10_2,C4H2,C4H4,C4H4_1_3,C4H6_1,C4H6_2,C4H6_3,C4H6_4,C4H6_5,C4H8,C4H8_1,C4H8_2,C4H8_3,C4H8_4,C4H8_5,C4N1,C4N2,C5,C5H1N1,C5N1,C60,C6H6,C6H6O1,C6N1,C6N2,C9N1,H,H1N1,H1N1O1,H1N1O2_CIS,H1N1O2_TRANS,H1N1O3,H1N3,H1O1,H1O1S1_HSO,H1O1S1_SOH,H1O2,H1S1,H2,H2N1,H2N2O2,H2N2_1_1N2H2,H2N2_CIS,H2N2_TRANS,H2O1,H2O1S1_H2SO,H2O1S1_HSOH,H2O2,H2O4S1,H2S1,H2S2,H3N1,H3N1O1,H4N2,N,N1O1,N1O2,N1O3,N1S1,N2,N2O1,N2O3,N2O4,N2O5,N3,O,O1S1,O1S2,O1Y1,O1Y2,O2,O2S1,O2Y1,O2Y2,O3,O3S1,S,S2,S3,S4,S5,S6,S7,S8,V,Y,ZN,ZR,ZR2)

    LIQUID:L (AL,ALN,ALO3/2,B,C,CA,CO,CR,CRO3/2,CU,CU2O,CUO,CU2S,FE,FEO,FEO3/2,FES,MG,MN,MNO,MNO3/2,MNS,MO,N,NB,NBO,NBO2,NI,NIO,NIS,P,S,S2ZR,S3ZR2,SI,SIO2,SZN,TA,TI,TIO,TIO3/2,TIO2,V,W,Y,Y2/3O,ZN,ZR,ZR1/2O)

    BCC_A2 (AL,CA,CO,CR,CU,FE,MG,MN,MO,NB,NI,P,S,SI,TA,TI,V,W,Y,ZN,ZR)1(B,C,N,O,VA)3

    B2_BCC (AL,CO,CR,CU,FE,MG,NI,SI,TA,TI,ZN,ZR)0.5(AL,CO,CR,CU,FE,MG,NI,SI,TA,TI,ZN,ZR)0.5(C,VA)3

    B2_VACANCY (AL,NI)1(NI,VA)1 FCC_A1 (AL,CA,CO,CR,CU,FE,MG,MN,MO,NB,NI,P,S,SI,TA,TI,V,W,Y,

    ZN,ZR)1(B,C,N,O,VA)1

    DICTRA_FCC_A1 (AL,CA,CO,CR,CU,FE,MG,MN,MO,NB,NI,P,S,SI,TA,TI,V,W,Y,ZN,ZR)1(B,C,N,O,VA)1

    L12_FCC (AL,CO,FE,NI,TA,TI,V,ZR)0.75(AL,CO,FE,NI,TA,TI,V,ZR)0.25(VA)1

    HCP_A3 (AL,CA,CO,CR,CU,FE,MG,MN,MO,NB,NI,SI,TA,TI,V,W,Y,ZN,ZR)1(B,C,N,O,VA)0.5

    DIAMOND_FCC_A4 (AL,B,C,O,SI,ZN) BETA_RHOMBO_B (B)93(B,C,SI)12 FC_ORTHORHOMBIC (S) RED_P (P) WHITE_P (P) GRAPHITE (B,C) CEMENTITE (AL,CO,CR,FE,MN,MO,NB,NI,SI,V,W)3(B,C,N)1 M23C6 (CO,CR,FE,MN,NI,V)20(CO,CR,FE,MN,MO,NI,V,W)3(B,C)6 M7C3 (AL,CO,CR,FE,MN,MO,NB,NI,SI,V,W)7(B,C)3 M6C (CO,FE,NI)2(MO,NB,W)2(CO,CR,FE,MO,NB,NI,SI,V,W)2(C)1 M5C2 (FE,MN,V)5(C)2 M3C2 (CO,CR,MO,V,W)3(C)2 MC_ETA (MO,TI,V,W)1(C,VA)1 MC_SHP (MO,W)1(C,N)1

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    12

    KSI_CARBIDE (CR,FE,MO,W)3(C)1 A1_KAPPA (AL,FE)1(C,VA)0.25 KAPPA (AL,FE)0.25(AL,FE)0.25(AL,FE)0.25(AL,FE)0.25(C,VA)0.25 Z_PHASE (CR,FE)1(MO,NB,V)1(N,VA)1 FE4N_LP1 (CO,CR,FE,MN,NI)4(C,N)1 FECN_CHI (FE)2.2(C,N)1 PI (CR)12.8(FE,NI)7.2(N)4 M2B_TETR (CR,FE,MO,NI,W)0.67(B)0.33 SIGMA (AL,CO,CR,FE,MN,NI,TA,V)10(CR,MO,NB,TA,TI,V,W)4(AL,CO

    ,CR,FE,MN,MO,NB,NI,SI,TA,TI,V,W)16

    HIGH_SIGMA (FE,MN,NI)8(CR,MO)4(CR,FE,MN,MO,NI,SI)18 MU_PHASE (CO,CR,FE,MN,NB,NI,TA)7(MO,NB,TA,W)2(CO,CR,FE,MO,NB

    ,NI,TA,W)4

    P_PHASE (CR,FE,NI)24(CR,FE,MO,NI)20(MO)12 R_PHASE (CO,CR,FE,MN,NI)27(MO,W)14(CO,CR,FE,MN,MO,NI,W)12 CHI_A12 (CR,FE,NI)24(CR,MO,W,ZR)10(CR,FE,MO,NI,W)24 LAVES_PHASE_C14 (AL,CO,CR,CU,FE,MG,MN,MO,NB,NI,SI,TA,TI,W,Y,ZN,ZR)2(

    AL,CO,CR,CU,FE,MG,MN,MO,NB,NI,SI,TA,TI,W,Y,ZN,ZR)1

    M3SI (FE,MN)3(SI)1 G_PHASE (AL,CO,FE,NI,TI)16(MN,NB,TI,Y,ZR)6(CO,FE,NI,SI)7 > Th6Mn23 prototype CR3SI (CO,CR,FE,MO,NB,SI,V)3(AL,CO,CR,NB,SI,V)1 FE2SI (FE)0.67(SI)0.33 MSI (CR,FE,MN)0.5(SI)0.5 M5SI3 (CR,FE,MN,Y)0.62(SI)0.38 MG2NI (MG)2(NI)1 MG2SI (MG)2(SI)1 NBNI3 (NB,NI)1(NB,NI)3 NITI2 (NI)0.33(TI)0.67 NI3TI (NI,TI)0.75(NI,TI)0.25 NIY (NI)1(Y)1 NI17Y2 (FE,NI)1(Y)0.12 > also Fe17Y2 NI2Y (NI)2(Y)1 NI2Y3 (NI)2(Y)3 NI3Y (FE,NI)3(Y)1 > also Fe3Y NI4Y (NI)4(Y)1 NI7ZR2 (CO,NI)7(Y)2 > also NI7Y2 and

    CO7Y2 NI5Y (NI)5(Y)1 ALY (AL)1(Y)1 AL2Y3 (AL)2(Y)3 ALY2 (AL)1(Y)2 AL3Y_HT (AL)0.75(Y)0.25 AL3Y_LT (AL)0.75(Y)0.25 AL2Y_C15 (AL,Y)2(AL,Y)1 CO17Y2 (CO2,Y)1(CO2,Y)2(CO)15 CO5Y_D2D (CO2,Y)1(CO)4(CO,VA)1 CO3Y (CO)3(Y)1 CO3Y2 (CO)3(Y)2 CO7Y6 (CO)7(Y)6 COY_BF (CO)1(Y)1 CO3Y4 (CO)3(Y)4 CO5Y8 (CO)5(Y)8 YSI2_LT (Y)1(SI)2 YSI2_HT (Y)1(SI)2 Y3SI5_HT (Y)3(SI)5 Y3SI5_LT (Y)3(SI)5 Y5SI4 (Y)5(SI)4 MSI_B27 (Y)1(SI)1 CUZR_B2 (CU)1(Y,ZR)1 CU2Y_H (CU)2(Y)1 CU2Y_L (CU)2(Y)1

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    13

    CU7Y1 (CU2,Y)1(CU)5 CU4Y (CU)4(Y)1 CU7Y2 (CU)7(Y)2 D022_AL3NB (AL)3(NB)1 D019_CO3MO (CO)3(MO)1 CO3VV (CO,V)3(CO,V)1 MNTA (MN)1(TA)1 MOSI2_C11B (MO)1(SI)2 MO5SI3_D8M (MO)5(SI)3 GAMMA2_ALFEZN (AL,FE,ZN)0.26(ZN)0.74 FE2SITI_L21 (FE)0.50(SI)0.25(TI)0.25 AL4C3 (AL,SI)4(C)3 B4C (B11C,B12)1(B2,C2B,CB2)1 M12C (CO)6(W)6(C)1 FE8SI2C (FE)8(SI)2(C)1 MGC2 (MG)1(C)2 SIC (SI)1(C)1 YC2_C11A (C2Y1) Y15C19_H (C)19(Y)15 Y15C19_R (C)19(Y)15 Y2C3_H (Y)2(C)2(C,VA)1 Y2C3_R (Y)2(C)2(C,VA)1 YC_GAMMA (Y)1(C,C2,VA)1 K_PHASE (C,CO,ZN)51(ZN)32(C)17 CA3ZN (CA)3(ZN)1 CA5ZN3 (CA)5(ZN)3 ZNCA (ZN)1(CA)1 ZN2CA (ZN)2(CA)1 CAZN3 (CA)1(ZN)3 CAZN5 (CA)1(ZN)5 CAZN11 (CA)1(ZN)11 CAZN13 (CA)1(ZN)13 COZN4_GAMMA (CO,ZN)4(CO,ZN)1 COZN_GAMMA1 (CO)0.12(ZN)0.88 COZN_GAMMA2 (CO)0.07(ZN)0.93 COZN_BETA1 (CO,ZN)1(CO,ZN)1 COZN_LT (CO,ZN)1(VA)1 COZN_HT (CO,ZN)1(VA)1 COZN_GAMMA (CO,ZN)1(VA)1 COZN_DELTA (CO)0.12(ZN)0.88 CRZN17 (AL,CR)1(FE,ZN)17 GAMMA_D82 (FE,ZN)0.15(FE,ZN)0.15(AL,FE,ZN)0.23(ZN)0.46 GAMMA1_FEZN (FE)0.14(AL,FE,ZN)0.12(ZN)0.74 DELTA_FEZN (CR,FE)0.06(AL,FE,ZN)0.18(ZN)0.53(ZN)0.24 ZETA_FEZN (CR,FE,VA)0.07(AL,ZN,VA)0.07(AL,ZN)0.86 CUZN_EPSILON (CU,MN,ZN)1(VA)5 CU5ZN8_GAMMA_D83 (ZN)4(CU,ZN)1(CU,ZN)8 MG2ZN3 (MG)2(AL,ZN)3 MGZN (MG)12(AL,ZN)13 MG51ZN20 (MG)51(ZN)20 MG2ZN11 (MG)2(AL,ZN)11 MNZN9 (MN)0.10(ZN)0.90 MOZN7 (MO)1(ZN)7 MOZN22 (MO)1(ZN)22 NIZN8_DELTA (NI)1(ZN)8 NIZN_TP2 (NI,ZN)0.5(NI,ZN)0.5 BETA1 (NI,ZN)1(VA)3 GAMMA (NI,ZN)1(VA)1 ZN3P2 (ZN)3(P)2 ZNP2 (ZN)1(P)2

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    14

    ZNS_ALPHA_B3 (ZN)1(S)1 ZNS_BETA_B4 (ZN)1(S)1 TI2ZN (TI)2(ZN)1 TIZN1 (TI)1(ZN)1 TIZN2 (TI)1(ZN)2 TIZN3 (TI)1(ZN)3 TIZN5 (TI)1(ZN)5 TIZN10 (TI)1(ZN)10 TIZN15 (TI)1(ZN)15 VZN3 (V)0.25(ZN)0.75 V4ZN5 (V)4(ZN)5 A_YZN2 (Y)0.33(ZN)0.67 B_YZN2 (Y)0.33(ZN)0.67 YZN3 (Y)0.25(ZN)0.75 Y3ZN11 (Y)0.21(ZN)0.79 Y13ZN58 (Y)0.18(ZN)0.82 YZN5 (Y)0.17(ZN)0.83 Y2ZN17 (Y)0.11(ZN)0.89 YZN12 (Y)0.08(ZN)0.92 YZN (Y)0.5(AL,ZN)0.5 ZN22ZR1 (ZN)0.96(ZR)0.04 ZN39ZR5 (ZN)0.89(ZR)0.11 ZN3ZR1L (ZN)0.75(ZR)0.25 ZN3ZR1H (ZN)0.75(ZR)0.25 ZN2ZR1 (ZN)0.67(ZR)0.33 ZN1ZR1 (ZN)0.5(ZR)0.5 ZN2ZR3 (ZN)0.4(ZR)0.6 ZN1ZR2 (ZN)0.33(ZR)0.67 ALMGZN_T2 (AL)0.15(MG)0.43(ZN)0.42 ALMGZN_Q (AL)0.15(MG)0.44(ZN)0.41 ALMG_BETA (AL,ZN)140(MG)89 ALMG_EPSILON (AL,ZN)30(MG)23 AL12MG17_A12 (MG)10(AL,MG,ZN)24(AL,MG,ZN)24 ALMGZN_PHI (MG)21(AL,ZN)17 ALMGZN_T1 (MG)26(MG,AL)6(AL,MG,ZN)48(AL)1 AL2FE1 (AL)2(FE)1(VA,ZN)0.04 AL5FE4 (AL,FE) AL5FE2 (AL)5(FE)2(VA,ZN)3 AL13FE4 (AL)0.63(FE,ZN)0.23(AL,VA,ZN)0.14 AL7CR (AL)6(CR)1(AL,ZN)1 AL2CR3 (AL)0.4(CR)0.5(CR,ZN)0.1 TAU4_ALCRZN (AL,ZN)0.48(CR)0.12(ZN)0.40 ALN (AL)1(N)1 BN_HP4 (B)1(N)1 SI3N4 (SI)3(N)4 TI2N (TI)2(C,N)1 MN6N4 (MN)6(N)4 MN6N5 (MN)6(N)5 TAN_EPS (TA)1(N)1 BM (B)1(CR,FE,MO,TI,ZR)1 FE3B (FE)3(B)1 M3B2 (CR,FE,MO,NI,W)0.4(CR,FE,NI)0.2(B)0.4 MB_B33 (CR,FE,MO,NB,NI,TA,TI,V)1(B)1 B2M (B)2(AL,TI,ZR,Y)1 B3SI (B)6(SI)2(B,SI)6 CR2B_ORTH (CR,FE,MN,NI)0.67(B)0.33 CRB2 (CR)0.33(B)0.67 MO2B5 (MO)0.32(B)0.68 YB4 (Y)1(B)4 YB6 (Y)1(B)6

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    15

    YB12 (B)12(Y)1 YB66 (Y)1(B)66 MZR3_E1A (CO,NI)1(Y)3 > NiY3, COY3 FEP (FE)1(P)1 CU3P (CU,FE)3(P)1 M2P (CR,FE,NI)2(P)1 M3P (CR,CU,FE,NI)3(P)1 CORUNDUM:I (AL+3,CR+2,CR+3,FE+2,FE+3,MN+3,TI+3)2(CR+3,FE+3,NI+2,

    VA)1(O-2)3

    HALITE:I (AL+3,CA+2,CR+3,FE+2,FE+3,MG+2,MN+2,MN+3,NI+2,NI+3,SI+4,VA)1(O-2)1

    SPINEL:I (AL+3,CR+2,CR+3,FE+2,FE+3,MG+2,MN+2,NI+2)1(AL+3,CR+3,FE+2,FE+3,MG+2,MN+2,MN+3,MN+4,NI+2,VA)2(CR+2,FE+2,MG+2,MN+2,VA)2(O-2)4

    ALPHA_SPINEL:I (MG+2,MN+2,MN+3,NI+2)1(AL+3,CR+3,FE+3,MN+2,MN+3,VA)2(MN+2,VA)2(O-2)4

    MN1O2:I (MN+4)1(O-2)2 NIMNO3:I (MN+3,MN+4,NI+2)2(O-2)3 NI6MNO8_TYPE:I (MG+2,NI+2)6(MN+4)1(O-2)8 QUARTZ (SIO2) CRISTOBALITE (SIO2) TRIDYMITE (SIO2) RHODONITE:I (MN+2)1(SI+4)1(O-2)3 > This is MnO.SiO2 OLIVINE:I (CA+2,FE+2,MG+2,MN+2,NI+2)1(CA+2,FE+2,MG+2,MN+2,NI+

    2)1(SI+4)1(O-2)4 > This is 2CaO.SiO2, forsterite, monticellite[CaO.MgO.SiO2], fayalite, Ni2Si

    CAMNO3:I (CA+2)1(MN+4)1(O-2)3 CAMN2O4:I (CA+2)1(MN+3)2(O-2)4 CA1CR2O4_A (CA1CR2O4) CA1CR2O4_B (CA1CR2O4) C1A1:I (CA+2)1(AL+3)2(O-2)4 > This is CaO.Al2O3

    (CA) AF (AL2O3)1(FE2O3)1 > This is Al2O3.Fe2O3

    (AF) CF:I (CA+2)1(FE+3)2(O-2)4 > This is CaO.Fe2O3

    (CF) C1A2:I (CA+2)1(AL+3)4(O-2)7 > This is CaO.2Al2O3

    (CA2) CF2:I (CA+2)1(FE+3)4(O-2)7 > This is CaO.2Fe2O3

    (CF2) C1A6:I (CA+2)1(AL+3)12(O-2)19 > This is CaO.6Al2O3

    (C1A6) C2F:I (CA+2)2(FE+3)2(O-2)5 > This is 2CaO.Fe2O3

    (C2F) C3A1:I (CA+2)3(AL+3)2(O-2)6 > This is

    CaO.FeO.Fe2O3 (CWF)

    CWF:I (CA+2)1(FE+2)1(FE+3)2(O-2)5 CW3F:I (CA+2)1(FE+2)3(FE+3)2(O-2)7 > This is

    CaO.3FeO.Fe2O3 (CW3F)

    C4WF4:I (CA+2)4(FE+2)1(FE+3)8(O-2)17 > This is 4CaO.FeO.4Fe2O3 (C4WF4)

    C4WF8:I (CA+2)4(FE+2)1(FE+3)16(O-2)29 > This is 4CaO.FeO.8Fe2O3 (C4WF8)

    C3A2M1:I (CAO)3(AL2O3)2(MGO)1 > This is 3CaO.2Al2O3.MgO (C3A2M1)

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    16

    C1A8M2:I (CAO)1(AL2O3)8(MGO)2 > This is CaO.8Al2O3.2MgO (C1A8M2)

    C2A14M2 (CAO)2(AL2O3)14(MGO)2 CORDIERITE (AL4MG2O18SI5) SAPPHIRINE (AL18MG7O40SI3) CA2SIO4_ALPHA:I (CA+2,MG+2)2(SI+4)1(O-2)4 CA2SIO4_ALPHA_PRIME:I

    (CA+2,FE+2,MG+2)2(SI+4)1(O-2)4

    LARNITE:I (CA+2)2(SI+4)1(O-2)4 > This is 2CaO.SiO2 (metastable at 1 atm)

    LOWCLINO_PYROXENE:I

    (CA+2,MG+2)1(MG+2)1(SI+4)2(O-2)6 > This is low-clinoenstatite and low-clinodiopside

    CLINO_PYROXENE:I (CA+2,FE+2,MG+2)1(FE+2,MG+2)1(SI+4)2(O-2)6 > clinoenstatite, diopside, pigeonite, hedenbergite & clinoferrosilite

    ORTHO_PYROXENE:I (CA+2,MG+2)1(MG+2)1(SI+4)2(O-2)6 > This is enstatite and orthodiopside

    PROTO_PYROXENE:I (CA+2,MG+2)1(SI+4)1(O-2)3 > This is protodiopside WOLLASTONITE:I (CA+2,FE+2,MG+2)1(SI+4)1(O-2)3 > This is CaO.SiO2 PSEUDO_WOLLASTONITE:I

    (CA+2)1(SI+4)1(O-2)3 > This is CaO.SiO2

    ANDALUSITE:I (AL+3)1(AL+3)1(SI+4)1(O-2)5 > This is a high-pressure phase (Al2O3.SiO2)

    SILLIMANITE:I (AL+3)1(AL+3)1(SI+4)1(O-2)5 > This is a high-pressure phase (Al2O3.SiO2)

    MULLITE:I (AL+3)1(AL+3)1(AL+3,SI+4)1(O-2,VA)5 KYANITE:I (AL+3)1(AL+3)1(SI+4)1(O-2)5 HATRURITE:I (CA+2)3(SI+4)1(O-2)5 > This is 3CaO.SiO2 MELILITE:I (CA+2)2(AL+3,MG+2)1(AL+3,SI+4)1(SI+4)1(O-2)7 > This is

    2CaO.Al2O3.SiO2, akermanite[2CaO.MgO.2SiO2] & gehlenite

    RANKINITE:I (CA+2)3(SI+4)2(O-2)7 > This is 3CaO.2SiO2 ANORTHITE:I (CA+2)1(AL+3)2(SI+4)2(O-2)8 > This is

    CaO.Al2O3.2SiO2 MERWINITE:I (CA+2)3(MG+2)1(SI+4)2(O-2)8 > This is

    3CaO.MgO.2SiO2 TIO:I (TI+2,TI+3,VA)1(TI,VA)1(O-2)1 TIO_ALPHA:I (TI+2)1(O-2)1 TI3O2:I (TI+2)2(TI)1(O-2)2 RUTILE_MO2:I (MN+4,NB+4,TI+4)1(O-2)2 NBO:I (NB+2)1(O-2)1 FE4NB2O9:I (FE+3)4(NB+2)1(NB+4)1(O-2)9 AL2TIO5:I (AL+3)2(TI+4)1(O-2)5 FLUORITE_C1:I (MN+2,MN+3,NI+2,Y+3,ZR,ZR+4)2(O-2,VA)4 ZRO2_TETR:I (MN+2,MN+3,NI+2,Y+3,ZR+4)2(O-2,VA)4 ZRO2_MONO:I (NI+2,Y+3,ZR+4)2(O-2,VA)4 S2ZR1 (S2ZR) M2O3C:I (AL+3,CR+3,FE+3,MN+3,NI+2,Y,Y+3,ZR+4)2(O-2,VA)3(O-

    2,VA)1 > Mn2O3 and cubic Y2O3

    M2O3H:I (MN+3,Y,Y+3,ZR+4)2(O-2,VA)3(O-2,VA)1 > hexagonal Y2O3 YAG:I (AL+3,CR+3,FE+3)5(Y+3)3(O-2)12 > This is Y3Al5O12

    and Y3Fe5O12 (cI160, Ia-3d)

    YAP:I (AL+3,CR+3,FE+3)1(CA+2,Y+3)1(O-2,VA)3 > This is YAlO3, YCrO3 and YFeO3 (oP20, Pnma)

  • TCFE8

    Thermo-Calc Software AB Norra Stationsgatan 93 SE-113 64 Stockholm SWEDEN

    [email protected] Phone: +46 8 545 959 30 Fax: +46 8 673 37 18 www.thermocalc.com

    Org.No: 556540-6138 VAT No: SE556540613801

    17

    YAM:I (AL+3,SI+4)2(Y+3)4(O-2,VA)1(O-2)9 > This is Y4Al2O9 (mP60, P121/c1)

    Y2S2D_Y2SI2O7 (Y+3)1(Y+3)1(SI2O7-6)1 Y2S2G_Y2SI2O7 (Y+3)1(Y+3)1(SI2O7-6)1 Y2S2B_Y2SI2O7 (Y+3)1(Y+3)1(SI2O7-6)1 Y2S2A_Y2SI2O7 (Y+3)1(Y+3)1(SI2O7-6)1 Y2SIO5 (Y+3)1(Y+3)1(SIO4-4)1(O-2)1 ZR3Y4O12 (ZR+4)3(Y+3)4(O-2)12 MN2YO5 (Y+3)1(MN+3)1(MN+4)1(O-2)5 MNYO3_HEX (Y+3)1(MN+3)1(O-2)3 CUPRITE_C3:I (CU+1)2(O-2)1 CUO (CU+2)1(O-2)1 YCUO2 (Y+3)1(CU+1)1(O-2)2 Y2CU2O5 (Y+3)2(CU+2)2(O-2)5 YFE2O4 (FE+2,FE+3)2(Y+3)1(O-2)4 PYRRHOTITE (CU,FE,MN,NI,TI,VA)1(S)1 PYRITE (FE)1(S)2 DIGENITE (CU,FE,VA)2(CU,VA)1(S)1 MNS (CA,CR,CU,FE,MG,MN)1(S)1 NI3S2 (NI)0.6(S)0.4 TI4C2S2 (TI)4(C)2(S)2 FESO4 (FE)1(S)1(O)4 FE2S3O12 (FE)2(S)3(O)12 SIS2 (SIS2) AL2S3 (AL2S3) ZR2S3 (S3ZR2)

    Note that the L12_FCC, B2_BCC, B2_VACANCY and HIGH_SIGMA phases, and the DICTRA_FCC_A1 phase as well, are always rejected by default; while, if it is necessary for some systems, they can be restored in the TDB Module.

    TCFE8 - TCS Steels/Fe-Alloys Database, Version 8.0Included ElementsLimitsMajor Updates from TCFE7.0 to TCFE8.0

    maxElementMaxElementmaxElementmaxElementFigure 1. a) Oxidation of a steel (17.8 wt.% Mn, 9.5 Cr, 1.0 Ni and 0.27 C) at 900 ºC. b) Calculated composition of the spinel phase in the oxide scale at 900 ºC.Figure 2. a) Calculated oxide scale formed on a low-Cr boiler steel (Fe-1.44Cr-0.06C wt.%) at 550 ºC. b) Calculated composition in different oxides versus oxygen partial pressure for the same steel as in a. These results agree very well compared with ...Figure 3. Calculated density of several different steels at room temperature compared with experimental data provided by Sandvik [18] and Uddeholm Tooling [19].Figure 4. Relative length change [20] of steel Fe-0.11C-0.5Mn-0.03Si-0.01Cr-0.02Ni (mass percent) compared with predictions using TCFE8.Figure 5. Isothermal section of Fe-Y-O calculated at 1000 C.Figure 6. Zn corner of a) Al-Cr-Zn b) Al-Fe-Zn and c) Cr-Fe-Zn systems at 460 C compared with experimental information [21-24].Figure 7. Calculated vs. experimental equilibrium composition for: a) MC, b) M7C3 and c) M6C carbides in different tool steels and high-speed steels. The experimental data has been taken from references [25, 26 and 27].Figure 8. Predicted mass fraction of Nb, Ti, V, and Al in precipitates compared with experimental information [28] for a microalloyed steel with 0.09%C, 1.51%Mn, 0.035%Al, 0.010%Ti, 0.030%Nb, 0.08%V and 0.0105%N (mass percent).Table 1. Predicted compositions for (TixNb1-x)NyC1-y and (NbtTi1-t)CuN1-u carbonitrides (site fractions) in two microalloyed steels compared with measurements from Craven et al. [29]. All calculations were made at 1000 ºC. Both steels contain the fo...Figure 9. Experimental liquidus temperatures [30, 31 and 32] for various steels (stainless steels, carbon and low alloy steels, high-speed steels with high Nb content and chromium steels) compared with calculations performed using the TCFE8 databases.Table 2. Predicted invariant temperatures of solid/liquid equilibria including WC, (cubic carbide), and graphite or M6C compared with experimental data [33 and 34].AcknowledgementReferencesList of all phases included in TCFE8